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Transverse collapse of low-frequency Alfvén waves
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Abstract

The dynamics of long-wavelength dispersive Alfvén wave trains propagating parallel to an ambient field in a magnetized
plasma is investigated by means of a three-dimensional extension of the derivative nonlinear Schrödinger equation that includes
the mean effect of the longitudinal magneto-sonic waves. In the strongly dispersive regime, quasi-monochromatic right-hand
polarized plane waves perturbed by a broad-spectrum noise develop a transverse collapse leading to the formation of strong
magnetic filaments parallel to the ambient field, as asymptotically predicted by the nonlinear Schrödinger equation for the
wave envelope. In contrast, for left-hand polarized waves filamentation only takes place when the noise is confined to Fourier
modes with wavenumbers close enough to that of the pump. In the regime where dispersion and nonlinearity are comparable,
the amplitude growth is strongly inhibited but intense gradients are still formed, associated with the creation of pancake-like
magnetic structures. The transverse focusing of weakly nonlinear dispersive waves still takes place when the spectrum of the
initial conditions is broadened, in spite of the fragmentation of the magnetic filaments into chains of magnetic bubbles and
ultimately into randomly distributed three-dimensional structures. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Hall-MHD, that extends the usual magnetohydrodynamics by retaining the effect of ion inertia in a generalized
Ohm’s law, provides a good description of magnetized plasmas at large to intermediate scales, when kinetic effects
are neglected [1]. It is also an interesting paradigm of a system where dispersive waves coexist with hydrodynamic
phenomena. The equations read

∂tρ + ∇∇∇ · (ρu) = 0, (1)

ρ(∂tu + u · ∇∇∇u) = −β
γ

∇∇∇ργ + (∇∇∇ × b)× b, (2)

∂tb − ∇∇∇ × (u × b) = − 1

Ri
∇∇∇ ×

(
1

ρ
(∇∇∇ × b)× b

)
, (3)

∇∇∇ · b = 0. (4)

∗ Corresponding author.
E-mail address: laveder@obs-nice.fr (D. Laveder).

0167-2789/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0 1 6 7 -2 7 89 (01 )00202 -0



D. Laveder et al. / Physica D 152–153 (2001) 694–704 695

As usual, ρ is the density of the plasma, u its velocity and b the magnetic field. The equations are written in a
non-dimensional form, taking as unity the Alfvén speed cA = B0/

√
4πρ0, whereB0 is the magnitude of a reference

magnetic field and ρ0 the mean density of the plasma. The parameter β = c2
s /c

2
A, where cs is the sound velocity,

measures the relative importance of the thermal and magnetic pressures, γ the polytropic gas constant andRi denotes
the non-dimensional ion-cyclotron frequency.

In the presence of an ambient magnetic field, an important phenomenon is the propagation of Alfvén waves,
corresponding to transverse oscillations of the magnetic field lines. These waves are believed to play a significant
role in space plasmas since they can propagate over large distances without being dissipated [2,3]. Assuming
β 	= 1, the Alfvén wave dynamics can be isolated when concentrating on wavelengths much larger than the
ion-inertial length. Through a usual reductive perturbative expansion, waves propagating parallel or quasi-parallel
to the ambient magnetic field are then described, when restricted to be one-dimensional, by the so-called derivative
nonlinear Schrödinger equation (DNLS) [4–8]

∂τ b + 1

4(1 − β)∂ξ ((|b|
2 − 〈|b|2〉)b)+ i

2Ri
∂ξξ b = 0, (5)

a soliton equation integrable by inverse scattering [9]. In Eq. (5), the background magnetic field points in the
x-direction, the transverse magnetic field b stands for the complex field by + ibz rescaled by the wave magnitude
ε1/2. The stretched variables are defined as ξ = ε(x − t) and τ = ε2t . Brackets indicate averaging along the
direction of propagation.

The three-dimensional equations governing the evolution of localized waves when transverse variations on scales
η = ε3/2y, ζ = ε3/2z are allowed, are given in [10]. They have to be generalized in the case of modulated wave trains
by retaining mean fields resulting from the averaging of magneto-sonic waves along the direction of propagation
[11], which leads to the three-dimensional DNLS equations (3D-DNLS) [12]

∂τ b + ∂ξ
(

1

2
bP +

(
ūx + 1

2
b̄x

)
b

)
− 1

2
∂⊥P + i

2Ri
∂ξξ b = 0, (6)

∂τ ūx = 1
2 (∂

∗
⊥〈bP〉 + ∂⊥〈b∗P 〉), (7)

∂ξ b̃x + 1
2 (∂

∗
⊥b + ∂⊥b∗) = 0. (8)

In the above equations, bars or brackets 〈·〉 indicate averages over the ξ -variable and the notation ∂⊥ = ∂η+ i∂ζ has
been introduced. The induced longitudinal magnetic field that like the mean longitudinal velocity ūx is rescaled by a
factor ε, is separated in mean and fluctuating part in the form b̄x+b̃x . Furthermore, b̄x = (1/(1+β))(− 1

2 〈|b|2〉+EM),
where the constant EM, defined as the average over the whole domain of the magnetic energy density 1

2 |b|2, is
retained to ensure that b̄x is zero in one space dimension. The fluctuations of magnetic pressure are given by
P = (1/2(1 − β))(2b̃x + |b|2 − 〈|b|2〉).

It is convenient to introduce a parameter ν, representing the relative magnitude of the dispersion and the non-
linearity. For this purpose, denoting by b0 and k−1

0 the initial typical amplitude and longitudinal wavelength of the
transverse magnetic field, we rescale b by b0, the longitudinal and transverse coordinates by k−1

0 and (b0k0)
−1,

respectively, the time by (k0b
2
0)

−1, the fields ūx , b̄x and b̃x by b2
0. Eqs. (7) and (8) then retain the same form, while

in Eq. (6) the coefficient 1/2Ri is replaced by ν = k0/2Rib
2
0.

The 3D-DNLS equations provide a considerable simplification of the primitive Hall-MHD equations by con-
centrating on parallel Alfvén waves propagating in only one direction and by averaging over the magneto-sonic
waves. They are, in particular, well adapted to plasmas with β > 1 where the decay instability, which requires
counter-propagating waves, is absent [13–15].
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A main phenomenon is the transverse collapse of a slightly perturbed small-amplitude Alfvén wave train (large ν),
often referred to as wave filamentation. A simple description is provided by the focusing two-dimensional nonlinear
Schrödinger (NLS) equation [16,17]. In this formalism, the collapse corresponds to a finite-time blowup of the wave
amplitude, associated with a breakdown of the modulational description [18]. Wave collapse is a basic mechanism
for small-scale formation and plasma heating that, for example, was extensively studied in the context of Langmuir
waves [19].

Several questions are conveniently addressed in the framework of the 3D-DNLS equations. Among them are
the domain of validity of the NLS description and the analysis of phenomena occurring for larger wave ampli-
tudes (moderate or small ν). These issues are here studied by means of numerical integrations of the 3D-DNLS
equations with periodic boundary conditions, using a Fourier spectral method. The time stepping is performed
with an Adams–Bashford scheme for the nonlinear terms, the dispersion being treated exactly. Comparisons with
the predictions of an amplitude model for moderate ν [21,22] are also presented. Furthermore, the evolution of
transversally perturbed wave packets with various spectral width is simulated.

2. Evolution of a perturbed circularly polarized Alfvén wave

2.1. Numerical simulations

The 3D-DNLS equations, like the original Hall-MHD equations, admit exact solutions, named after Ferraro [20],
in the form of finite amplitude circularly polarized monochromatic plane waves b = b0 e−iσ(kξ−ωτ) with ūx = 0,
where choosing k > 0, one has σ = 1 for right-hand and σ = −1 for left-hand polarization with a dispersion
relation ω = σk2/2Ri.

As already mentioned, we concentrate on plasmas withβ > 1, where no decay instability is present in the primitive
Hall-MHD equations. The dynamics resulting from long-wavelength longitudinal perturbations of a Ferraro wave
is for any ν amenable to a modulation analysis using a formalism adapted to finite-amplitude waves [23,24]. It is
then easily seen that a left-hand polarized wave is always stable, while a right-hand polarized wave is unstable when
ν > 1/8(β − 1) and stable otherwise. A direct linear stability analysis is also presented in [15]. For example, for
β = 3, Ri = 1, k = 1 and b0 = 1, corresponding to ν = 0.5, the growth rate reaches its maximum γL ≈ 0.1 (in the
primitive DNLS units) at a wavenumber K such that K/k ≈ 0.5. Whatever their polarizations, Ferraro waves are
also unstable to perturbations in the transverse directions: the most unstable transverse mode is of order kb0 and the
growth rate γT proportional to kb2

0 with a coefficient of order unity. For the above parameters, γT ≈ 1.0.
In order to address the possible oblique instabilities (not necessarily of modulation type), we performed short-time

simulations of Eqs. (6)–(8) starting with a circularly polarized wave of unit amplitude and wavenumber k = 1 in
a (16π) × (2π)2-periodic domain, subject to a random noise with Fourier modes of maximum amplitude 10−7

covering the whole spectral range of the simulation. For simplicity, the linear study is performed in two space
dimensions. We observe that for right-hand polarization, no small-scale oblique instability develops whatever the
magnitude of ν. Furthermore, as already known, the longitudinal instability is subdominant. Such a regime is
illustrated in Fig. 1a that displays the unstable Fourier modes for β = 2 and ν = 50. On the other hand, in the case
of a left-hand polarized pump, oblique instabilities are present in the large-ν regime (Fig. 1b), with a growth rate
that is progressively weakened as the dispersion is reduced and becomes negligible for ν = 0.5.

The nonlinear development of the transverse instability of a small-amplitude pump (large ν) is expected to lead
to wave filamentation. This phenomenon is demonstrated by integrating the DNLS equations with initial conditions
corresponding to a weakly perturbed right-hand polarized Alfvén wave with ν = 50, in a periodic box whose
longitudinal size equals 8 pump wavelengths. The initial random noise has a maximum amplitude of 10−7 and
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Fig. 1. Spectral instability range as delimited by the contours of Fourier modes of by obtained by two-dimensional numerical simulations of the
3D-DNLS equations, for initially right-hand (a) and left-hand (b) circularly polarized Alfvén waves with β = 2 and ν = 50. The mode kx = 1,
ky = 0 corresponds to the pump wave. At the resolution of (a), the longitudinal instability is not visible.

affects all the modes present in the simulation. The formation of intense magnetic filaments, where at the end of the
simulation the magnetic intensity has been amplified by a factor close to 50, is shown in Fig. 2a.

In the case of left-hand polarization again with ν = 50, a simulation with a broad-spectrum initial noise leads
to a regime where small scales are randomly distributed in the whole domain, without any significant amplification
of the transverse magnetic field (Fig. 2b). Such a dynamics results from the development of oblique instabilities
that dominate over the filamentation. In this regime, filamentation can occur only when the initial noise spectrum
is localized near the pump wavevector.

The simulation reported in Fig. 2a shows that subharmonics do not develop during the evolution of a right-hand
polarized wave. For a detailed study of the filamentation, we thus choose a right-hand circularly polarized pump
with wavenumber k = 1 and β = 3 in a box of size (2π)3. We consider three different values of the parameter
ν associated with regimes that are strongly (ν = 50), moderately (ν = 0.5) and weakly (ν = 0.01) dispersive.
The maximum resolution achieved in these computations is limited to 32 × 2562, due to the very small time steps
required to prevent numerical instabilities at small scales. In these simulations, the noise is purely transverse and
confined to large-scale Fourier modes.

Fig. 2. Isosurfaces |b|2 = 20 for an initially right-hand polarized Alfvén wave (a), and |b|2 = 3 for a left-hand polarized Alfvén wave (b), when
β = 2 and ν = 50. The arrow indicates the direction of the ambient field.
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Fig. 3. Snapshot of |b|2 in a plane transverse to the ambient field (a) and three-dimensional isosurfaces |b|2 = 10 (the arrow indicating the
direction of the ambient field) (b), for an initially circularly polarized Alfvén wave with β = 3 and ν = 50 at t = 9.8.

Fig. 3a displays a snapshot of the Alfvén wave intensity |b|2 in a plane transverse to the ambient field, for a
run with ν = 50 at t = 9.8. At this time the maximum wave intensity was amplified by a factor 100 and the
resolution 32 × 2562 we used becomes insufficient to describe the further evolution. A three-dimensional view
of the regions of high wave intensity displays quasi-circular “magnetic filaments” that are parallel to the ambient
field and extend in the entire domain (Fig. 3b). It is remarkable that no significant dynamics has developed in the
longitudinal direction and the quasi-monochromatic character of the wave is preserved. The circular polarization
of the dominant longitudinal mode is also well maintained and the transverse dynamics accurately described by the
two-dimensional NLS equation for the wave amplitude [17].

Fig. 4a and b shows at two successive times the wave intensity |b|2 in a transverse plane for ν = 0.5, in a run
with a resolution 32 × 1282 (a similar evolution was also obtained for ν = 3.2). It is noticeable that although strong
gradients are created, the wave intensity remains moderate. We observe the formation of magnetic layers that are
parallel to the local transverse magnetic field, with a thickness that decreases in time. Inside these layers, local
maxima develop with an amplitude that grows moderately. The initial circular polarization of the carrying mode
k = 1 is observed to be progressively lost as time elapses. Furthermore, the growth of the transverse gradients results
in a progressive amplification of the second longitudinal harmonics whose amplitude at the end of the simulation
is in a ratio of only a few units with that of the mode k = 1. The longitudinal dynamics is conspicuous on Fig. 4c
that displays the formation of “magnetic pancakes” of finite extension in the direction of the ambient field. Similar
magnetic pancakes, with superimposed small random structures, are obtained in a simulation with k = 1 and a
broad-spectrum isotropic initial noise (not shown).

Fig. 4d compares the amplification in time of the supremum of the wave amplitude and of its gradients (in
both local and integrated norms). It suggests a possible finite-time blowup of the transverse gradients, while the
maximum value of the amplitude remains finite and increases with ν. A detailed analysis of these issues would
require simulations at much higher resolutions than those presently available.

Finally, Fig. 5a shows the regime that develops for ν = 0.01 in a simulation at resolution 643. In this case, the
amplitude is only weakly amplified. Fronts develop in the transverse directions, but the peaks visible for ν = 0.5
(Fig. 4b) are no longer present. Furthermore, a significant steepening is now visible in the longitudinal direction.
The spectrum in this direction indeed becomes more populated at small scales, although the carrier mode remains
dominant. A three-dimensional visualization of the resulting magnetic structures is displayed in Fig. 5b.
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Fig. 4. Evolution of an initially circularly polarized Alfvén wave with β = 3 and ν = 0.5: snapshot of |b|2 in a plane transverse to the ambient
field at t = 14.1 (a) and t = 14.7 (b); isosurfaces |b|2 = 4 (the arrow indicating the direction of the ambient field) at t = 14.1 (c); time variation
of the maxima of the field sup|b| ((d), left) and of the gradient norms sup|∇∇∇b|(∫ |∇∇∇b|2 d3x)1/2, where ∇∇∇b holds for the transverse gradient matrix
((d), right).

2.2. A simple envelope model

The above simulations with initial conditions in the form of a perturbed Ferraro wave show that even when the
dynamics is not strongly dispersive and thus not amenable to a classical NLS modulation analysis, the transverse
dynamics is dominant, at least at early enough times. This suggests a simple amplitude description retaining only one
longitudinal wavenumber. We nevertheless permit the development of the other polarization and do not prescribe

Fig. 5. Snapshot of |b|2 in a plane transverse to the ambient field (a) and isosurfaces |b|2 = 2 (the arrow indicating the direction of the ambient
field) (b), for an initially circularly polarized Alfvén wave with β = 3 and ν = 0.01 at t = 23.
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any scale separation at the level of the time variable. We thus write

b = ψ∗
+(η, ζ, τ ) e−iθ+ + ψ−(η, ζ, τ ) eiθ− , (9)

where θ± = kξ − ω±τ and ω± = ±k2/2Ri, ψ∗+ and ψ− being the amplitudes of the right and the left-polarized
modes, respectively.

Defining ∂± = ∂η ± i∂ζ (previously denoted by ∂⊥ and ∂∗
⊥), the divergenceless condition (8) gives

b̃x = i

2k
(∂+ψ+ eiθ+ + ∂−ψ− eiθ−)+ c.c., (10)

while the pressure P reads

P = 1

2(1 − β)
(

i

k
(∂+ψ+ eiθ+ + ∂−ψ− eiθ−)+ ψ+ψ− ei(θ++θ−)

)
+ c.c. (11)

By projecting Eq. (6) on the spatial Fourier modes eikξ and e−ikξ , one obtains

i∂τψ± + k
( |ψ∓|2

4(β − 1)
− ūx − b̄x

2

)
ψ± − 1

4k(β − 1)
(#ψ± + α±∂2

∓ψ∓) = 0, (12)

that contains the functions of time α±(τ ) = e±i(ω+−ω−)τ = e±(ik2/Ri)τ .
The mean field ūx can be eliminated by deriving from Eq. (12) the relation

∂τ (|ψ+|2 + |ψ−|2) = i

4k(β − 1)
(ψ+#ψ∗

+ + ψ−#ψ∗
− − α+ψ∗

+∂
2
−ψ− − α−ψ∗

−∂
2
+ψ+)+ c.c., (13)

where # = ∂+∂− is the transverse Laplacian.
Combining Eq. (13) with Eq. (7), one gets ūx = |ψ+|2 + |ψ−|2. Moreover, after projection, one has b̄x =

−(1/(1 + β))(|ψ+|2 + |ψ−|2) when dropping the constant EM that plays no dynamical role. One finally obtains
that in Eq. (12)

ūx + b̄x

2
= 4β + 3

4(1 + β)(|ψ+|2 + |ψ−|2). (14)

In the strong dispersion limit ν → ∞, the time scale of the transverse dynamics is much longer than the period of
the carrier and averaging over the fast oscillations leads to take α± = 0 in the above amplitude equations. In this
case, Eq. (12) can also be derived by a standard weakly nonlinear modulation analysis retaining both right-hand
and left-hand polarized modes.

When ν takes a finite value, the time-dependent factors α± in Eq. (12) are to be retained. They can, however, be
formally eliminated by absorbing them in a redefinition of the amplitudes. One then recovers the equations for the
fields B−, B+ given in Ref. [21], where the analysis is based on a modulational approach, assuming values of the
parameter ν that are large enough for the dynamics to be mostly monochromatic in the longitudinal direction but
not sufficient to enforce circular polarization. For this purpose, depending on the choice σ = 1 or σ = −1 of the
initial polarization, one writes either B− = α−ψ+ and B+ = ψ− or B+ = α+ψ− and B− = ψ+.

By defining the vector B = (0, 1
2 (B− + B+), 1

2 i(B− − B+)), one then recovers the vector NLS equation 1 (37)
of Ref. [21]

i∂τB+ k2

2Ri
(σB + iB × e1)− 1

2k(β − 1)
∇∇∇(∇∇∇ · B)+ k(8β2−3β − 7)

4(1 + β)(1 − β) |B|2B − k

4(β − 1)
B × (B × B∗) = 0,

(15)

where e1 is the unit vector in the direction of the ambient field.

1 Ref. [21] contains a misprint in the coefficient in front of |B|2B.
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The numerical integrations of Eq. (15) reported in [21] display a qualitative agreement with the simulations of
the 3D-DNLS equations presented in Section 2.1. Although the amplitude model does not retain the longitudinal
structure that develops for small or moderate values of ν, it does suggest a blowup of the gradients and the growth
of the amplitude maximum to a moderate value that increases with ν. The transverse configuration of the magnetic
structures is also very similar to that described in the present paper, with a progressive transition towards the usual
NLS foci as ν is increased.

The success of the amplitude equations for moderate ν in the context of the present simulations is probably due
to the fact that Ferraro waves are exact solutions of the one-dimensional problem. As a consequence, longitudinal
harmonics develop on a time scale comparable to that of the onset of a strong transverse dynamics, making the
projection method acceptable for a simplified description of the transverse modulation of a Ferraro wave.

Eq. (15) admits an Hamiltonian H [21], that satisfies the inequality p
∫ |∇∇∇ · B| dx⊥ ≤ |H| + q(sup|B|)2 + r

where, for finite ν, the quantities p, q, r are positive and depend on the initial conditions. As a consequence,
moderate values of sup|B| implies that |∇∇∇ ·B| remains bounded, which is consistent with the numerical observation
that the transverse magnetic field is roughly parallel to the magnetic layers. In contrast, the full gradients become
large.

3. Evolution of a perturbed linearly polarized wave

In the framework of the 3D-DNLS equations, initial conditions more general than a perturbed circularly polarized
wave can be considered. In particular, it is possible to study the evolution of an initially linearly polarized monochro-
matic wave, resulting from the superposition of two Ferraro waves. Since it is not an exact solutions of the 3D-DNLS
equations even in the absence of transverse perturbations, cubic couplings are now relevant. As a consequence, a
significant longitudinal dynamics rapidly develops making the one-mode projection inaccurate, except in the limit
ν → ∞, where the carrier harmonics are not resonant. In the latter case, the coupling of the two counter-polarized
waves can be accurately described by Eq. (12) with α = 0 for which the existence of (localized) solutions that
blowup in a finite time can be established by extending to this case the usual virial identity of the two-dimensional
NLS equation [25]. Numerical simulations for ν = 50 indeed show a dynamics very similar to that observed in the
case of a circularly polarized wave, with the formation of axisymmetric filaments of strong intensity, longitudinally
modulated by the interference of the two polarization modes. In contrast, simulations for ν = 0.5 reveal the early
formation of non-isotropic structures for the wave intensity in the transverse planes (Fig. 6a), followed by a sudden
amplification of localized and more isotropic structures (Fig. 6b), a phenomenon that is not observed with initially
circularly polarized waves. This effect could result from the rapid generation of higher-wavenumber longitudinal
harmonics, leading to an enhancement of the dispersion compared with the nonlinearity and to a larger effective ν,
more favorable for amplitude blowup.

4. Dynamics of an initial wave packet

In most realistic situations, Alfvén waves are not quasi-monochromatic and the question arises of the evolution of
a weakly nonlinear dispersive wave with a broad spectrum. To investigate this issue, we numerically integrated the
3D-DNLS equations for ν = 50 with initial conditions in the form of transversally perturbed packets of right-hand
circularly polarized waves with a Gaussian spectrum of the form |bk|2 = (b2

0/δ
√

2π) e−(k+1)2/2δ2
. For a given

resolution, such a spectrum requires a computational box with a longer size Lx in the longitudinal direction. When
the spectrum is very narrow, the wave packet keeps its identity before developing a transverse collapse, leading
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Fig. 6. Snapshot of |b|2 in a plane transverse to the ambient field for an initially linearly polarized Alfvén wave with β = 3 and ν = 0.5 at
t = 17.2 (a) and t = 18.8 (b).

to the formation of intense magnetic structures with a spindle shape. Differently, for left-hand polarization the
early evolution of a narrow wave packet corresponds to a longitudinal defocusing, as expected from the amplitude
equations (2.30)–(2.33) of Ref. [17] taken in the long-wavelength limit. When the mean longitudinal fields become
relevant, transverse focusing develops.

Fig. 7a and b refers, respectively, to simulations of a right-hand polarized wave packet with δ = 0.09 (in a
box of size (12π) × (2π)2) and δ = 0.2 (in a box of size (32π) × (2π)2). In both cases, the wave packet first
disperses and looses its shape, but the non-monochromatic character of the wave does not prevent a subsequent
transverse self-focusing in spite of an important longitudinal dynamics. With the former parameters, the development
of three-dimensional magnetic structures in the form of modulated tubes is observed, while for the broader wave
packet they rather take the form of chains of “magnetic bubbles”. Finally, a simulation with δ = 1 displays a complex
longitudinal dynamics before the development of the transverse instability that leads to a violent collapse in localized
regions of the x-axis. The resulting structures appear to be sparse and randomly distributed three-dimensional
objects.

Fig. 7. Isosurfaces |b|2 = 15 for an initial wavepacket (the arrow indicating the direction of the ambient field) with β = 3 and ν = 50 for
Lx = 12π , δ = 0.09 (a) and Lx = 32π , δ = 0.2 (b).
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5. Conclusion

The nonlinear dynamics of long-wavelength dispersive Alfvén waves was studied in the context of the 3D-DNLS
equation. In the strongly dispersive regime associated with small-amplitude waves, a slightly perturbed right-hand
circularly polarized monochromatic wave train collapses in the transverse directions leading to strong magnetic
filaments parallel to the ambient field, as asymptotically described by the two-dimensional NLS equation. A similar
dynamics was obtained for left-hand or linear polarizations under the condition that the initial noise be concentrated
on wavenumbers close enough to that of the pump to prevent the development of small-scale oblique instabili-
ties. When the effect of the dispersion is reduced (larger wave amplitude), numerical simulations show that the
wave amplitude is only moderately amplified, while strong gradients still develop. Pancake-like magnetic structures
are created, corresponding to the formation of thin magnetic layers in the transverse planes and the development
of harmonics in the longitudinal direction. When the dispersion becomes small compared with the nonlinear ef-
fects, a strong longitudinal dynamics takes place while magnetic fronts are formed in the transverse planes. This
regime deserves further investigations, especially when dissipative processes are included in Eq. (6), leading to a
three-dimensional extension of the Cohen–Kulsrud–Burgers equations [26,27]. We also show that the transverse
focusing of weakly nonlinear dispersive waves is robust when the spectrum of the initial conditions is broadened.
It is remarkable that despite the existence of a non-trivial longitudinal dynamics, a transverse collapse takes place,
resulting in three-dimensional structures of intense magnetic field.

The strong growth of the transverse gradients implies a breakdown of the asymptotics leading to the 3D-DNLS
equations that assumes slower variations in the transverse directions than in the longitudinal one. It is then necessary
to go back to the primitive MHD equations which involve a more complex dynamics including couplings to
the magneto-sonic waves and to backward-propagating waves. Preliminary direct numerical simulations of the
three-dimensional Hall-MHD equations, not restricted to the long-wavelength regime, are presented in [28], where
various nonlinear evolutions are obtained depending on the competition between the different linear instabilities.
The question also arises whether finite-time singularities occur on the primitive equations or whether the violent
amplification effects displayed by the 3D-DNLS equations saturate at a finite value.

We conclude by mentioning the role of the kinetic effects that are believed to be relevant when the parameter β
exceeds unity. In one space dimension, they were modeled at the level of the long-wave asymptotics by additional
nonlocal terms in the DNLS equation [2,10,29]. Extension of this description to higher dimensions is in project.
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