Sélectionnez votre langue

HAL : Dernières publications

HAL : Dernières publications
  • [hal-02747031] Close look on cubic Tm:KY 3 F 10 crystal for highly efficient lasing on the 3 H 4 → 3 H 5 transition
    We report on Czochralski growth, detailed ground- and excited-state absorption and emission spectroscopy and highly-efficient mid-infrared (∼2.3 µm) laser operation of a cubic potassium yttrium fluoride crystal, Tm:KY3F10. The peak stimulated-emission cross-section for the 3H4 → 3H5 transition is 0.34×10−20 cm2 at 2345 nm with an emission bandwidth exceeding 50 nm. The excited-state absorption spectra for the 3F4 → 3F2,3 and 3F4 → 3H4 transitions are measured and the cross-relaxation is quantified. A continuous-wave 5 at.% Tm:KY3F10 laser generated 0.84 W at 2331-2346 nm by pumping at 773 nm, with a record-high slope efficiency of 47.7% (versus the incident pump power) owing to the efficient action of energy-transfer upconversion leading to a pump quantum efficiency approaching 2. The first Tm:KY3F10 laser with ESA-assisted upconversion pumping (at 1048 nm) is also demonstrated. Due to its broadband emission properties, Tm:KY3F10 is promising for ultrashort pulse generation at ∼2.3-2.4 µm.
  • [hal-02917258] Detecting a stochastic gravitational-wave background in the presence of correlated magnetic noise
    A detection of the stochastic gravitational-wave background (SGWB) from unresolved compact binary coalescences could be made by Advanced LIGO and Advanced Virgo at their design sensitivities. However, it is possible for magnetic noise that is correlated between spatially separated ground-based detectors to mimic a SGWB signal. In this paper we propose a new method for detecting correlated magnetic noise and separating it from a true SGWB signal. A commonly discussed method for addressing correlated magnetic noise is coherent subtraction in the raw data using Wiener filtering. The method proposed here uses a parametrized model of the magnetometer-to-strain coupling functions, along with measurements from local magnetometers, to estimate the contribution of correlated noise to the traditional SGWB detection statistic. We then use Bayesian model selection to distinguish between models that include correlated magnetic noise and those with a SGWB. Realistic simulations are used to show that this method prevents a false SGWB detection due to correlated magnetic noise. We also demonstrate that it can be used for a detection of a SGWB in the presence of strong correlated magnetic noise, albeit with reduced significance compared to the case with no correlated noise. Finally, we discuss the advantages of using a global three-detector network for both identifying and characterizing correlated magnetic noise.
  • [hal-02557828] GRANDMA observations of advanced LIGO’s and advanced Virgo’s third observational campaign
    GRANDMA (Global Rapid Advanced Network Devoted to the Multi-messenger Addicts) is a network of 25 telescopes of different sizes, including both photometric and spectroscopic facilities. The network aims to coordinate follow-up observations of gravitational-wave (GW) candidate alerts, especially those with large localization uncertainties, to reduce the delay between the initial detection and the optical confirmation. In this paper, we detail GRANDMA’s observational performance during Advanced LIGO/Advanced Virgo Observing Run 3 (O3), focusing on the second part of O3; this includes summary statistics pertaining to coverage and possible astrophysical origin of the candidates. To do so, we quantify our observation efficiency in terms of delay between GW candidate trigger time, observations, and the total coverage. Using an optimized and robust coordination system, GRANDMA followed-up about 90 per cent of the GW candidate alerts, that is 49 out of 56 candidates. This led to coverage of over 9000 deg^2 during O3. The delay between the GW candidate trigger and the first observation was below 1.5 h for 50 per cent of the alerts. We did not detect any electromagnetic counterparts to the GW candidates during O3, likely due to the very large localization areas (on average thousands of degrees squares) and relatively large distance of the candidates (above 200 Mpc for 60 per cent of binary neutron star, BNS candidates). We derive constraints on potential kilonova properties for two potential BNS coalescences (GW190425 and S200213t), assuming that the events’ locations were imaged.