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ABSTRACT 
 
The one-dimensional point spread function for long-exposure frames of the whole system atmosphere – instrument is 
calculated from solar limb observations using data recorded at OCA Observatory (France). It is then compared to the 
theoretical one deduced from the Von Karman model and various wave-front structure functions. Good agreement is found 
allowing to deduce the spatial coherence outer scale L0 and the Fried parameter r0.  
 

1. INTRODUCTION. 
 
One of the basic problems in solar observations is the estimation of the optical transfer function (OTF) that describes the 
influence of the Earth's atmosphere on the observed images (Labeyrie, 1970). Due to the lack of point sources, solar limb 
observations (Druesne et al, 1983) or known structure on solar surface (Molodij and Rayrole, 1997) may serve as reference 
during the observations. Theoretical expressions of the OTF deduced from models of wave-front propagation through 
atmospheric turbulence in case of long-exposure frames have been established (Fried 1966; Roddier 1981). These 
expressions depend on the so-called Fried parameter r0, which estimates the energy of the mean atmospheric turbulence. 
More recently, a new theoretical expression of long-exposure point spread function (psf) deduced from Von Karman model 
was established (Conan, 2000). This model depends on two optical atmospheric parameters: the Fried parameter r0 and the 
spatial coherence outer scale L0. The knowledge of this last parameter is of major interest in astronomy mainly for 
optimization of high angular resolution techniques (speckle interferometry, long baseline interferometry, adaptive optics). 
Several methods have been proposed to estimate the spatial coherence outer scale L0 in the case of nighttime observations. 
Most of them are based on a statistical analysis of the Angle-of-Arrival (AA) fluctuations (Tallon, 1989; Borgnino 1989). A 
more detailed theoretical study associated to numerical simulations led to propose new techniques allowing L0 estimation 
from its effects on the variance and the covariance of the AA fluctuations (Borgnino 1990, Borgnino et al. 1992, Ziad et al., 
1994). A Generalized Seeing Monitor (GSM) has then been built (Martin et al, 1994) allowing evaluation of many 
astronomical sites: La Silla, Maydanak, Cerro Pachon, Cerro Paranal (Ziad et al., 2000). For daytime observations, L0 
values are not very well known and its estimation is of great interest in order to evaluate optical effects induced by 
atmospheric turbulence on solar images. A seeing monitor is then useful and MISOLFA (Moniteur d'Images Solaires 
Franco-Algérien, still under construction) is built in this goal (http://www-astro.unice.fr). It is founded on the statistical 
analysis of AA fluctuations. MISOLFA is a generalized daytime seeing monitor that will observe together with experiments 
based at Calern Observatory (Observatoire de la Côte d’Azur - OCA) and dedicated to solar diameter measurements (solar 
astrolabe, DORaySOL (Définition et Observation du Rayon SOLaire) and soon SODISM II (SOlar Diameter Imager and 
Surface Mapper), replica of PICARD experiment, which will observe in space in 2006 (http://www-
projet.cst.cnes.fr:8060/PICARD/Fr/). MISOLFA will give in real time estimations of the coherence parameters 
characterizing wave-fronts degraded by atmospheric turbulence (Fried's parameter r0, size of the isoplanatic patch θ0, spatial 
coherence outer scale L0 and atmospheric correlation times) but also estimation of optical turbulence profiles.  
In this paper, we propose a new method to estimate simultaneously the Fried parameter r0 and the spatial coherence outer 
scale L0 for daytime observations. It is based on the comparison between the one-dimensional long-exposure psf deduced 
from solar limb observations with the theoretical expression obtained in the case of the Von Karman model. The method is 
first developed using numerical simulation. It is then tested with experimental data performed at the Calern Observatory 
astrolabe (OCA)  (Laclare et al, 1996). 
 

2. EXPOSED METHOD, NUMERICAL SIMULATION 
                                                           
* Centre de Recherche en Astronomie Astrophysique et Géophysique, CRAAG – Observatoire d’Alger, BP 63 Bouzaréah 16340 Alger 
Algérie; phone 00 21321904460; fax 00 213904458; Email : irbah@unice.fr;  ** Université de Nice – Sophia Antipolis, UMR n°6525 
Astrophysique, Parc Valrose, 06108 Nice Cedex 2 France; fax 00 33492076321 
 



 
 

 
2.1 Calculation of the one-dimensional long-exposure psf from simulated data 
Several steps are needed to calculate the one-dimensional long-exposure psf according to Fried's terminology (Fried, 1966) 
from simulated solar data. In the following, we will denote the psf and the corresponding OTF by RLE-Fried (x) and  HLE-Fried 
(f) where x and f are respectively space and frequency variables. The needed steps are the simulation of a synthetic image of 
the Sun limited to the telescope field of view, the randomly perturbed wave-front synthesis and solar image as obtained 
through the atmospheric turbulence in the case of a field wider than the isoplanatism angle. The model assumes that the 
optical effects induced by the whole terrestrial atmosphere may be due to an unique layer situated at a distance h above the 
telescope pupil; h is a parameter of the model.  
 
2.1.1 Synthetic image of the Sun 
A synthetic image of the Sun as obtained in space, is built using the single parameter model of mean solar limb darkening 
function proposed by Hestroffer and Magnan (1998) and given by: 
                                                              I(μ)= 1- (1-μ)α, α ∈ R    where   μ = cos(θ) = (1-r2)1/2                                                                (2.1) 
θ represents the angle between a Sun's radius vector and the line of sight. 
θ=0 corresponds to the center of the disk and θ= π/2 to the solar edge. For observation with wavelength λ equal to 660 nm, 
the constant α is equal to 0.40.  
Figure 1(a) shows the limb darkening function computed from equation 2.1 and Figure 1(b) the simulated image of the Sun 
as it can be obtained in space. The image size is equal to 64 by 64 pixels. 
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Figure 1: Solar limb darkening function (a) and the synthetic solar image (b) 

 
2.1.2 Simulation of the phase screens using Nakajima method 
In the near – field approximation and assuming the Von Karman model, the spectral density of the phase fluctuations at the 
aperture plane of the telescope is given by (Voitsekhovich, 1995, Ziad et al., 2000):  

                                                                         ( ) ( ) 6/112
0

23/5
0 /10229.0 −−

+= LfrfWϕ                                                (2.2) 

where 22 yx fff +=  is the spatial frequency modulus, r0 the Fried parameter and L0 the wave-front outer scale.  
We use equation (2.2) and the Nakajima method (Nakajima 1998; Borgnino et al., 1992) to generate random wave-fronts. 
Figure 2 represents a random phase screen simulated for r0 = 5 cm and L0 = 0.5 m. 
 
2.1.3 Simulation of the solar image in absence of isoplanatism 
We use the generated random phase screen to build solar images as recorded through the atmospheric turbulence in absence 
of isoplanatism. For the different points of the object field (synthetic image of the Sun), the telescope aperture projects itself 
onto different regions of the remote layer of turbulence (phase screen); for each of them a different psf is computed and 
added in the focal plane of the telescope with the intensity proportional to the object source (Beaumont et al., 1996).  
Denoting O(α,β) the brightness intensity of the object and S(x,y,α,β) the instantaneous psf at the focus of the telescope, a 
point of the object produces in the focal plane of the telescope an intensity of the form: 
                       ),,,(),( βαβα yxSO          with          2)],()),([exp(),,,( βαϕβα hvhuPvuiFTyxS −−=            (2.3) 
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Figure 2: Phase screen sample generated for r0 = 5 cm and L0 = 0.5 m 

 
where (α,β), (u,v), and (x,y) are coordinates respectively in object, pupil and image planes.  
ϕ(u,v) and P(u,v) are respectively the random phase and amplitude of the pupil function; FT denotes the Fourier transform. 
The image I(x,y) at the focal plane is the addition in intensity of all these contributions (Figure 3): 
                                              ∫∫∫∫ == βαβαβαβαβα ddyxSOddyxiyxI ),,,(),(),,,(),(                                   (2.4) 

 
2.2 Calculation of RLE-Fried (x) 
Using the previous developments, many sequences of solar images have been simulated in various observation conditions 
defined by the Fried parameter r0 and the wave-front outer scale L0.  
From each simulated image (Figure 4 a), a solar edge constituted with the inflexion points of the solar limb function given 
by each CCD line is extracted. A parabolic fit is then made through the inflexion points and the coefficients a, b and c of the 
parabola estimated (Figure 4 a). If xi and yi are the co-ordinates of the solar edge points in the camera plane, we can write: 
                                                                                           cbxaxy iii ++= 2                                                                (2.5) 
The maximum (or minimum) of the parabola is given by: 

                                                                            a
acbya
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and the derivative solar image (Figure 4 b) corrected from the curvature effect is written as (Figure 4 c):  
                                                                             ),(),( syiyyxIyxIcc −−=                                                             (2.7) 
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Figure 3: Simulated image of the Sun in absence of isoplanatism 
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(c)      (d) 
Figure 4: (a): Simulated image of the Sun with its edge fitted by a parabola (1pixel = 0.2 arcsecond). (b): The first derivative. (c): The first 

derivative corrected from the curvature effect. (d):The long-exposure psf (RLE-Fried (x)) distorted by the solar limb darkening 
 
Under some statistical assumptions (stationarity, ergodicity…), the one-dimensional long-exposure psf according to Fried's 
definition RLE-Fried (x) is obtained by the summation of all the lines of ICC(x, y) (Figure 4 d). 
                                                                               ∑=−
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2.3 Theoretical long-exposure psf 
The long - exposure OTF of the whole system instrument – atmosphere is given by (Roddier, 1981):  
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where Cψ is the second order moment of the complex amplitude.  
Using the Von Karman model, it is expressed as (Conan, 2000): 

                             [ ]
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−Γ×ΓΓ−= − )2()2(2

)6/5()()5/6(5
24

2
)6/11(exp)(

0
6/5

6/5

0
6/1

3/5

0

0
6/5 

3/86/5 L
fK

L
f

L
rfC λπλππψ

r
       (2.10) 

K5/6(r) is the modified Bessel function of second kind known as McDonald's function and Γ(s) the gamma function. 
)(ˆ fFT

r
 is the telescope OTF : 
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The image is thus conditioned by the quality of the psf (Figure 5): 
                                                                                 ])0,(ˆ[)( 1 ><=>< − xfFFTF α                                                 (2.12) 

where FT-1 denotes the inverse Fourier transform. 
 
2.3 Comparison of the simulated psf’s with the Von Karman model 
The psf’s obtained from the simulation method are compared to the theoretical ones obtained from equation 2.12 (Figure 6). 
We observe in the figure a good agreement between the simulation and theory. The simulated data points follow closely the 
profile expected from the Von Karman turbulence model.  
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Figure 5: Long-exposure psf's obtained from the theoretical model for various values of r0 and L0. For each curve family L0 parameter is 

increasing from the bottom to the top (pupil diameter D = 25 cm, focal length of the telescope F = 10 m, 1 pixel = 0.2 arcsecond ). 
 

For each psf simulated under given observation conditions (r0sim and L0sim ), we determine using an iterative procedure, the 
Fried parameter and the outer scale values (r0 cal and L0 cal) of the Von Karman's theoretical psf model corresponding to the 
best fit in the least square sense. In order to check the performance of the method, we calculate for each parameter the 
relative difference: 
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For a given value set (r0sim , L0sim), R1 and R2 are computed using 1000 samples. The numerical simulation results show a 
good efficiency of the method for parameter estimation, the relative difference do not exceed a few percents. However, this 
assumes the wave-front outer scale L0 to be somewhat smaller than the phase screen length by a factor 3.  
We will apply now the method to experimental data recorded at the Calern Observatory astrolabe (OCA). 
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Figure 6: The simulated OTF (crosses) compared to Von Karman theoretical model (circles): a good agreement is observed. 

 
 

3. APPLICATION TO EXPERIMENTAL DATA 
 

3.1 Observations 
These data have been performed with the solar astrolabe of Calern Observatory during May 1997. They consist in image 
sequences used for solar diameter measurements. Each sequence is made of 100 alternatively direct and reflected images, 
recorded at a rate of 4 images per second (Laclare et al, 1996). Each image is taken with a CCD camera having an 



 
 

integration time of 20 ms (Figure 7). Its size is some 101 by 256 rectangular pixels, which corresponds to a field on the sky 
of 75 by 287 arcsecond squares. The images are then cleaned by means of wavelet technique in order to remove all 
impurities (Irbah et al, 1999). The reflected image being generally worse than the direct ones due to the additional reflection 
on the mercury bath, we consider only the direct one in the analysis. 

Arcseconds

Ar
se

co
nd

s

0 50 100 150 200 250

0

10

20

30

40

50

60

70

 
Figure 7: Image recorded with the solar astrolabe of Calern Observatory after being cleaned 

 
3.2 Theoretical fit to the observed OTF’s 
Figure 8 shows an example of a comparison between the experimental OTF calculated from solar astrolabe data with Von 
Karman 's model. A good agreement is observed and the best fit, in the least -square sense, is obtained for r0 = 1.8 cm and 
L0 = 2.5 m.  
At Calern Observatory, for observations made on May 22 1997, we have observed r0 values in the range 0.5 to 2 cm and L0 
value 0.5 to 3 m. No obvious correlation is observed between these parameters (Figure 9).  
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Figure 8: Comparison between the experimental OTF's calculated from solar astrolabe data (crosses) with Von Karman's model (circles): 

the best fit is obtained for r0= 1.8 cm and L0 = 2.5 m 
 

4. CONCLUSION 
 
A new method allowing simultaneous estimations of the Fried parameter r0 and the spatial coherence outer scale L0 for 
daytime observations was developed and tested on simulated solar data. This method is based on the comparison of the 
observed long-exposure psf according to Fried's definition with the theoretical one obtained using the Von Karman model. 
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Figure 9: Outer scale L0 versus Fried’s parameter r0 

 
An iterative minimization method is used and provides the r0 and L0 parameters of the theoretical model corresponding to 
the best fit to the observations. The method was then applied to experimental data recorded at Calern Observatory astrolabe 
during May 1997. Results were consistent with the Von Karman statistics. Typical values of Fried’s parameter r0 and outer 
scale L0 values were found ranging respectively from 0.5 to 2 cm and 0.5 to 3 m. 
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