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Rolls in finite Prandtl number rotating convection with free-slip top and bottom boundary conditions
are shown to be unstable with respect to small angle perturbations for any value of the rotation rate.
This instability is driven by the horizontal mean flow whose estimation requires a special singular
perturbation analysis. ©1997 American Institute of Physics.@S1070-6631~97!02001-1#
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I. INTRODUCTION

Rayleigh–Be´nard convection in a plane layer heat
from below and rotating about a vertical axis, has been
object of special attention motivated by both astrophys
and geophysical applications, and by the existence of a
tional instabilities occurring in this system. In the case
free-slip top and bottom boundary conditions, Ku¨ppers and
Lortz1 showed, using a perturbation analysis near thresh
that when in an infinite Prandtl number fluid, the Tayl
number~which measures the rotation rate! exceeds the criti-
cal value 2285, two-dimensional rolls are unstable with
spect to perturbations of the form of a similar pattern rota
by an angle close to 58°. This instability which is al
present with no-slip boundaries,2 leads in the case of ex
tended systems to the formation of chaotically evolvi
patches of parallel rolls.3–7

Convection at moderate Prandtl number with no-slip
and bottom boundary conditions, was addressed in Refs.
and 9, and the Ku¨ppers–Lortz instability was shown to occu
at a critical Taylor number lower than in the infinite Pran
number limit. Free-slip boundaries were considered by Sw
~cited in Ref. 9! who noted that the usual perturbative calc
lation of the growth rate leads to a divergence in the limit
perturbations quasi-parallel to the basic rolls. The pres
paper is mostly concerned with a revisited analysis of t
problem, leading to a uniformly valid expression of the i
stability growth rate. We show in particular that for any fini
Prandtl number and rotation rate, straight parallel rolls
unstable when the angle associated with the perturbatio
small enough.

In Section II, steady convective rolls in a rotating fram
are constructed perturbatively near threshold. Section II
devoted to the computation of the instability growth rate
finite angle perturbation, an analysis which, at finite Pran
number, breaks down in the small angle limit. In Section I
we present a special analysis in the resulting small an
‘‘boundary layer,’’ where the interaction of the basic rol
with quasi-parallel perturbations leads to almost spa
independent contributions which become resonant in the
angle limit. These terms are removed by prescribing a qu
solvability condition to the marginal mode of quasi-consta
horizontal velocity. A uniform expression for the instabili
growth rate is then derived and a new ‘‘small-angle insta
ity’’ is obtained. The sensitivity of the instability growth rat
to the Prandtl and Taylor numbers is analyzed. Qualita
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features of this instability and its nonlinear development
briefly described in Section V.

II. STEADY CONVECTIVE ROLLS IN A ROTATING
FRAME

The Boussinesq equations in a horizontal fluid lay
heated from below and rotating around a vertical axisẑ, are
written in the non-dimensional form

Du1 ẑq2¹G2t ẑ3u5Pr
21S u–“u1

]

]t
uD , ~1!

“–u50, ~2!

Dq1Raẑ–u5u–“q1
]

]t
q, ~3!

where the vertical diffusion time is taken as time unit. W
assume a Prandtl numberPr.0.6766, to prevent
over-stability.10 The other parameters are the Rayleigh nu
berRa and the square roott of the Taylor number~equal to
twice the Rossby number! which, to be specific, is taken
positive ~anti-clockwise rotation!.

Proceeding as in Ref. 1, we introduce the operat
L5“3(“3–) and Y5“3–, and express the velocity
u5(u,v,w) t in terms of two scalar fieldsf and c, in
the form u5L(f ẑ)1Y(c ẑ)5(]z]xf1]yc,]z]yf2]xc,
2Dhf)

t, whereDh5]xx1]yy . Applying the operatorsẑ–L
and ẑ–Y on Eqs.~1!–~3!, we obtain

~U1RaG!X5Q~X,X!1
]

]t
VX, ~4!

with

X5F f

c

q
G , Q~X,X8!5F Pr

21ẑ–L~u–“u8!

2Pr
21ẑ–Y~u–“u8!

u–“q8
G ,

G5F 0 0 0

0 0 0

2Dh 0 0
G ,

U5F D2Dh 2t]zDh 2Dh

t]zDh DDh 0

0 0 D
G ,
67$10.00 © 1997 American Institute of Physics
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V5F Pr
21DDh 0 0

0 Pr
21Dh 0

0 0 1
G .

For free-slip boundary conditions,q5f5]zzf5]zc50 in
the planez56 1

2.
A stationary solution of Eq.~4! is computed perturba

tively near the convection threshold by expandi
Ra5R01eR11e2R21••• and X5eX11e2X21e3X31•••
or, more explicitly, when taking into account the bounda
conditions satisfied by the individual components,

f5ef1cospz1e2f2sin2pz1•••, ~5!

c5ec1sinpz1e2~c01c2cos2pz!1•••, ~6!

q5eq1cospz1e2q2sin2pz1••• . ~7!

Introducing the linear operatorL5U1R0G, we get at the
successive orders of the expansion,

LX150, ~8!

LX252R1GX11Q~X1 ,X1!, ~9!

LX352~R1GX21R2GX1!1Q~X1 ,X2!1Q~X2 ,X1!.

~10!

For a solution in the form of two-dimensional rolls with
critical wave numberukW1u5k, given by the real solution of

2S k2p2D 313S k2p2D 2511
t2

p4 , ~11!

the critical Rayleigh number isR05 @(k21p2)31t2p2#/k2

~Ref. 10!. To simplify the writing, we denote by

Z~a,b,g!5~acospz,bsinpz,gcospz! t, ~12!

vectors corresponding to fundamental modes in the vert
direction and obeying the boundary conditions prescribed
X. An element of the null space ofL is then given by

v~kW !5Z~c1 ,c2 ,c3!e
ikW•xW, ~13!

with c151, c252 tp/kp
2 ,c35 R0k

2/kp
2 , and kp

25k21p2

5AR0/3, and the leading order solution reads

X15Av~kW1!1c.c., ~14!

where the amplitudeA will be determined by a solvability
condition arising at a higher order. For this purpose, it
convenient to introduce the inner product

^X,X8&5R0E f*f8dxW1R0E c*c8dxW1E q*q8dxW ,

~15!

for which the operatorL is self-adjoint.
Using the notation

Q~Xi ,Xj !1Q~Xj ,Xi !5~11d i j !~Qi , j
~1! ,Qi , j

~2! ,Qi , j
~3!! t,

~16!

we have in Eq.~9!,
68 Phys. Fluids, Vol. 9, No. 1, January 1997
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Q~X1 ,X1!5FQ1,1
~1!

Q1,1
~2!

Q1,1
~3!
G5F 0

2
t

Pr
p2

k4

kp
2 ~A2e2ik

W
1 •x

W
1c.c.!

22R0p
k4

kp
2sin2pzuAu2

G .
~17!

The solvability condition for Eq.~9! ~obtained by taking the
inner product of this equation withv(kW1)), requiresR150.
Defining the operatorP5D31t2]zz2R0Dh , Eq.~9! reduces
to

DhPf25DQ1,1
~1!1t]zQ1,1

~2!1DhQ1,1
~3! , ~18!

where the right hand side vanishes identically. We thus
Dhf250, since elements of the null space ofP, already
included inf1, are not needed inf2.

For the two other components ofX2, one easily checks
that c250, c05C0e

2ikW1 •x
W
1c.c. and q25Q2 with

C05(tp2/8Prkp
2) A2 andQ25(R0k

4/2pkp
2) uAu2. This en-

ables us to compute

Q~X1 ,X2!1Q~X2 ,X1!

5S 04k4pPr
C0~A* e

ikW1 •x
W
23Ae3ik

W
1 •x

W
!sin pz1c.c.

2pk2Q2Ae
ikW1 •x

W
cospz cos 2pz1c.c.

D .
The solvability condition of Eq.~10! then reduces to
R25r 2uAu2 or equivalently, e2uAu25 (Ra2R0)/r 2, with
r 25 (1/2kp

2) (R0k
42 (t2p4/Pr

2)), which completes the
computation of the roll amplitude in terms of the distance
threshold.

III. THE KÜPPERS–LORTZ INSTABILITY

We assume that the steady rolls of wave vectorkW1 com-
puted in Section II are subject to a perturbationX̃ in the form
of rolls with an infinitesimal amplitude and a wave vect
kW2 making withkW1 an angleu that it is enough to consider in
the range ]2 p/2 ,p/2]. We assume for the sake of simplic
ity that the wave numbersukW1u and ukW2u are critical. When
real, the growth rates of this perturbation is given by

~U1RaG!X̃5Q~X,X̃!1Q~X̃,X!1sVX̃. ~19!

In order to computes5es11e2s21••• perturbatively near
threshold, we also expandX̃5X̃11eX̃21e2X̃31••• or, for
the individual components,

f̃5f̃1cospz1ef̃2sin2pz1•••, ~20!

c̃5c̃1sinpz1e~c̃01c̃2cos2pz!1•••, ~21!

q̃5q̃1cospz1eq̃2sin2pz1••• . ~22!

Equation~19! leads to

LX̃150, ~23!

LX̃25Q~X1 ,X̃1!1Q~X̃1 ,X1!1s1VX̃1 , ~24!
Ponty, Passot, and Sulem
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LX̃35Q~X2 ,X̃1!1Q~X̃1 ,X2!1Q~X1 ,X̃2!1Q~X̃2 ,X1!

1s1VX̃21s2VX̃12R2GX̃1 . ~25!

Using a notation similar to~16!, we define

Q~Xi ,X̃j !1Q~X̃j ,Xi !5Qi , j̃ 5~Qi , j̃
~1!
,Q

i , j̃
~2!
,Q

i , j̃
~3!

! t.
~26!

Writing the solution of Eq. ~23! in the form
X̃15Bv(kW2)1c.c., whereB is an arbitrary constant, we hav
in the right-hand side of Eq.~24!,

Q1,1̃

5S j 1
Pr

dh
1dh

2~AB* eik
W2

•xW1ABeik
W1

•xW !sin2pz1c.c.

j 2
Pr

~dh
2AB* eik

W2
•xW1dh

1ABeik
W1

•xW !1c.c.

j 3~dh
1AB* eik

W2
•xW1dh

2ABeik
W1

•xW !sin2pz1c.c.

D ,

~27!

where we have introduced the wave vectors

kW 65kW16kW2 , ~28!

and defined the numerical constants

j 152
3

2
pk2, j 252

tp2k2

kp
2 , j 35

R0k
2p

2kp
2 . ~29!

Furthermore, the coefficientdh
6 given by Dhe

ikW6
•xW

5dh
6eik

W6
•xW, reads as

dh
1524k2cos2

u

2
, dh

2524k2sin2
u

2
. ~30!

Since ^v(kW2),Q(X1 ,X̃1)1Q(X̃1 ,X1)&50, while

^v(kW2),VX̃1&Þ0, the solvability condition for Eq.~24! im-
pliess150. Straightforward algebra then leads to

PDhf̃25DQ1,1̃
~1!1t]zQ1,1̃

~2!1DhQ1,1̃
~3! , ~31!

DDhc̃252t]zDhf̃2 , ~32!

DDhc̃05Q1,1̃
~2! , ~33!

Dq̃25Q1,1̃
~3!1R0Dhf̃2 . ~34!

Solving in the form

f̃25F̃2
1ABeik

W1
•xW1F̃2

2AB* eik
W2

•xW1c.c., ~35!

c̃25C̃2
1ABeik

W1
•xW1C̃2

2AB* eik
W2

•xW1c.c., ~36!

c̃05C̃0
1ABeik

W1
•xW1C̃0

2AB* eik
W2

•xW1c.c., ~37!

q̃25Q̃2
1ABeik

W1
•xW1Q̃2

2AB* eik
W2

•xW1c.c., ~38!

we get

F̃2
15

dh
2

p1 S j 1Pr
d11 j 3D , F̃2

25
dh

1

p2 S j 1Pr
d21 j 3D ,
Phys. Fluids, Vol. 9, No. 1, January 1997
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1522pt

dh
2

p1d1 S j 1Pr
d11 j 3D ,

C̃2
2522pt

dh
1

p2d2 S j 1Pr
d21 j 3D ,

C̃0
15

j 2
Prdh

1 , C̃0
25

j 2
Prdh

2 ,

Q̃2
15R0

dh
1dh

2

p1d1 S j 1
P2r

d11 j 3D1 j 3
dh

2

d1 ,

Q̃2
25R0

dh
1dh

2

p2d2 S j 1Pr
d21 j 3D1 j 3

dh
1

d2 .

The coefficient d6 and p6 defined by the condition
Deik

W6
•xWT(2pz)5d6eik

W6
•xWT(2pz) and Peik

W6
•xWT(2pz)

5p6eik
W6

•xWT(2pz), ~where the functionT stands for sine or
cosine!, are given by

d152F4p214k2cos2
u

2G , ~39!

d252F4p214k2sin2
u

2G , ~40!

p152F4p214k2cos2
u

2G324p2t214k2R0cos
2
u

2
, ~41!

p252F4p214k2sin2
u

2G324p2t214k2R0sin
2
u

2
, ~42!

where the cos2u/2 and sin2u/2 contributions result from the
action of the horizontal Laplacian oneik

W1
•xW and eik

W2
•xW re-

spectively.
An important observation is that the contributio

C̃0
2AB* eik

W2
•xW to c̃2 ~which disappears at infinite Prand

number! diverges in the limitu→0, where it can be viewed
as associated to a ‘‘mean flow’’ generated by the rotati
This term is specific to free-slip boundary conditions and h
no equivalent when rigid boundaries are considered. The
vergence originates from the fact that in Eqs.~31!–~34!, the
dynamics of the mean flow is slaved to that of the lead
convective mode. This ‘‘adiabatic approximation’’ is valid
finite u but breaks down in an ‘‘angular boundary layer
nearu50, where time derivatives become relevant. Postp
ing to Section IV the analysis of this layer, we derive he
the solvability condition of Eq.~25! for finite u, by writing

^v~kW2!,GX̃1&5 1
2 c1c3k

2B* , ~43!

^v~kW2!,VX̃1&5 1
2 ~R0Pr

21c1
2k2kp

22R0Pr
21c2

2k21c3
2!B* ,

~44!

^v~kW2!,~Q~X2 ,X̃1!1Q~X̃1 ,X2!&5 1
4 c1

2c3
2k4uAu2B* . ~45!

Furthermore

Q~X1 ,X̃2!1Q~X̃2 ,X1!5Z~q1,2̃
~1! ,q1,2̃

~2! ,q1,2̃
~3! !uAu2B*

3e2 ikW2 •x
W
1c.c.1F3 , ~46!
69Ponty, Passot, and Sulem
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whereF3 refers to non-resonant terms proportional to sin3pz or cos3pz. We also have

q1,2̃
~1!5

k4

2Pr
sinu@~2C̃2

112C̃0
2!~c1p

22c1k
222c1p

2cosu22c2psinu!1~C̃2
222C̃0

1!~c1p
22c1k

212c1p
2cosu

12c2psinu!12F̃2
2kp

2~c2~12cosu!1pc1sinu!22F̃2
1kp

2~c2~11cosu!2pc1sinu!#, ~47!

q1,2̃
~2!52

k4

2Pr
@2C̃0

2~c1p~2112cosu2cos2u!1c2~sinu2sin2u!!12C̃0
1~c1p~2122cosu2cos2u!2c2~sinu1sin2u!!

1C̃2
1sinu~22c1psinu1c2~112cosu!!1C̃2

2sinu~22c1psinu2c2~122cosu!!1F̃2
1~c2p~12cos2u!2p2c1~2sinu

2sin2u!1F̃2
2~c2p~12cos2u!1p2c1~2sinu1sin2u!!#, ~48!

q1,2̃
~3!5

k2

2
@Q̃2

2~c1p~11cosu!1c2sinu!1Q̃2
1~c1p~12cosu!2c2sinu!#1

k2

2
c3@C̃2

112C̃0
12C̃2

222C̃0
2#sinu. ~49!

It follows that

^v~kW2!,Q~X1 ,X̃2!1Q~X̃2 ,X1!&5 1
2 ~R0c1q1,2̃

~1!1R0c2q1,2̃
~2!1c3q1,2̃

~3! !uAu2B* , ~50!

and finally

s5e2s25e2
r 2c1c3k

22S 12 c12c32k41R0c1q1,2̃
~1!1R0c2q1,2̃

~2!1c3q1,2̃
~3! D

R0Pr
21c1

2k2kp
22R0Pr

21c2
2k21c3

2 uAu2, ~51!
it
s.

g

an
for

on

r

he

e
r-

i-
-
of
to
wheree2uAu2 can be expressed as

2kp
2

R0k
42

t2p4

Pr
2

~Ra2R0!.

Since in the limitu→0, C̃0
2 diverges like sin22u/2, the

quantity q1,2̃
( l ) with l51,2,3, scales like sinu/2C̃0

2

;sin21u/2, and the growth rate behaves like

s;
tp2k2uAu2

2kp
2Pr

e2

sin
u

2

, ~52!

indicating a breakdown of the above asymptotics at fin
Prandtl numbers, in the case of small angle perturbation

Pushing theu-expansion at the next order~as needed in
Section IV!, we write

s;F2h1
tp2k2

2kp
2Pr S 2j1

1

sin
u

2
D G e2uAu2, ~53!

with

h5
r 2
R0

kp
2

S 11
1

Pr
S 12

2t2p2

R0k
2 D D ~54!

and

j52
tp2

Prkp
2k2S 11

1

Pr
S 12

2t2p2

R0k
2 D D , ~55!
70 Phys. Fluids, Vol. 9, No. 1, January 1997
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the latter coefficient collecting contributions originatin
from C̃0

2 .
The divergence shown in Eq.~52! was noted in Ref. 9. It

indicates that the above analysis should be viewed as
outer expansion, and that a different scaling is required
small u. In the following, the growth rate given by Eq.~51!
will thus be denotedsouter .

IV. THE SMALL-ANGLE INSTABILITY

The small angle divergence of the stream functi
c0;esin22u/2 and of the growth ratesouter ;e2sin21u/2,
indicates that new scalings ine are expected in an angula
boundary layer nearu50. Denoting byea the thickness of
this layer, byeb the amplitude ofC0 and byeg the magni-
tude of the growth rate in this layer, the matching of t
‘‘outer’’ and ‘‘inner’’ regions requires b5122a and
g522a. Since, in the inner region, the time derivative in th
mean flow equation~whose presence will remove the dive
gence! becomes comparable to the viscous term wheng52a,
we geta52

3, b521
3 andg54

3.
Furthermore, when expanding Eq.~4! inside the bound-

ary layer, the parametere appears not only through the hor
zontal Fourier modes ofX1 whose amplitudes scale like en
tire powers ofe, but also through the angular dependence
the operators involved in this equation. We are thus led
expand

s5es11e4/3s4/31e5/3s5/31e2s21e7/3s7/31e8/3s8/3

1••• ~56!

and
Ponty, Passot, and Sulem
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X̃5e2 1/3Ỹ2 1/31Ỹ01X̃11e1/3Ỹ1/31e2/3Ỹ2/31eX̃2

1e4/3X̃4/31e5/3X̃5/31e2X̃31e7/3X̃7/3

1e8/3X̃8/31e3X̃41•••, ~57!

where terms of the formỸm5C̃mB*Ae
ikW2

•xW(0,1,0)t1c.c.,
are introduced to cancel almost resonant contributions re
ing from the interaction of the basic rolls with quasi-paral
perturbations. As seen later, in the boundary layer,s can be
complex.

Substituting~57! and ~56! in Eq. ~19! and concentrating
on perturbations such that the angleu between the wave
vectorskW1 and kW2 is of ordere2/3, we obtain the following
hierarchy.

At order e0,

LX̃150, ~58!

leading to

X̃15v~kW2!B1c.c. ~59!

At order e,

LX̃25S 0

2
4 j 2k

2

Pr
ABeik

W1
•xW

24 j 3k
2AB* eik

W2
•xWsin2pz

D
1s1BVv~kW2!1c.c. ~60!

The solvability condition reads

es150, ~61!

and the solution is given by

X̃25S 0

C̃0
1ABeik

W1
•xW

Q̃2
2AB* eik

W2
•xWsin2pz

D 1c.c. ~62!

with C̃0
152 j 2/4k

2Pr andQ̃2
25 j 3 (k

2/p2).
At order e4/3,

e4/3LX̃4/35e2/3sinuC̃2 1/3* uAu2Beik2W •xW

3ZS 2
k4kp

2

Pr
,
k4c2
Pr

,2k2c3D
1e4/3s4/3VBv~kW2!1c.c.1N R, ~63!

where N R collects non-resonant terms. The solvabil
condition is

e4/3s4/35ek2sinuuAu2e2 1/3C̃2 1/3* . ~64!

At order e5/3,

e5/3LX̃5/35esinuC̃0* uAu2Beik2W •xW

3ZS 2
k4kp

2

Pr
,
k4c2
Pr

,2k2c3D
1e5/3s5/3VBv~kW2!1c.c.1N R. ~65!
Phys. Fluids, Vol. 9, No. 1, January 1997
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The solvability of this equation requires

e5/3s5/35ek2sinuuAu2C̃0* . ~66!

At order e2,

e2LX̃35e2Q 1̃ ,21e2Z~ q̄1,2̃
~1! ,q̄1,2̃

~2! ,q̄1,2̃
~3! !uAu2Beik2W •xW

1e2/3sinuC̃2 1/3* eik2
W
•xWuAu2BZ

3S 22
k4

Pr
c2psinu,

k4

Pr
c1pS sinu22sin

3u

2 D ,0D
1e4/3sinuC̃1/3* uAu2Beik2W •xWZS 2

k4kp
2

Pr
,
k4c2
Pr

,2k2c3D
2e2R2GX̃11e2s2VBv~kW2!1c.c.1N R, ~67!

where

~ q̄1,2̃
~1! ,q̄1,2̃

~2! ,q̄1,2̃
~3! !5S 0,4k4Pr

c1pC̃0
1 ,k2c1pQ̃2

2D ~68!

denotes the limit asu→0 of the vector (q1,2̃
(1) ,q1,2̃

(2) ,q1,2̃
(3)) from

which the contributions coming fromC0
2 have been re-

moved. The solvability condition reads

e2s252huAu2e212e2/3jk2sinusin
u

2
uAu2C̃2 1/3

2*

1e4/3k2sinuuAu2C̃1/3
2* , ~69!

where

h52

r 2c1c3k
22S 12 c12c32k41R0c1q̄1,2̃

~1!1R0c2q̄1,2̃
~2!1c3q̄1,2̃

~3! D
R0Pr

21c1
2k2kp

22R0Pr
21c2

2k21c3
2

~70!

identifies with the expression given in Eq.~54!. The coeffi-
cient j is given by Eq.~55!.

Combining the solvability conditions~61!, ~64!, ~66!,
and ~69!, we are led to express the growth rate

s inner5e4/3s4/31e5/3s5/31e2s2 , ~71!

in terms of the ‘‘mean flow’’

C5e2 1/3C̃2 1/3* 1C̃0*1e1/3C̃1/3* , ~72!

in the form

s inner5ek2sinuuAu2S 112jsin
u

2DC2e2huAu2, ~73!

where subdominant corrections have been neglected.
In order to estimate the mean flowC, we push the

e-expansion of Eq.~4! at higher orders, where the beating
the perturbation with the basic solution produces contri
tions of the form ei (k

W
12kW2)•x

W
which become space

independent and thus resonant in the smallu limit. Conse-
quently, uniform boundedness of the solutions requires
addition to the usual solvability conditions, the prescripti
of ‘‘quasi-solvability conditions’’ aimed to eliminate term
which are strictly resonant only foru50. This approach is
similar to that used by Ablowitz and Benney11 when dealing
with the small-amplitude divergence of the Whitham mod
71Ponty, Passot, and Sulem
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lation analysis for non-linear dispersive waves~see also Ref.
12!. These authors modify the~algebraic! dispersion relation
by means of additional corrective terms determined by a c
straint which becomes an actual solvability condition in t
small amplitude limit, thus transforming the algebraic disp
sion relation arising in Whitham’s theory, into a partial d
ferential equation for the wave amplitude. In the context
rotating convection, we include contributionsỸn propor-
tional toei (k

W
12kW2)•x

W
in the perturbation expansion, which a

determined by cancelling them with the terms displaying
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same functional dependence and originating from the bea
of the basic rolls with quasi-parallel perturbations. Like
the small-amplitude limit of non-linear waves, this conditio
becomes an actual solvability in the limitu→0. In both in-
stances, the singularity is prevented by removing slav
conditions: that of the amplitude with respect to the phase
the case of waves, or that of the mean flow with respec
the convective modes in the present problem@compare Eqs.
~32! and ~80! below#.

At order e7/3,
e7/3LX̃7/31S edh
2Q̃2

2AB* eik
W2

• xWsin2pz

e2 1/3dh
22C̃2 1/3AB* e

ikW2
•xW1c.c.

0
D

5e7/3@Q1,4̃/3#1eS j 1
Pr

dh
1dh

2~AB* eik
W2

•xW1ABeik
W1

•xW !sin2pz1c.c.

j 2
Pr

dh
2AB* eik

W2
•xW1c.c.

j 3dh
2ABeik

W1
•xWsin2pz1c.c.

D 1S 0

e4/3s4/3* Pr
21dh

2e2 1/3C̃2 1/3AB* e
ikW2

•xW1c.c.

0
D

1esinuC̃0* e
ik2
W
•xWuAu2BZS 22

k4

Pr
c2psinu,

k4

Pr
c1pS sinu22sin

3u

2 D ,0D 1e5/3sinuC̃2/3* Aeik2
W
•xWZS 2

k4kp
2

Pr
,
k4c2
Pr

,2k2c3D
1e7/3s4/3VX̃21e7/3s7/3VX̃1 , ~74!

where@Q1,4̃/3# denotes the leading order ofQ(X1 ,X̃4/3)1Q(X̃4/3,X1). Although X̃4/3 contains terms proportional toe
6 ikW2 •x

W
,

the resulting contributions of the formeik
W2

•xW in Q1,4̃/3 are preceded by a factor proportional to sin
2u/2 and thus not included

in @Q1,4̃/3#. The quasi-solvability condition then reads

2es4/3Pr
21dh

2C̃2 1/3* 1e2 1/3dh
22C̃2 1/3* 2edh

2 j 2Pr
2150. ~75!

At order e8/3,

e8/3LX̃8/31S 0

2Pr
21dh

2e4/3s4/3C̃0*1dh
22C̃0*2Pr

21e4/3s5/3C̃2 1/3*

0
D

5@Q 5̃ /3,1#1S 0

e2
8

Pr
k4C0~Be2 1/3C̃2 1/3* eik

W1
•xW1c.c.!sinucos2

u

2

0

D 1e4/3sinuC̃1/3* eik2
W
•xWuAu2BZ

3S 22
k4

Pr
c2psinu,

k4

Pr
c1pS sinu22sin

3u

2 D ,0D . ~76!

The quasi-solvability condition is

2Pr
21e2 4/3s4/3dh

2C̃0*1dh
22C̃0*2Pr

21e5/3s5/3dh
2~e2 1/3C̃2 1/3* !50 ~77!

where, as previously,@Q 5̃ /3,1# does not contribute.
At order e3,

e3LX̃45e3@Q1,3̃1Q3,1̃1Q2,2̃#2e3R3GX̃12e3R2GX̃21e3~s2VX̃21s3VX̃1!2~0,e1/3dh
22C̃1/3* AB* e2 ikW2

•xW1c.c.,0! t

1~0,Pr
21dh

2e5/3~s2C̃2 1/3* 1s4/3C̃1/3* 1s5/3C̃0* !AB* e2 ikW2
•xW1c.c.,0! t, ~78!

with the quasi-solvability condition
Ponty, Passot, and Sulem
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dh
22~e1/3C̃1/3

2* !2Pr
21e2s2dh

2~e2 1/3C̃2 1/3* !

2Pr
21e4/3s4/3dh

2~e1/3C̃1/3* !2Pr
21e5/3s5/3dh

2C̃0*50.

~79!

Combining Eqs.~75!, ~77! and ~79!, we get, up to sub-
dominant contributions,

2Pr
21s innerC1dh

2C5ePr
21 j 2 ~80!

which together with Eq.~73!, constitute a closed system
Solving the resulting quadratic equation for the growth ra
we obtain two solutions

s inner
6 5

1

2 S 2e2huAu224k2Prsin
2
u

2D
6
1

2 F S e2huAu224k2Prsin
2
u

2D
2

24e2k2sinuuAu2 j 2S 112sin
u

2
j D G1/2, ~81!

whereh, j and j 2 are defined by Eqs.~54!, ~55! and ~29!.
This expression covers several regimes.

~i! For u;e2/3,

s inner
6 ;

1

2 S 24k2Prsin
2
u

2D
6
1

2 F S 4k2Prsin
2
u

2D
2

24e2k2sinuuAu2 j 2G1/2.
~82!

In this range,s inner
1 .0 for u.0 (u,0) if t.0 ~respec-

tively, t,0) for any finite value of the Prandtl number~still
assumingPr.0.6766) and of the Taylor number.

~ii ! Whenu@e2/3,

s inner
1 ;smatch5F2h1

tp2k2

2kp
2Pr S 2j1

1

sin
u

2
D G e2uAu2,

~83!

and matches the limit ofsouter asu→0. Similarly,

s inner
2 ;24k2Prsin

2
u

2
~84!

is negative and becomes of order unity outside the bound
layer.

~iii ! For u;e2,

s inner
6 ; 1

2 ~2e2huAu2!

6 1
2 @~e2huAu2!224e2k2sinuuAu2 j 2#1/2, ~85!

and foru50, s inner
1 vanishes, whiles inner

2 (0)52e2huAu2.
We thus obtain a uniform representation foru

P]2 p/2 ,p/2], of the instability growth rate near the con
vection threshold, of the form

s15s inner
1 1souter2smatch, ~86!

where the various terms arising in the right-hand-side of
~86! are given by Eqs.~51!, ~81! and ~83!. The influ-
Phys. Fluids, Vol. 9, No. 1, January 1997
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ence of various parameters like the Prandtl number and th
rotation rate on the strength of the instability, is illustrated in
the following figures.

Figure 1 shows the variation of the eigenvaluess6 with
the angle u of the perturbation forPr52, e50.1 and
t510. For anti-clockwise rotation and finite Prandtl number,
the growth rates1 is positive for small enough positive
anglesu. There is also a range of negative angles, where
there are two complex conjugate eigenvalues, with negativ
real parts. The dashed line represents the outer solutio
souter which diverges in the limitu→0. The other eigen-
values2 which, ase→0, becomes marginal in a neighbor-
hood ofu50, is of order unity outside the angular boundary
layer. It thus cannot be computed perturbatively foru of
order unity but, being always negative or complex with a
negative real part, it cannot lead to an instability.

Figure 2 displays the growth rates1 for t538, e50.1
and various values of the Prandtl number for positive angles
We observe that both the range of unstable angles and th

FIG. 1. Instability growth ratess1 ands2 or their real partr when com-
plex conjugate~full line!, together with the diverging ‘‘outer solution’’
~dashed line!, versus the perturbation angleu ~in degrees!, for P510,
t510 ande50.1.

FIG. 2. Growth rates1, versus the perturbation angleu.0, for t538,
e50.1 and different valuesPr55,10,25,50 of the Prandtl number.
73Ponty, Passot, and Sulem

to¬AIP¬license¬or¬copyright;¬see¬http://pof.aip.org/pof/copyright.jsp



al
nd
n-
k-
ta-
he
e

the
ere
the

in.
nce
a
l-
,

on,
r
th

he
w-
roll
ted

all-
lyze
the
he
a

ral-

ion
few
sis-
n-
n-

in
ns,
out
the
ion.
ed
s of
olls
he

er-
d

b

maximal growth rate decrease when the Prandtl number
increased. AtPr510, the small angle instability and the
Küppers–Lortz instability~aroundu550° can be separated,
in contrast with the case of smaller Prandtl numbers~e.g.
Pr55) where all the angles 0,u<64° are unstable. For this
rotation rate, only the small angle instability survives a
Prandtl numberPr515. It becomes hardly visible at
Pr550. Indeed, as the Prandtl number goes to infinity, th
negative eigenvalues2 has a limit, while the outer expan-
sion souter

1 extends towardsu50 where it asymptotically
reaches the values2(0), the inner range reducing to the
vertical axis.

Figure 3 shows the variation of the instability growth
rate with the rotation ratet, for Pr515 and e50.1. For
t510, only the small angle instability is present. The
Küppers–Lortz instability~again localized aroundu558°!
arises fort'40 and is strongly amplified ast is increased.

Figure 4~a! displays fore50.1, the critical value of the
rotation ratet for the onset of the Ku¨ppers–Lortz instability,
as a function of the Prandtl number, as long as the latter
large enough for the two instabilities to be separated. Figu
4~b! shows the most unstable angle~in degrees! for the
Küppers–Lortz instability, versus the Prandtl number, for
rotation rate corresponding to the onset of the instability.

FIG. 3. Growth rates1, versus the perturbation angleu.0, for P515,
e50.1 and different valuest510, 40, 60, 100 of the rotation ratet.

FIG. 4. Küppers–Lortz instability boundary in the (Pr ,t)-plane ~a!, and
angle associated to the unstable perturbation at the critical Taylor num
versus the Prandtl number~b!.
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V. NATURE OF THE INSTABILITY AND NONLINEAR
DEVELOPMENTS

We showed in Section IV that in a rotating horizont
fluid layer with moderate Prandtl number, limited by top a
bottom free-slip boundaries, convective rolls are linearly u
stable with respect to perturbations in the form of rolls ma
ing a small angle with that of the basic pattern. This ins
bility occurs even when the rotation rate is too low for t
existence of the Ku¨ppers–Lortz instability. It is related to th
divergence of the growth rate~52! which, at finite Prandtl
number, occurs when the direction of the wave vector of
perturbation, approaches that of the basic rolls. We h
chose the associated wave numbers to be critical, but
effect survives whatever their values.

The above instability was obtained in an infinite doma
Its persistence with lateral boundaries requires the prese
of a large number of rolls, and thus a convective cell with
large aspect ratiom21. The mesh size in Fourier space sca
ing like m, the minimum angleu between two wave vectors
behaves likem1/2. Since for the small-angle instability
s;e4/3 andu;e2/3, it follows thats;m, a growth rate in-
termediate between that~of order unity! of a pure amplitude
instability and a phase instability, whichs scales likem2.

As shown in Refs. 18 and 19, in the absence of rotati
parallel rolls may also be unstable~for wave numbers large
than critical! to a skewed-varicose instability whose grow
rate also varies like the inverse aspect ratiom, a scaling
resulting from the strong magnitude of the mean flow in t
case of free-slip boundary conditions. This instability is ho
ever not captured by the present formalism since the
distortions involved in this instability cannot be represen
within the class of perturbations~superposition of two fami-
lies of straight rolls! we have considered.

In order to investigate the relation between the sm
angle and the skewed-varicose instabilities, and to ana
their non-linear developments, a system of equations in
spirit of the Swift–Hohenberg equation, but coupling t
leading vertical mode to the mean flow, was derived by
perturbation expansion near threshold.15 This system which
preserves the rotational invariance of the problem, gene
izes equations obtained by Manneville16 at finite Prandtl
number in the absence of rotation. In a simplified vers
where the non-local couplings are suppressed and only a
representative nonlinear terms are retained, it is also con
tent with models used in Refs. 17 and 18 for rotating co
vection at infinite Prandtl number. A similar model was co
sidered in Ref. 19.

As discussed in Ref. 15, the phase equation derived
the context of the generalized Swift–Hohenberg equatio
shows that the skewed varicose instability occurring with
rotation near onset, becomes asymmetric with respect to
angle of the phase perturbation, in the presence of rotat
This model also shows that both the asymmetric skew
varicose and the small angle instabilities lead, by mean
reconnection, to a progressive rotation of the convective r
in the direction of the external rotation, an effect due to t
mean flow which develops shear layers.

We are thus led to conclude that the small-angle div
gence of the Ku¨ppers–Lortz instability growth rate pointe
er
Ponty, Passot, and Sulem
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out in Ref. 9, results from the presence of a small-an
instability which can be identified as an asymmetric skew
varicose instability. In contrast with the~symmetric! skewed
varicose instability arising without rotation, the azymet
one developing in the presence of rotation exists whate
the value of the basic roll wave number. Both instabilities
produced by the mean flow and disappear in the limit
infinite Prandtl numbers.
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