
TOWARDS FLUID SIMULATIONS OF DISPERSIVE MHD WAVES
IN A WARM COLLISIONLESS PLASMA

G. Bugnon, R. Goswami, T. Passot and P.L. Sulem1
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ABSTRACT

A Landau fluid model suited for the description of the weakly nonlinear dynamics of long wavelength dispersive
MHD waves in a magnetized collisionless plasma is presented, that should be useful to study the formation and
stability of solitary structures such as magnetic holes or shocklets observed for example in the solar wind and
the terrestrial magnetosheath. First simulations in a slab geometry are reported, that focus on the evolution
of plane fast magnetosonic waves. Accurate comparisons are made with analytic predictions of the Landau
damping rate for various plasma parameters and wave characteristics. In a regime where Landau damping
dominates, Alfv́en modes eventually become prevalent, which results in the arrest of dissipation at a time that
is shorter for waves with larger initial amplitude. In contrast, magnetosonic solitary waves in the form of
density and magnetic field depressions are found to emerge in a regime where Landau dissipation is initially
negligible compared with nonlinear and dispersive effects. Excellent agreement is also found for the growth
rate of the mirror instability at long wavelength but modeling the arrest of the instability at small scales within
fluid simulations remains a challenging issue.

INTRODUCTION

Both in natural and fusion plasmas, collisions are generally negligible and kinetic effects relevant. On the
other hand, when a broad range of scales is involved, direct numerical integrations of the Vlasov-Maxwell
equations in three space dimensions are beyond the capabilities of the present day computers. Such situations
actually require a formalism that preserves most of the aspects of a fluid description but extends the usual
magnetohydrodynamics by including realistic approximations of the pressure and heat flux tensors. Wave-
particle resonances present at the hydrodynamical scales (Landau damping) provide an important dissipation
and should thus be retained. Such a description turns out to be possible for a plasma permeated by a strong
ambient magnetic field. In this context, Snyderet al. (1997) suggested a “Landau fluid” model involving
hydrodynamic equations for the density and the velocity of the plasma, together with dynamical equations for
the parallel and perpendicular pressures of each species. The resulting system must nevertheless be closed
and the main issue consists in a proper determination of the heat fluxes that enter the pressure equations.
For the sake of simplicity, an electron-proton plasma is considered in a simple geometry (no curvature drift),
with an homogeneous equilibrium state characterized by bi-Maxwellian distribution functions. In the original
formulation, the model is limited to scales large enough for both Hall effect and finite Larmor radius corrections
to be negligible. A generalization is needed in order to account for dispersive effects. For this purpose, the
derivation was revisited by Passot and Sulem (2004b) who extended this mono-fluid model in a form able
to accurately reproduce the weakly nonlinear dynamics of dispersive MHD waves for anyβ larger than the
electron to proton mass ratiome/mp and any propagation angleα (thus including kinetic Alfv́en waves with
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a transverse wavenumber small compared with the inverse proton inertial length). This model is expected to
provide an efficient tool to investigate the presence of coherent structures in the form of solitary waves such as
magnetic holes, shocklets or oscillitons reported by satellite observations in the solar wind and the terrestrial
magnetosheath. Such structures are classically understood as resulting from a balance between dispersion
and nonlinearity, but their persistence in regimes where Landau damping and coupling to other waves are
relevant remains to be understood. Long-wave asymptotics can be performed from Landau fluid models and
lead to soliton equations, possibly perturbed by weak Landau damping (Passot and Sulem, 2004a), but the
question remains to determine the regimes where the formation of solitary structures is not hampered by other
phenomena.

THE MODEL AND ITS VALIDATION

The Landau fluid model for dispersive MHD waves derived in Passot and Sulem (2004b) is briefly described
in the Appendix. Here, we concentrate on a simplified version that is sufficient in the case of magnetosonic
waves and was also shown to accurately reproduce the parallel Alfvén wave dynamics (Passot and Sulem,
2003). It consists in retaining only the leading order non-gyrotropic contributions to the pressure tensors and
also neglecting both the non-gyrotropic corrections to the heat flux tensors and the corrections to the gyrotropic
components due to parallel current. In a slab geometry, where the ambient magnetic field makes an angleα
with the direction of propagation (denoted byx), the equations obeyed by the densityρ (measured in units of
the equilibrium valueρ(0)), the plasma velocity(ux, uy, uz) (taken in units of a velocityu0 that we will take as
the Alfvén velocityvA), the magnetic field(bx = B0 cosα, by, bz) (measured in units of the ambient fieldB0),
the parallel and perpendicular pressuresp‖r andp⊥r (both measured in units of the equilibrium parallel proton

pressurep0 = p
(0)
‖p ) and heat fluxesq‖r andq⊥r of each species (taken in units ofu0p0), read
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where the gyrotropic components of the pressure tensor are given bypij =
∑

r pr,ij with
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In these equations,H denotes the Hilbert transform relatively to thex coordinate,vthr =
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length scaleL0. The non-gyrotropic corrections in the pressure tensor are restricted to their leading order in the
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πxx = MaRp sinα
(
2 cos2 α(p⊥p − 2p‖p)−

1
2

sin2 αp⊥p

)
∂xuy (14)

πxy = MaRp cosα
(
(p⊥p − 2p‖p cos2 α)∂xuz + 2p‖p cosα sinα∂xux

)

+MaRp sin2 αp⊥p(sinα∂xux − cosα∂xuz) (15)

πxz = MaRp cosα
(
(sin2 α− cos2 α)(p⊥p − 2p‖p) + sin2 αp⊥p

)
∂xuy. (16)

LANDAU DAMPING OF MAGNETOSONIC WAVES

The rateλIkvA of Landau dissipation for an oblique magnetosonic wave of wave numberk propagating in

a plasma with isotropic equilibrium temperatures simply expresses in the case
me

mp
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where (Passot and Sulem, 2004a)
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with a phase velocityλRvA given by
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We here concentrate on the case of fast waves (associated with the positive sign) for which Landau dissipation
is usually weaker. In order to approach the asymptotic regime addressed by the theory, we choose a temperature
ratioTe/Tp = 10, and prescribe small values for the parameterβ.

Simulations were performed using a Fourier spectral method in a2π periodic domain, with a resolution of128
or 256 collocation points. The initial conditions are taken in the form of a pure magnetosonic wave. Defin-
ing A = a0 cos kx andρ(1) = ρ − ρ(0) = RA, where the constantR is given by Eq. (26) of Passot and
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Sulem (2004b) with the quantitiesC‖ andC⊥ approximated by
√

βvA, we prescribe as initial conditionsby = 0,

bz = B0 sinα +
A

sinα
, ux = λRρ(1), uz = λR tanαρ(1) − λR

sinα cosα
A, together withq‖e = 2

λR

cosα
(A− ρ(1)),

q⊥e =
λR

cosα
(A− ρ(1)) andq‖p = q⊥p = 0. Note that this initial condition induces an mean contribution touz.

β Analytical value Numerical results
10−1 -0.007518 -0.007605

4. 10−2 -0.004763 -0.004777
10−2 -0.002382 -0.002403

2.5 10−3 -0.001191 -0.001228
10−3 -0.000753 -0.000791

cosα Analytical value Numerical results
0.2 -0.015696 -0.016606
0.5 -0.004904 -0.004991
0.7 -0.002382 -0.002403
0.85 -0.001068 -0.001073

Comparisons of the damping coefficientλI as given by the theory and by the numerics are presented in Table
1 wherecosα = 0.7 andβ is varied, and in Table 2 whereβ = 10−2 andcosα varied. In these simulations
Rp = 10−2 and the initial conditions are characterized by an amplitudea0 = 10−4. An agreement of the
order of one percent is obtained in the regime whereβ, although small, is such that dissipation dominates the
dynamics.
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Fig. 1. Time evolution (in lin-log scales) of magnetosonic wave energy1
2

∫
[ρ(u2

x + ũ2
z) + (bz −B0 sinα)2]dx,

assumingRp = 7. 10−3: (left) for initial amplitudes (from top to bottom)a0 = 2.210−2, 10−2, 4.10−3, 2.10−3,
10−3 and5.10−4, whenβ = 10−2; (right) for β = 0.1, 0.02, 0.01 and0.005 (from left to right), in the case of
an initial amplitude equal toa0 = 10−3.
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LONG TIME EVOLUTION OF A MAGNETOSONIC WAVE

In order to address the dynamics beyond the linear theory, we prescribedRp = 7. 10−3 together with a propa-
gation angle defined bycosα = 0.7 and performed several simulations for amplitudesa0 ranging from10−3 to
2. 10−2. The resulting time evolution of the magnetosonic wave energy1

2

∫
[ρ(u2

x + ũ2
z) + (bz −B0 sinα)2]dx

is displayed in Fig. 1a (in lin-log scales). Hereũz denotes the fluctuations ofuz about its mean value along the
x-coordinate. The most conspicuous feature is the arrest of the decay, that takes place at a higher level and on
a smaller time scale as the initial amplitude of the wave is increased. We also note that the early time decay is
exponential for small amplitude waves, as expected from the linear theory, but turns out to be more rapid for
larger amplitudes. This point is easily understood by noting that in the latter case, nonlinear couplings produce
a sharp steepening of the wave profile and thus the excitation of high harmonics that are more rapidly dissi-
pated, the damping rate scaling like the wave number. Furthermore, Fig. 1b shows in the case of an amplitude
a0 = 10−3, that reducing the parameterβ from 0.1 to 0.02, 0.01 and0.005, slows down the decay rate of the
magnetosonic wave energy as expected from linear theory, but keeps the saturation level essentially unchanged.

In order to interpret these observations, it is of interest to consider the evolution of the wave profiles. Figure
2 displays in the case of a relatively large amplitude (a0 = 2 10−2) snapshots of the velocity componentsũz

(top panels) anduy (bottom panels) at times 1, 32, 45, 101, 150, 501, 1002, 4000 and 17 000. The early
time evolution ofũz shows a steepening of the profile and the formation of strong oscillations typical of a
dispersive shock. Such oscillations are less numerous for weaker initial wave amplitude and totally absent
whena0 = 10−3. A similar profile is observed forbz that, through the Hall term, drives small scale oscillations
of uy (and thusby) whose amplitude rapidly increases. The Alfvén wave thus generated rapidly evolves to a
large-scale profile, the small-scale oscillations being damped at a rate that scales likek3/R2

p. After a while,
the magnetosonic contribution to the solution has been almost completely dissipated and the resulting state can
be viewed as an Alfv́en wave essentially insensitive to Landau damping. The componentsux andũz that are
still present are in fact a part of the Alfvén wave originating from the dispersive coupling. Not being associated
with a magneto-sonic mode, they are not dissipated.

Figure 3 shows the time evolution of the magnetosonic contribution (top)1
2

∫
[ρ(u2

x+ũ2
z)+(bz−B0 sinα)2]dx to

the energy and the Alfv́enic contribution (bottom)12
∫
(ρu2

y +b2
y)dx for an initial wave amplitudea0 = 2.2 10−2

(left panel) anda0 = 10−3 (middle panel). In these simulations,Rp = 7 10−3, β = 10−2 andcosα = 0.7.
The right panel displays the same quantities forRp = 7. 10−2 anda0 = 10−3. We note that the time scale
for saturation of the Alfv́en wave decreases with the amplitude of the initial magnetosonic wave but is not
sensitive to the value ofRp. This evolution results in a heating of the plasma that mostly concerns the parallel
temperature of the electrons whose mean value increases by about20% in the case of a wave of initial amplitude
a0 = 2.2 10−2. The associated time scale corresponds to the formation and dissipation of the high frequency
modes in the dispersive shocks. When the initial amplitude is reduced toa0 = 10−3, temperature increases by
0.04% only.

SMALL DISSIPATION LIMIT

The previous Section was concerned with a regime dominated by Landau damping, a situation that occurs when
√

β

√
me

mp
À R2

p

V0

vA
(Passot and Sulem, 2004b). Differently, when dissipation is small enough to permit a

balance between dispersion and nonlinearity, a reductive perturbative expansion leads to a perturbed Korteweg
de Vries equation (Janikiet al., 1992). To simulate such a regime, it is appropriate to decrease the scale
separation (takingRp = 10−1) and increase the wave amplitude (witha0 = 10−2). Decreasing the value

of β is indeed limited by two constraints:β has to be kept larger than
me

mi
for the consistency of the present

description; furthermore, as discussed by Mikhailovskiı̆ and Smolyakov (1985), dispersion vanishes withβ.
Indeed, as experienced in a simulation performed withβ = 10−10, the Hall term cannot by itself prevent
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Fig. 2. Snapshots at timest = 1, 32, 45, 101, 150, 501, 1002, 4000 and17000 of the velocity component
ũz (top) anduy (bottom) for a magnetosonic wave of initial amplitudea0 = 2.2 10−2, with β = 10−2 and
Rp = 7 10−3.
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Fig. 3. Time evolution (in lin-log scales) of the magnetosonic wave energy1
2

∫
[ρ(u2

x+ũ2
z)+(bz−B0 sinα)2]dx

(top) and of the generated Alfvén wave1
2

∫
(u2

y + b2
y)dx (bottom) in a plasma withβ = 10−2: initial amplitude

taken equal toa0 = 2.2 10−2 with Rp = 7. 10−3 (left); the amplitude is decreased toa0 = 10−3 (middle);
initial amplitude is kept at the valuea0 = 10−3 butRp = 7. 10−2 (right).

gradient singularities. Simulations performed withβ = 10−3, are shown in Fig. 4. We first observe, on
the typical steepening time scale, the formation of solitonic structures (top) with a hump for the velocityuz

(left) and density depressions (middle) correlated with magnetic holes (right). These profiles differ from the
compression solitons predicted in the case of purely transverse propagation, a regime where a more refined
description of the FLR corrections was shown to be necessary (Mikhailovskiı̆ and Smolyakov, 1985). They
survive for a while and alternate with sinusoidal-like profiles. Eventually, on a time15 times larger, the solution
profile becomes significantly distorted and progressively evolves to a quasi-stationary wave (Fig. 4, bottom),
associated with the presence of a backward propagating wave. This dynamics, where the density fluctuations
are significantly stronger than when solitons are present, persists until the end of the simulation. In this regime,
the dissipation of the magnetosonic wave remains very weak during the whole simulation (Fig. 5., left) and the
Alfv én waves remain subdominant (Fig. 5., right).

BEYOND THE PRESENT SIMULATIONS

As already mentioned, the present study was performed using a simplified version of the Landau fluid model
introduced by Passot and Sulem (2004b). The full model is required to describe the detailed dynamics of
the oblique Alfv́en waves when their wavelength approaches the ion inertial length. Such simulations are in
project. Furthermore, in the case where the equilibrium state is characterized by a transverse pressure that
dominates the parallel one, mirror modes may become unstable (Hasegawa, 1969; Treumann and Baumjohann,
1997). As well known, the description of these modes requires an accurate modeling of the kinetic effects
(Kulsrud, 1983). When electrons and protons have the same temperature, the condition for the instability to

take place reads
p
(0)
⊥

p
(0)
‖

> 1 +
1

p
(0)
⊥

B2
0

8π
. The corresponding instability rate can be computed in the framework of

the kinetic theory (Treumann and Baumjohann, 1997; Snyderet al., 1997). Figure 6 displays a comparison
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Fig. 5. Time evolution (in lin-log scales) of the magnetosonic wave energy1
2

∫
[ρ(u2

x+ũ2
z)+(bz−B0 sinα)2]dx

(left) and of the generated Alfvén wave1
2

∫
(u2

y + b2
y)dx (right) in a plasma withβ = 10−3 for an initial

amplitudea0 = 10−2 with Rp = 10−1.

between the predictions of the theory (solid line) and the results of the simulations (asterisks), concerning the
variation of the (normalized) instability growth rate=(ω)/

√
2|k‖vth,p with the temperature anisotropy. Here

we assumed the angle of propagation is such thatcosα = 0.01 andβ ≡ ((2/3)p(0)
⊥ + (1/3)p(0)

‖ )/(B2
0/8π) = 1
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Fig. 6. Mirror mode growth rate predicted by the kinetic theory and given by time integration of the model
equations, versus the equilibrium temperature anisotropy for a plasma withβ = 1 and equal temperatures for
electrons and protons.

with Rp = 10−10. The agreement is excellent. Nevertheless, the present formalism does not reproduce the fact
that the instability does not extend to arbitrary large wavenumbers (Yoon, 1992). Reproducing the correct form
of the dispersion relation at small scales requires an appropriate modeling of high order finite Larmor radius
corrections, a question that is presently under investigation.

The present study demonstrates the efficiency of Landau fluid models to simulate nonlinear waves in collision-
less plasmas in regimes where wave particle resonances cannot be ignored. Further interesting developments
would concern the formation and stability of slow magnetosonic solitary structures with large amplitude whose
existence was pointed out by McKenzie and Doyle (2002) and that were considered at the origin of the magnetic
holes observed by the CLUSTER mission in the magnetosheath (Stasiewiczet al., 2003).
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APPENDIX

The Landau fluid model for dispersive MHD waves discussed in Passot and Sulem (2004b) reads (bold faced
symbols referring to tensors)

∂tρ +∇ · (uρ) = 0 (A.1)

∂t(ρu) +∇ · (ρu⊗ u) +∇ · p− 1
c
j × b = 0 (A.2)

∂tb−∇× (u× b) = −cmp

q
∇×

( 1
4πρ

(∇× b)× b− 1
ρ
∇ · pe

)
(A.3)



10

∂tp⊥r +∇ · (u p⊥r) + p⊥r∇ · u− p⊥r b̂ · ∇u · b̂ +
1
2

(
tr∇ · qr − b̂ · (∇ · qr) · b̂

)
= 0 (A.4)

∂tp‖r +∇ · (u p‖r) + 2p‖r b̂ · ∇u · b̂ + b̂ · (∇ · qr) · b̂ = 0 (A.5)

wherep =
∑

r pr andqr hold for the pressure and heat flux tensors, withpr = p⊥r(I− b̂⊗ b̂)+p‖r b̂⊗ b̂+πr.
It is convenient in Eqs. (A.4) and (A.5), to separate the contributions originating from the gyrotropic and
non-gyrotropic heat fluxes, by writingqr = qG

r + qNG
r with

qG
r ijk = q‖r b̂ib̂j b̂k + q⊥r(δij b̂k + δik b̂j + δjk b̂i − 3b̂ib̂j b̂k). (A.6)

The equations for the gyrotropic pressure components involve

b̂ · (∇ · qG
r ) · b̂ = ∇ · (b̂ q‖r)− 2q⊥r∇ · b̂ (A.7)

1
2

(
tr(∇ · qG

r )− b̂ · (∇ · qG
r ) · b̂

)
= ∇ · (b̂ q⊥r) + q⊥r∇ · b̂, (A.8)

together with the contribution of the non-gyrotropic heat fluxes to the gyrotropic part of∇ · qr that we denote

(∇ · qNG
r )G. In terms of diamagnetic drifts of each particle speciesud,r =

c

nq|b|2 b×∇ · pr and of the current

j =
c

4π
∇× b, we infer a closure approximation in the form

(∇ · qNG
e )G = 2∇⊥ · [p⊥e(ud,e − j

qn
)](I − b̂⊗ b̂) +∇⊥ · [p‖e(ud,e − j

qn
)]b̂⊗ b̂ (A.9)

(∇ · qNG
p )G = 2∇⊥ · [p‖pud,p]b̂⊗ b̂. (A.10)

For the gyrotropic heat fluxes, we define

q′‖r
vth,rp

(0)
‖r

=
q‖r

vth,rp
(0)
‖r
− 3

(v2
∆e + v2

A

v2
A

)(Ωp

Ωr
− 1

) j‖
nqvth,r

, (A.11)

q′⊥r

vth,rp
(0)
⊥r

=
q⊥r

vth,rp
(0)
⊥r

+
[(

1 +
v2
∆e + v2

∆p

v2
A

)(Ωp

Ωr
+ 1

)
− v2

∆p

v2
A

+
2v2

∆r − 3v2
th,r

v2
A

Ωp

Ωr

] j‖
nqvth,r

, (A.12)

that obey

( d

dt
+

vth,r√
8
π (1− 3π

8 )
H∇‖

) q′‖r
vth,rp

(0)
‖r

=
1

1− 3π
8

vth,r∇‖
T‖r
T

(0)
‖r

(A.13)

(
d

dt
−

√
π

2
vth,rH∇‖

)
q′⊥r

vth,rp
(0)
⊥r

= vth,r∇‖



(
1− T

(0)
⊥r

T
(0)
‖r

) |b|
B0

− T⊥r

T
(0)
⊥r

+ 3
√

π

2
v2
th,r

v2
A

Ωp

Ωr
H j‖

nqvth,r


 .(A.14)

wherev2
A =

B2
0

4πρ(0)
andv2

∆r =
p
(0)
⊥r − p

(0)
‖r

ρ(0)
.

Furthermore, using the solvability conditions provided by the equations for the gyrotropic pressures, one has

πr × b̂− b̂× πr = kr, (A.15)
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where the overline denotes the projection on the subspace spanned by the tensors(I− b̂⊗ b̂) and b̂⊗ b̂, and
wherekr can be decomposed into the sum of a contribution

κr =
1
Ωr

B0

|b|
[dpG

r

dt
+ (∇ · u)pG

r +∇ · qr + (pG
r · ∇u)S

]
(A.16)

involving the gyrotropic pressures and the heat fluxes, and of a term linear inπr

L(πr) =
1
Ωr

B0

|b|
[dπr

dt
+ (∇ · u)πr + (πr · ∇u)S

]
. (A.17)

It is then convenient to split the non-gyrotropic pressure asπr = πr,1 + πr,2 with

πr,1 × b̂− b̂× πr,1 = κr (A.18)

πr,2 × b̂− b̂× πr,2 = L(πr,1) + L(πr,2). (A.19)

In a weakly nonlinear regime, the quantityL(πr) is of higher order thanπr, which enables one to neglect
L(πr,2) in Eq. (A.19).

In some situations, the contributionπr,1 is sufficient and can even be simplified by approximatingb̂ by the unit
vectorẑ along the ambient magnetic field. Neglecting the contribution of the heat flux divergence, this leads to
defineπ

[1]
r by the usual gyro-viscous tensor (Braginskii, 1965; Yajima, 1966)

π[1]
p xx = −π[1]

p yy = − p⊥p

2Ωp
(∂yux + ∂xuy) (A.20)

π[1]
p zz = 0 (A.21)

π[1]
p xy = π[1]

p yx = − p⊥p

2Ωp
(∂yuy − ∂xux) (A.22)

π[1]
p yz = π[1]

p zy =
1
Ωp

[2p‖p∂zux + p⊥p(∂xuz − ∂zux)] (A.23)

π[1]
p xz = π[1]

p zx = − 1
Ωp

[2p‖p∂zuy + p⊥p(∂yuz − ∂zuy)], (A.24)

here given for the protons, the electron contribution being negligible due to the large mass ratio.

The next correctionπ[2]
p originates from terms neglected in Eq.(A.18), together with the dominant contributions

in Eq. (A.19). It is estimated in Passot and Sulem (2004b) and appears to be usually dominated by∂tπ
[1]
p .
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tosonic solitons detected by the Cluster spacecraft,Phys. Rev. Lett., 90, 085002-1–085002-4, 2003.

Treumann, R.A. and Baumjohann, W.,Advanced Space Plasma Physics, Imperial College Press 1997.
Yajima, N., The effect of finite ion Larmor radius on the propagation of magnetoacoustic waves,Prog. Theor.

Phys.36, 1-16, 1966.
Yoon, P.H., Quasi-linear evolution of Alfvén -ion-cyclotron and mirror instabilities driven by ion temperature

anisotropy,Phys. Fluids B, 4, 3627-3637, 1992.


