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Abstract

The evolution of a Taylor–Green forced magnetohydrodynamic system showing

dynamo activity is analyzed via direct numerical simulations. The statistical

properties of the velocity and magnetic fields in Eulerian and Lagrangian

coordinates are found to change between the kinematic, nonlinear and saturated

regime. Fluid element (tracer) trajectories change from chaotic quasi-isotropic

(kinematic phase) to mean magnetic field aligned (saturated phase). The prob-

ability density functions (PDFs) of the magnetic field change from strongly non-

Gaussian in the kinematic to quasi-Gaussian PDFs in the saturated regime so that

their flatness give a precise handle on the definition of the limiting points of the

three regimes. Also the statistics of the kinetic and magnetic fluctuations along

fluid trajectories changes. All this goes along with a dramatic increase of the

correlation time of the velocity and magnetic fields experienced by tracers,

significantly exceeding one turbulent large-eddy turn-over time. A remarkable

consequence is an intermittent scaling regime of the Lagrangian magnetic field

structure functions at unusually long time scales.
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1. introduction

The magnetic field of stars and telluric planets is explained by the dynamo instability, produced

by a turbulent conducting fluid where the induction due to the motion takes over the magnetic

diffusion. A system with dynamo action passes through different stages from the linear

(kinematic) to the nonlinear and finally to the saturated phase. During the kinematic phase the

magnetic energy grows exponentially but has no influence on the flow. During the nonlinear

phase the Lorentz force changes the flow and at the saturation state the diffusion and the

electromotive force reach equilibrium. The system reaches the fully nonlinear magnetohy-

drodynamic (MHD) regime, driven by an energy exchange between the velocity and magnetic

field.

In the last decade, several experimental groups have investigated dynamo action in

laboratory experiments using liquid sodium [1–3]. The instability threshold and a rich nonlinear

behavior along the saturation regime have been largely observed [4–6]. Investigations of the

fast kinematic dynamo [7] in the 1990s, showed the important role of the chaotic properties of

the fluid trajectories for the dynamo threshold. The effect of turbulent fluctuations on the

dynamo onset has also been studied in Navier–Stokes flows [8, 9] and some noisy models [10],

distinguishing the important role between the mean flow dynamo and fluctuation dynamo

modes [11].

The transition between the linear and the saturation regime has been studied measuring the

finite-time Lyapunov exponent of the flow trajectories [12, 13]. These results showed a strong

reduction of the chaotic properties in the saturation phase, due to the action of the Lorentz force.

Fluid trajectories thus change along the different dynamo phases. This naturally motivates the

use of a Lagrangian description where the properties of the flow are investigated by using

tracers [14].

Lagrangian statistics describes the dynamical evolution of physical quantities along tracer

trajectories in contrast to the Eulerian perspective in which such quantities are analyzed on fixed

spatial points. During recent decades, Lagrangian studies have revealed new aspects of

homogeneous and isotropic turbulence [15]. The trajectory point of view has shown to be

especially useful for the study of coherent structures and intermittency [16–18] as well as for

diffusion and dispersion properties of hydrodynamic and MHD turbulence [19–21]. This

approach has produced many experimental results by tracking solid inertial particles or bubbles

[22, 23], which can have a different dynamics compared to simple tracers. Lagrangian statistics

has also been used in MHD simulations [24, 25] to compare the anomalous exponents of the

structure function to their hydrodynamic counterparts and to understand the relation between

Eulerian and Lagrangian statistics. In the Kraichnan–Kazantsev framework the latter was used

to determine the dynamo onset as a function of the roughness of the flow [26].

The aim of this work is to use standard tools of Lagrangian turbulence in the context of

turbulent MHD dynamos. This approach highlights new aspects of dynamo action. For instance

it shows that magnetic field fluctuations along fluid trajectories are intermittent and allows to

precisely define the limiting points of different dynamo regimes. Furthermore, the Lagrangian

perspective evidences a strong correlation of the mean magnetic field structures and the fluid
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trajectories which is connected to our knowledge unknown scaling regime at time scales well

beyond usual turbulent scales.

The dynamo systems under consideration in this work is induced mainly by the so-called

Taylor–Green (TG) forcing [27]. For comparison, a second forcing where the large scales of the

velocity field are frozen in time is also considered. The TG flow, which can produce dynamo

action, is a very well documented study case involving rich dynamo behaviors in both the linear

and the nonlinear regime [8, 10, 28–32]. The TG flow contained in a periodic box has several

properties that mimic the von Kàrmàn flow, driven by two counter-rotating impellers. The von

Kàrmàn flow has a strong experimental history inside the turbulent and the dynamo scientific

communities. Indeed, several teams set up such experiments with different designs in water

[33, 37] and air flows [34–36]. This type of experiment was also one of the first setups used to

study Lagrangian statistics of turbulent flows [22, 23]. After the intensive water campaign

experiments of the Saclay group [38, 39], this setup has lead to the von Kàrmàn sodium (VKS)

dynamo campaigns also cited above.

This paper is organized as follows: in the next section the dynamo system under

consideration and the numerical method are explained. In section 3, the evolution of the flow

structure and trajectories within the three different regimes are discussed. Section 4 investigates

the changes of the velocity and magnetic field fluctuations from one regime to another from the

Eulerian point. In section 5, Lagrangian statistics are presented and, amongst other results, a

magnetic field scaling regime at very large temporal scales is reported. Conclusions are drawn

in section 6.

2. Model and methods

We perform direct numerical simulations of turbulent MHD flows with large-scale forcing in a

periodic cube. We integrate the three-dimensional incompressible MHD equations that,

expressed in Alfvénic units, read

� � � �ν∂ + · = × × − + +u u u B B u Fp( ) , (1)t

2

� �η∂ = × × +B u B B( ) , (2)t

2

� �· = · =u B0, 0, (3)

where ν and η are the kinematic viscosity and the magnetic diffusivity respectively. The density

of the fluid is set to unity and F is the constant volume force which generates and maintains the

turbulent flow. For most simulations (see table 1) we consider the so called TG flow that is

generated by forcing with the TG vortex

= −( )( ) ( ) ( ) ( ) ( ) ( )F F k x k y k z k x k y k zsin cos cos , cos sin cos , 0 , (4)TG 0 0 0 0 0 0 0

with =F 30 and =k 10 or =k 20 . When =k 10 , this forcing leads to a subdivision of the total

domain in eight fundamental cubes (each of the same size) that, when symmetries are preserved,

can be related to each other by mirror-symmetric transformations. Each fundamental box

contains a swirling flow composed of a shear layer between two counter-rotating eddies. It is

this flow structure which relates to the von Kàrmàn flow. As we will see in the following

sections, the TG dynamo action presents some particular properties due to its anisotropy. In

order to distinguish universal and non-universal properties of the TG dynamo action we also

3
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consider a mechanical force F (see run ffH and ff in tables 1 and 2) obtained by keeping

constant all Fourier modes of the velocity field in the two lowest shells (henceforth called frozen

force simulation (FF)). The values of these Fourier modes were obtained from an initially freely

decaying HD simulation with a random initial seed at large scales after the flow had developed a

turbulent cascade. This force is much less structured than the TG forcing and the corresponding

flow is found to be nearly isotropic.

We use classical global quantities to characterize the different dynamo phases. The kinetic

energy Ekin, the magnetic energy Emag, the enstrophy Ω, the cross helicity HC, and the magnetic

helicity HM are defined as

�Ω= = = ×

= · = ·

uE E

H H

u B

u B A B

1

2
,

1

2
,

1

2
( ) ,

, ,C M

kin

2

mag

2 2

where 〈〉 stands for spatial average and �= ×B A with A the magnetic potential. In the ideal

case (ν η= = 0) and without forcing (F = 0), = +E E Etot kin mag, HC and HM are conserved by

the MHD equations.

The TG forcing (4) is purely horizontal, leading to anisotropy in both the hydrodynamic

and the MHD regime. In order to quantify this anisotropy we compute the root mean square

(rms) values of the perpendicular (xy-plane) and parallel (z) components of the velocity fields

and define the global isotropy coefficient ρ
u

iso as

ρ ρ

= + =

= =

⊥ ∥

∥ ⊥ ∥ ⊥

⎡
⎣

⎤
⎦u u u u u

u u B B

2 , ,

, .

x y z

u B

rms 2 2
1 2

rms 2 1 2

iso rms rms iso rms rms

With these definitions the average rms velocity is = +⊥ ∥[ ( ( ) ( ) ) ]u u u2 /3rms rms 2 rms 2 1/2. We use

analog definitions for the magnetic field.

There are also three important dimensionless numbers, namely the kinematic Reynolds

number Re, the magnetic Reynolds number Rm and the magnetic Prandtl number Pm defined as

Table 1. List of the numerical simulations. ν η=Pm / : magnetic Prandtl number,

ν=Re u L /rms : Reynolds number, urms root mean square velocity (defined in table 2),

−( )Rm Rm Rm/c c: bifurcation parameter where Rmc is the critical magnetic Reynolds

number, N number of collocation points, Np number of tracer particles.

Run Regime Pm Re −( )Rm Rm Rm/c c Force type N Np

tgH Hydro — 350 — TG ( =k 10 ) 2563 ×2 105

tg1 Saturated 1/4 297 0.11 TG ( =k 10 ) 2563 ×2 105

tg2 Saturated 1/2 670 1.2 TG ( =k 10 ) 2563 ×2 105

tg3 Saturated 1 676 3.5 TG ( =k 10 ) 2563 ×2 105

tg4 Saturated 1 128 TG ( =k 20 ) 2563 ×2 105

tg5 Saturated 1 545 2.8 TG ( =k 10 ) 1283 ×2 104

ffH Hydro — 476 — FF (frozen) 2563 ×2 105

ff Saturated 1 625 2.2 FF (frozen) 2563 ×2 105

4
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ν η

ν

η
= = = =Re

L u
Rm

L u
Pm

Rm

Re
, , . (5)

rms rms

A useful quantity that measures the alignment of velocity and magnetic fields is the normalized

cross helicity defined as = = ( )h H u Bu Bcos [ , ] /C C

rms rms .

Numerical integration of the MHD equations (1)–(3) is carried out by using a fully MPI-

parallel pseudo-spectral code (LaTu [24]) with a strongly stable third order Runge–Kutta

temporal scheme. De-aliasing is performed using the standard 2/3 rule.

In this work we study Lagrangian aspects of dynamo action. Lagrangian statistics are

obtained by tracers obeying the equations

˙ = =X x v v u X xt t t t( , ) ( ), ( ) ( ( , ) ), (6)

where X x t( , ) and v t( ) are the position and velocity of a tracer which started at x for t = 0. The

magnetic field along a tracer path is denoted by =b B X xt t( ) ( ( , ) ). Note that we consider

electrically neutral particles as we focus on the properties of the flow. The study of charged

material particles, that induce currents and additional interactions, is left for a future study.

The values of the velocity fields and other physical quantities at the particle positions are

evaluated and stored using a tricubic interpolation which is numerically efficient and accurate

[40]. The equation (6) is integrated with the same third order Runge–Kutta scheme as the

equation (1) for the velocity and magnetic fields. Statistical data is obtained from a large

number of tracer trajectories varying from ×2 104
to ×2 106

. A detailed list of the physical

parameters for the different runs is presented in table 2.

3. Structures and trajectories

During dynamo action three phases are clearly distinguished. The linear phase, where a seed of

magnetic field grows exponentially by the dynamo instability without back-reaction on the

velocity field. The second stage, called the nonlinear phase, corresponds to the one where the

Lorentz force starts to act on the flow and the kinetic energy slightly drops due to the transfer of

kinetic energy to the magnetic field. Finally the full MHD system reaches a statistically

stationary state, refereed to as the saturation regime. In figure 1 (left) the kinetic and magnetic

energy is displayed for the TG flow. The three phases of dynamo action are separated by dashed

vertical lines. In figure 1 (right) the enstrophy Ω is shown for the same simulation. When the

magnetic energy attains a magnitude of the order of one percent of the kinetic energy the

enstrophy drops. A comparison of different simulations shows that the vorticity drop increases

when decreasing Pm (or Rm) (not shown). Approaching the dynamo onset the drop thus

reduces. This rapid change of Ω marks the transition between the linear phase and the nonlinear

phase. The saturated regime is characterized by strong fluctuations in both energies and

enstrophy. Note in figure 1 (right) that the normalized cross helicity hC starts to fluctuate in the

nonlinear phase, showing a tendency towards an alignment of the u and B fields. We find

=h 0.03C

2 1/2

during the kinematic phase and =h 0.23C

2 1/2

during the saturated phase. This

alignment leads to a less efficient global electromotive force ×u b. In the sequel we will

present another quantity whose statistics strongly changes from one regime to another and

which allows for a more precise definition of the different phases of dynamo action. This

quantity is in fact used to plot the vertical dashed lines in figure 1.
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As mentioned before, the TG flow presents a manifest anisotropy coming from the very

definition of the forcing. In the hydrodynamic regime we find a global isotropy coefficient

ρ = 0.74
u

iso (see table 2). Anisotropy is even enhanced to ρ ≈ 0.36
u

iso in the saturation regime,

where large scale magnetic coherent structures appear in the two shear vortex plans and large

tubes of kinetic energy are along the diagonal direction (see figure 2). We note that for the

frozen force dynamo ρ
u

iso is close to unity during all phases of the simulation.

We now turn to the geometry of tracer trajectories. The linear phase is characterized by chaotic

trajectories showing spiral motions around vorticity filaments (see figure 2 (top left)) which resemble

trajectories in homogeneous and isotropic turbulence. The flow is approximately homogeneous.

In the saturated phase the flow structure and the geometry of the trajectories change (see

top right panel of figure 2 and the supplementary movies available from stacks.iop.org/njp/16/

075014/mmedia. One easily observes two manifestations of the smoothing effect of the

magnetic field. First, vorticity filaments of the kinematic phase are quenched to vortex sheets in

the saturated phase (see insets). Second, trajectories become highly aligned with the structures

of the mean (time-averaged) kinetic and magnetic energy. These large-scale structures, well

known in the literature, interconnect the fundamental boxes of the TG flow. In the vicinity of

the diagonally oriented high kinetic energy tubes one observes streams of tracers with high

velocities. They are separated by regions of chaotic motion (see figure 2 (bottom left)) which

coincide with regions of low mean magnetic energy. From the bottom right panel of figure 2

one sees that perpendicular to the diagonal structures, the motion of tracer remains almost

isotropic. For the frozen force (run ff), there is no large scale structure traversing the

fundamental box (not shown). Blobs of increased magnetic energy are randomly distributed all

over the cube. Tracer trajectories are in this case statistically homogeneous and isotropic.

4. Eulerian statistics

A turbulent flow naturally leads to magnetic field fluctuations which originate from stretching,

twisting and diffusion of magnetic field lines. Under dynamo action the statistical properties of

Figure 1. Temporal evolution of kinetic and magnetic energy (left). In the right panel
the enstrophy and normalized cross helicity are shown. (all data for run tg3) The vertical
dashed lines, representing the transition between the different phases have been
determined by using the flatness of the magnetic field (see section 4 and figure 4). TL is

the large-eddy turn over-time measured at the saturated regime.
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these fluctuations change significantly from one regime to another. In the linear phase, the

probability density functions (PDFs) of the perpendicular magnetic field components present fat

tails, far away from the Gaussian distribution (figure 3 (left)). Even at moderate Reynolds

numbers we observe fluctuations of the magnetic field which are 15 times larger than its root

mean square value. We emphasize that this non-Gaussian character of the magnetic field during

the linear phase is also observed for the frozen large scale forcing (run ffH), as apparent in

figure 3 (left). It has also been observed with a model using the recent fluid deformation closure

[41]. This strongly suggests that the non-Gaussianity of the growing magnetic field is a generic

Figure 2. Volume rendering of the time-averaged kinetic energy (green) and magnetic
energy (blue) for run tg3 together with tracer trajectories. Their speed is given in colors
from black (low) to yellow (high). Left top: linear phase. The inset shows a snapshot of
the enstrophy, where vortex filaments can be observed. Right top: saturated phase. The
inset shows a snapshot of the enstrophy, where MHD vortex filaments and sheets are
visible. Left bottom: top view (along z-axis) of the saturated phase. Right bottom:
transverse view (along x,y-diagonal) of the saturated phase.
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property of the linear phase. In contrast, the velocity field has nearly Gaussian statistics (see

figure 3 (right)) as usually observed in hydrodynamic turbulence.

When the flow enters the saturated phase the normalized PDFs of the velocity and

magnetic field components become similar. The tails of the perpendicular component ⊥b of the

magnetic field PDF shrink to quasi-Gaussian tails (figure 3 (left)). The perpendicular component

of the velocity field ⊥v remains Gaussian. Such magnetic-field PDFs along the saturated regime

have also been observed in the VKS experiment [4]. The parallel component of the velocity

field seems to follow the magnetic field: the PDF of ∥b remains non-Gaussian and that of ∥v

develops non-Gaussian tails. A reason for this matching of velocity and magnetic field PDFs

might be the increased alignment of v and b in the saturated regime (indicated by the increase of

hc in figure 1) which couples kinetic and magnetic fluctuations. Also in recent models of the

energy spectrum of MHD turbulence a scale dependent alignment plays an important role [42].

In order to estimate the non-Gaussianity of a field f, the temporal evolution of its flatness

〈 〉 〈 〉f f/4 2 2
is measured. The flatness of the magnetic field starts from a large value (see figure 4)

originating from their stretched tails. During the nonlinear phase its flatness strongly reduces

and reaches a slightly sub-Gaussian value for the perpendicular component ⊥b while it is super-

Gaussian for the parallel component ∥b . A significant change can also be observed for the

flatness of the velocity field PDFs (see also figure 4). The perpendicular component ⊥v starts

slightly sub-Gaussian and fluctuates around the Gaussian value 3, while the flatness of the

component ∥v is clearly larger and comparable to that of ∥b during the saturated phase. These

changes in the behavior of the flatness temporal evolution allow to clearly distinguish the three

phases of the dynamo action indicated by the vertical lines drawn in figures 1 and 4.

We now turn to the statistics of a small scale quantity of the flow, namely the fluid

acceleration, whose PDFs are displayed in figure 5 (left). Contrarily to the PDFs of the velocity,

a large scale quantity, there are no significant differences among perpendicular and parallel

components. This is in agreement with the general observation that isotropy is recovered at

small scales in turbulent flows. In order to improve statistics, the three acceleration components

have been averaged. The acceleration has strongly non-Gaussian tails, as usually observed in

Figure 3. Probability distribution function of the magnetic field (left) and the velocity
field (right) where the magnetic field component ∥b sat, (TG) is added for comparison.

The data of the saturated Taylor–Green regime is from run tg3.
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turbulent flows, [23] and decreases from the kinematic to the saturated phase (see figure 5

(left)). This is in consistent with the known fact that the saturation regime smoothes out the

small scales of the velocity. Indeed, the rms acceleration reduces from =a 80rms for the

hydrodynamic phase to =a 16rms and =a 10rms for the saturated phase for Pm = 1 and

=Pm 1/4, respectively. Smaller magnetic Prandtl numbers thus imply smaller accelerations.

However, when comparing the normalized PDFs (normalized to standard deviation, figure 5

(right)), the Prandtl number has only a negligible effect. The PDFs for different Pm fall roughly

on top of each other but clearly have fatter tails than the PDF of the kinematic regime. This

means that the dynamics of a saturated dynamo leads to significantly more extreme

accelerations events than in pure hydrodynamics. The flatness of the PDFs reaches 25 in the

saturated regime, while it is 14 in the hydro case.

Figure 4. Temporal evolution of the flatness of the magnetic and velocity field PDFs for
run tg3. TL is the large-eddy turn over-time measured at the saturated regime.

Figure 5. Probability distribution function of acceleration. Non-normalized (left) and
normalized to standard deviation (right) for a hydrodynamic simulation (run tgH) and
saturated regimes (run tg1, tg2 and tg3).
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5. Lagrangian statistics

5.1. Magnetic and energy increments

We now turn to study the properties of the magnetic field along fluid element trajectories, i.e.

the magnetic field seen by a tracer. We will first focus on changes in the perpendicular

component of the magnetic field, the dominant component of the mean field. For this, we

consider the temporal increment δ τ τ τ= + + −⊥ ⊥ ⊥x X x X xb t B t t B t t( , , ) ( ( , ), ) ( ( , ), ) where

⊥B denotes a magnetic field component from the perpendicular plane (Bx or By) and X x t( , ) a

fluid trajectory starting at x at a time t. τ denotes the time lag between two points of a tracer

trajectory. To improve statistics we average over x and t which leads to the study of the

magnetic field increment

δ τ τ= −⊥ ⊥ ⊥b b b( ) ( ) (0). (7)

The normalized PDFs of the increment δ ⊥b during the saturated phase are shown in figure 6

(left) for different time lags. On short time scales the PDFs are strongly non-Gaussian. Stretched

tails have been also observed for small scale magnetic fluctuations in the solar wind [43]. For

time lags the PDF becomes Gaussian. This is simply due to the time decorrelation of τ⊥b ( ) and

⊥b (0) so that one recovers for large τ the one-point Gaussian Eulerian PDF shown in figure 3

(left). It is important to stress that the time scale τ at which this decorrelation takes place is

unusually long. It exceeds significantly one large-eddy turn-over time. The associated long time

regime will be analyzed in detail in the next subsection.

Finally, we investigate how the Lorentz force modifies the Lagrangian kinetic energy

increments

δ τ τ= −( )v vE ( )
1

2
( ) (0) . (8)v

2 2

This quantity has recently attracted interest [44] because it allows to characterize the

irreversibility of turbulent flows. In figure 6 we plot PDFs of δEv and also those of the magnetic

Figure 6. Left: PDFs of the magnetic field increments in the perpendicular direction
along fluid element trajectories for several time lags in the saturated phase. For
comparison the PDF of the ⊥b is shown. (data from run tg3) Right: PDFs of the magnetic

field energy increments for τ of the order of τ× ∼− T5 10 L K

3
.
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energy δEm for the kinematic and saturated regime. They are non-Gaussian and not symmetric

unlike δ ⊥b . A measure of their asymmetry is the skewness =S f f/f

3 2 3/2

. For the hydro case

the PDF of the kinetic energy has a negative skewness of ≈ −S 0.4v which is close to the value

reported in [44]. We note that the Lagrangian derivative | |ud t/d2 can be written in terms of

Eulerian quantities �| | = | | + ∂∥( )u u u u ud t/d 2
u t

2 2
, where � ∥

u
u

is the longitudinal velocity

gradient � �≡ ˆ · ˆ ·∥ ( )u r r ur evaluated in the direction of the local velocity û. As for small time

lags δ τ τ∼ | |uE d t( ) /dv

2 , the asymmetry of the red curve in figure 6 (right) may be a

consequence of the skewness of � ∥
ur reported in the literature [46].

A negative skewness means that violent decelerations are more probable than violent

accelerations. The skewness of the velocity PDFs decreases towards the saturated regime

( ≈ −S 1.0v for =Pm 1/4, ≈ −S 1.2v for =Pm 1/2 and ≈ −S 1.2v for Pm = 1). In contrast,

the magnetic field PDF has a positive skewness ≈S 2.5b during the kinematic phase, which

decreases in the saturated phase ( ≈S 0.43b for =Pm 1/4, ≈S 0.32b for =Pm 1/2 and

≈S 0.34b for Pm = 1). The change of the skewness between the different phases is certainly

related to the nonlinear exchange between the kinetic and the magnetic energies, which are local

and non-local in a large range of scale [45].

5.2. Long time correlations

In the previous section we observed that the transition to Gaussian statistics of the perpendicular

magnetic field takes very long times during the saturated regime while in the kinematic regime

this happens on time scales of the order of TL. The reason are long lasting correlations. The

autocorrelation of the Lagrangian velocity τ τ= ′ ′ + ′C v t v t v t( ) ( ) ( ) / ( )v i i i

2 with ′ =v t( )i

−v t v t( ) ( )i i , is displayed in figure 7 (left). The Lagrangian correlation time is indeed of the

order TL for the hydrodynamic regime. During the saturated regime the perpendicular

component of the velocity field remains correlated for a longer time (see figure 7 (left)) of the

order of several TL. Note that the parallel component becomes anti-correlated at times of the

order of π v/ z

rms
(see table 2). This corresponds to the typical time of a fluid particle crossing a

TG fundamental box in the z direction and starting to feel the mirror symmetries of the TG flow.

The long correlation time scale is also clearly observed for the magnetic field in figure 7

(right) and corresponds to the time-lag for which the PDF of the magnetic field increments

becomes Gaussian. We note that this time scale is a specific property of the TG flow which is

not observed with the frozen force (run ff, figure 6 (right)) and it only weakly depends on Pm

(not shown).

In order to better understand the long time correlations and the non-Gaussianity of the

magnetic field increments we study Lagrangian structure functions (LSF) of the form

τ τ= + −⊥ ⊥S B t B t( ) ( ) ( ) , (9)p

B p

during the saturated phase. Here again, ⊥B denotes a magnetic field component from the

perpendicular plane (Bx or By). In turbulent flows the structure functions are usually measured to

identify and to analyze the scales of the inertial range (for ui instead of Bi) in which they behave

as a power law τ τ∼ ζS ( )p p . The corresponding scaling exponents ζp provide a handle on the
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phenomenon of intermittency which characterizes the occurrence of extreme events in the

dynamical evolution of the system [46]. A scaling range and the corresponding scaling

exponents can reliably be measured via the local slope of the structure functions that is their

logarithmic derivative τd S dlog / logp . This quantity for the second order LSF S B

2 is shown in

figure 8 for all runs. In hydrodynamic turbulence, even for very large Reynolds numbers, the

range of temporal scales where a power law is observed and where thus the local slope is

constant is very narrow if visible at all [47]. We therefore do not expect to observe a power-law

behavior on time-scales shorter than T1 L. Surprisingly, for larger times scales a clear plateau is

apparent for the TG runs. Its width is similar (from approximately T1 L to T10 L) for all runs but

run tg4 (forced at =k 20 ) indicating a relationship with the scale of the forcing. The

Figure 7. Left: autocorrelation functions τC ( )v of the velocity along trajectories in the

hydrodynamic phase (run tgH) and saturated phase (run tg3). Right: autocorrelation
functions τC ( )b of the magnetic field measured along trajectories for the saturated phase

for run tg3, and ff. TL is the large-eddy turn over-time measured at the saturated regime.

Figure 8. Local slope of the second order Lagrangian structure functions of the

magnetic field τS ( )B

2 for all runs in the saturated regime. The inset shows the measured

scaling exponents ζp
B different orders p. Error bars give the maximal variation around

the mean in the interval where S B

2 is flat. (data from run tg1, tg2 and tg3) TL is the large-

eddy turn over-time measured at the saturated regime.
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corresponding scaling exponent does not seem to depend on the Reynolds number of the flow

while it changes depending on the magnetic Prandtl number: it decreases when increasing Pm.

As expected, for the frozen-force simulation (ff) where correlations do not persist beyond T1 L,

no scaling region is observed.

Higher order statistics reveals that the magnetic fluctuations in this scaling region are

intermittent. The scaling exponents ζp

B of the structure functions Sp
B are shown in the inset of

figure 8 for three different Prandtl numbers. They reveal that the long time magnetic

fluctuations are intermittent as all curves are bent. Concerning their magnetic Prandtl number

dependence one finds that the values of the exponents grow when decreasing Pm but we note

that the curves of the relative scaling exponents ζ ζ/p 2 fall on top of each other within the error

bars (not shown).

In order to better understand the origin of the observed long time correlations we computed

the energy sources and sinks of the velocity field. We find that the correlation time of the mean

external energy injection rate ·u F becomes longer during the nonlinear phase and extends

well beyond 1 TL during the saturated phase. The total energy of the system also fluctuates on

this time scale. This is in agreement with the observed changes of the correlation time of ⊥u in

figure 7 (left) as the TG force is constant. The energy exchange time scale �· × ×u B B( )

connected to the Lorentz force is shorter. We note that the mean external energy injection rate is

a large-scale quantity. Apparently, the Lorentz force changes the global flow structure in such a

way that the resulting large-scale velocity field and the (constant) TG force remain correlated

for times much longer than without Lorentz force. The observed scaling regime is probably not

a classical turbulent scaling regime.

We complement the discussion of the long time scaling regime by analyzing the power

density spectrum (PDS) of the perpendicular magnetic field ⊥b along tracer trajectories. For the

PDS we find a low frequency band showing a power-law decay (see figure 9 (left)). The slope ζ2

of a second order structure function and that of the corresponding PDS (α) are connected via the

formula α ζ= − − 12 [46]. The measured slopes of the PDS are consistent with the scaling

exponents of the structure functions.

Finally, we note that the slopes of the spectra of ⊥b are also compatible with the slopes of

the spectra of the total magnetic energy E t( )mag (see figure 9 (right)). Keeping in mind that the

PDS of E t( )mag has a dimension B2 and the PDS of ⊥b a dimension of B one finds an agreement

by simple dimensional analysis.

6. Conclusions

By means of direct numerical simulations of the MHD equations forced by the TG vortex we

analyzed Lagrangian statistics during the three stages of a dynamo system: the kinematic phase,

the nonlinear phase and the saturated phase.

The Lagrangian view point reveals substantial changes in the dynamics between the

kinematic phase and saturated phase. On the one hand the magnetic field produced by dynamo

action smoothes the flow: fluid accelerations reduce on average and tracer trajectories change

from quasi-chaotic to highly mean magnetic field aligned. During its exponential growth, the

created magnetic field is highly non-Gaussian while it becomes quasi-Gaussian during
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saturation. On the other hand the fluid experiences more violent acceleration events in the

saturated phase than in the kinematic phase. Temporal correlations extend much longer in the

saturated regime than in the kinematic one, exceeding significantly usual turbulent time scales.

At time scales approximately ranging from one to ten large-eddy turn-over times we find a

clear scaling regime of magnetic field increments along particle trajectories. High-order scaling

exponents of the LSF show that these long-time magnetic field fluctuations are intermittent and

that intermittency is increasing with increasing magnetic Prandtl number. The second-order

scaling is consistent with a power-law observed for the corresponding frequency spectrum and

that of fluctuations of the total magnetic energy of the system.

Additionally, we find that the PDFs of magnetic and velocity energy increments along

tracer trajectories are skewed. We find a positive skewness for the magnetic energy which

reduces from the kinematic to the saturated phase. The skewness of the kinetic energy is

negative during the kinematic phase and is even smaller during the saturated phase. The

evolution of the skewness of PDF energy increment is clearly due the energy transfer between

the kinetic and magnetic energies.

Finally, we would like to mention that we do not observe a long time scaling regime for

simulations with an ABC force. If this scaling regime is specific to the TG force or if other

forces lead to similar long time dynamics has to be investigated in future work.
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Figure 9. Left: power density spectrum (PDS) of ⊥b for run tg1, tg2, and tg3. The

frequency f is given in terms of the large scale frequency T1/ L. Right: PDS of the total

magnetic energy E t( )mag for run tg1, tg2 and tg3. All curves are shifted for clarity. TL is

the large-eddy turn-over time measured at the saturated regime.
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