Les glissements sous-marins géants (10-2000 km3) sont présents dans les séries sédimentaires Quaternaire des marges continentales passives. Si leurs âges coïncident avec des fluctuations eustatiques, il est encore difficile d’expliquer comment d’aussi grandes ruptures sont générées sur de faibles pentes (<2˚) en l'absence d'un facteur déclenchant tel qu’un séisme. Des hypothèses proposent le rôle de la dissociation des hydrates de gaz et de l’augmentation des pressions interstitielles. Le projet MEGA explorera ces hypothèses grâce aux premières modélisations reliant la stabilité des hydrates de gaz, les variations de pression/température sur le fond marin et la stabilité des pentes. Il s’appuiera sur une comparaison innovante des systèmes du Nil et de l'Amazone, leurs forçages climatiques différant au cours des cycles glaciaires-interglaciaires. En l’absence de cas historiques de méga glissements, MEGA propose de modéliser leurs conséquences en terme de tsunami sur les zones côtières.
After the formation of the Moon, its internal temperature was high, and its mantle was entirely molten. As this magma ocean cooled, it underwent fractional crystallization, starting with the formation of olivine and then continuing with the formation of pyroxenes and plagioclases. Finally, towards the end of solidification, ilmenite, a dense mineral rich in iron and titanium, crystallized along with plagioclases and pyroxenes. The accumulation of ilmenite and pyroxene would have formed a dense layer above the less dense cumulates formed earlier, resulting in a gravitational instability leading to a mantle overturn. This process has been chemically and dynamically modeled and could explain the asymmetric distribution of incompatible elements (KREEP) and the high TiO₂ content in some lunar basalts. This phenomenon likely had significant consequences on the distribution of chemical elements in the Moon, providing constraints on accretion and evolution scenarios. A recent study using thermodynamic, geophysical, and geodetic data showed that a dense layer is currently present at the base of the lunar mantle. It could correspond to ilmenite-rich cumulates like those formed during the lunar mantle overturn.
Les fluides induisent des tremblements de terre aussi bien sous forme d’essaims naturels qu’associés à l’exploitation de réservoirs géologiques. Dans les deux cas, la sismicité peut soit s’arrêter seule, soit représenter les précurseurs de grands tremblements de terre. Pour notre sécurité face au risque sismique et pour le développement sûr de nouvelles sources d’énergie, il est donc nécessaire d’anticiper l’évolution des essaims sismiques, ce qui nécessite de suivre leurs forçages mécaniques. Cependant, les interactions complexes entre les fluides, les déformations lentes et asismiques et les tremblements de terre sont complexes et toujours mal compris. Le projet INSeis est motivé par de nouveaux modèles qui réconcilient ces phénomènes. Il a donc pour objectif d’améliorer notre compréhension des processus générant les essaims sismiques à travers différents contextes et à différentes échelles, afin d’améliorer l’anticipation du comportement des essaims.
L'objectif du projet ABYSS est de sonder l'état mécanique d'une zone de faille avant plusieurs grands tremblements de terre (magnitude > 6) afin d'identifier des marqueurs systématiques de la phase préparatoire des tremblements de terre. La cible choisie est l'une des failles les plus actives de la Terre : la zone de subduction chilienne.
Une technologie prometteuse sera utilisée, la mesure acoustique distribuée sur fibres optiques, qui permet de détecter les tremblements de terre grâce aux câbles de télécommunication sous-marins. ABYSS s'appuiera sur le réseau GTD le long de la côte chilienne. Cette capacité d'observation sans précédent, associée au développement du traitement des flux de données en temps réel, renforcera le système d'alerte précoce au Chili en améliorant la rapidité et la précision des alertes sismiques.
UMR Géoazur
Campus Azur du CNRS
250 rue Albert Einstein
- CS 10269 - F 06905 SOPHIA ANTIPOLIS Cedex
+33 (0)483 618 500