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A Hall Landau-fluid model where the fluid hierarchy is closed by nonlocal dynamical equations for
the heat fluxes is constructed, based on a weakly nonlinear description of long parallel Alfvén waves
in a collisionless plasma. This model which is shown to accurately reproduce the above asymptotic
regime, can be viewed as a first step towards the simulation of dispersive Alfvén wave turbulence
with a realistic dissipation.
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I. INTRODUCTION

In the companion paper1 (hereafter referred to as Paper I), a reductive perturbative expansion of the Vlasov-
Maxwell equations led to a closed system of equations for the dynamics of long Alfvén wave trains propagating along
a strong ambient magnetic field in a collisionless plasma. This analysis revisited an early work by Rogister2 that was
restricted to localized pulses, and provided an extension to Alfvén wave trains. An interesting point is that Rogister’s
long-wave model, now referred to as the kinetic derivative nonlinear Schrödinger equation (KDNLS)3 was reproduced
by Mjølhus and Wyller4 who performed a long-wave expansion on the Hall-MHD equations including finite Larmor
radius corrections5 and supplemented by a perturbative kinetic computation of the gyrotropic pressure components
based on the guiding center approximation. This reductive perturbative expansion that can be viewed as providing
an exact closure of the fluid hierarchy including Landau damping is however specific to the dynamics of unidirectional
long Alfvén waves.

Semi-heuristic closures were proposed at the level of the heat flux or higher order moments, incorporating linear
Landau damping (but not particle trapping).6 These Landau-fluid models were extended to magnetohydrodynamics
by Snyder, Hammett and Dorland7 (hereafter referred to as SHD) where the analysis is based on the guiding center
approximation. The aim of the present paper is to bridge the gap between such models and the asymptotically exact
closures provided by a long-wave reductive perturbative expansion. Section II describes the (unclosed) hierarchy
of fluid equations that governs the plasma dynamics when finite Larmor radius corrections and the Hall effect are
retained. Section III discusses the multidimensional kinetic derivative nonlinear Schr̈odinger equations derived in
Paper I by means of a reductive perturbative expansion of the Vlasov-Maxwell equations, and provides additional
relations between the moments that will be useful in the construction of Landau-fluid closures. Section IV revisits the
closure analysis of the fluid hierarchy presented by SHD. By extrapolating relations that are exact in the long-wave
asymptotics by means of algebraic fits of the plasma response function, it provides a simpler description of the heat
flux dynamics, while keeping the same accuracy. Section V demonstrates that the resulting Hall-Landau fluid model
provides a very accurate description of the nonlinear dynamics of long dispersive Alfvén waves. We conclude that this
model should provide an efficient tool for realistic simulations of dispersive Alfvén wave turbulence.

II. FLUID EQUATIONS

Starting with the Vlasov-Maxwell equations and deriving the equations satisfied by the successive moments
of the distribution function (see paper I for a precise definition of the notations), one classically derives for
each species an exact hierarchy of fluid equations for the density ρr = mrnr

∫
frd

3v, the hydrodynamic veloc-
ity ur =

∫
vfrd

3v/
∫

frd
3v, the pressure tensor Pr = mrnr

∫
(v − ur) ⊗ (v − ur)frd

3v and the heat flux tensor
Qr = mrnr

∫
(v − ur)⊗ (v − ur)⊗ (v − ur)frd

3v, in the form

∂tρr +∇ · (urρr) = 0 (1)

∂tur + ur · ∇ur +
1
ρr
∇ · Pr − qr

mr
(e +

1
c
ur × b) = 0 (2)

∂tPr +∇ · (urPr + Qr) + 2
[
Pr · ∇ur +

qr

mrc
b× Pr

]S
= 0 (3)
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where [·]S holds for the symmetric part of the corresponding matrix.
When concentrating on large spatio-temporal scales compared to the gyration parameters of the particles9, one can

consider the limit Ωr =
qrB0

mrc
→∞ (where B0 is the amplitude of the ambient field). This procedure is equivalent

to first taking this limit at the level of the Vlasov equation to derive the equation governing the guiding center
distribution function and then constructing the corresponding moment hierarchy.8 In this limit b × PSr must vanish
to leading order. Expanding the pressure tensor in the form Pr = P 0

r + P
(1)
r + · · ·, the above condition implies that

P
(0)
r has the gyrotropic form

P (0)
r = p⊥r(I − b̂⊗ b̂) + p‖r b̂⊗ b̂ (4)

where I is the identity matrix, b̂ the unit vector along the local magnetic field b. The coefficients p⊥r and p‖r are the
transverse and parallel gyrotropic pressures associated to species r.

At the next order

∇ ·Q(0)
r + LP (0)

r = P (1)
r × b− b× P (1)

r (5)

where L denotes a linear operator. The solvability of this equation for P
(1)
r requires that the left-hand-side obeys the

two conditions: (i) its trace vanishes; (ii) its contraction with b̂ on the right and left sides also vanishes. Denoting by
q‖r and q⊥r the parallel and perpendicular components (relatively to the local magnetic field) of the gyrotropic heat
flux tensor

Q
(0)
ijk,r = q‖r b̂ib̂j b̂k + q⊥r(δij b̂k + δik b̂j + δjk b̂i − 3b̂ib̂j b̂k), (6)

one gets7

∂tp‖r +∇ · (ur p‖r) +∇ · (̂b q‖r) + 2p‖r b̂ · ∇ur · b̂− 2q⊥r∇ · b̂ = 0, (7)

∂tp⊥r +∇ · (ur p⊥r) +∇ · (̂b q⊥r) + p⊥r∇ · ur − p⊥r b̂ · ∇ur · b̂ + q⊥r∇ · b̂ = 0. (8)

At this step, the fluid system is unclosed, the heat flux components obeying dynamical equations that involve fourth-
order moments.7

III. DYNAMICS OF LONG-ALFVÉN-WAVE TRAINS

A. The reductive perturbation expansion

As already mentioned, the closure problem faced when deriving the moment hierarchy disappears when the analysis
is restricted to the dynamics of long Alfvén waves. Indeed, the long-wave reductive perturbative expansion performed
on Paper I led to a closed system of equations for the leading order dynamics of the transverse magnetic field εb

(0)
⊥ and

the fluctuating longitudinal magnetic disturbance ε2b
(1)
‖ , in terms of the stretched longitudinal variable ξ = ε2(x−λt),

of the transverse ones η = ε3y and ζ = ε3z, and of the slow time τ = ε4t, in the form

(
∂τ + 〈U〉∂ξ

)
b
(0)
⊥ + ∂ξ

( P̃ b
(0)
⊥

2λρ(0)

)
− B0

2λρ(0)
∇⊥P̃ + δ ∂ξξ(x̂× b

(0)
⊥ ) = 0 (9)

ρ(0)∂τ 〈U〉 = c1

(
∇⊥ ·

〈
P̃

b
(0)
⊥
B0

〉
− 〈ÃK∂ξÃ〉

)
− c2 〈〈ÃK∂ξÃ〉〉, (10)

∂ξ b̃
(1)
‖ +∇⊥ · b(0)

⊥ = 0. (11)

Here P̃ =
(

B2
0

4π + 2p
(0)
⊥ + K)Ã refers to the leading order perturbation of the perpendicular total pressure (magnetic

and kinetic). It involves the fluctuating magnetic field amplitude perturbation Ã =
b̃
(1)
‖
B0

+
˜|b(0)⊥ |2
2B2

0
and the operator

K = N −M2L−1, where L =
∑

r Lr, M =
∑

r Mr and N =
∑

r Nr with

Lr = 2π
q2
rnr

mr

∫ ∞

0

d(
v2
⊥
2

)Gr , Mr = 2πqrnr

∫ ∞

0

d(
v2
⊥
2

)
v2
⊥
2
Gr , Nr = 2πmrnr

∫ ∞

0

d(
v2
⊥
2

)
v4
⊥
4
Gr. (12)
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Here

Gr = P
∫

1
v‖ − λ

∂F
(0)
r

∂v‖
dv‖ + π

∂F
(0)
r

∂v‖

∣∣∣
v‖=λ

Hξ, (13)

where Hξ{S} denotes the Hilbert transform with respect to ξ. The Alfvén wave velocity λ is defined by λ2ρ(0) =
( |B0|2

4π +p
(0)
⊥ −p

(0)
‖ ) where the density ρ(0) and the pressure components p

(0)
⊥ and p

(0)
‖ at equilibrium are constructed from

the velocity distribution function F (0)(v⊥, v‖) assumed rotationally symmetric around the direction of the ambient
field B0x̂ and symmetric relatively to forward and backward velocities along this direction, thus excluding the presence
of equilibrium drifts.10,11 Here simple brackets 〈·〉 define averaging over the ξ variable, while double brackets 〈〈·〉〉
refer to the averaging in the full spatial domain. Furthermore, the constants

c1 =
1

2 + β⊥ − β‖

(12 + 18β⊥ + 5β2
⊥

8(1 + β⊥)

)
, c2 =

1
2 + β⊥ − β‖

( (2 + β⊥)2

8(1 + β⊥)

)
(14)

involve the ratios β‖ = 8πp
(0)
‖ /B2

0 and β⊥ = 8πp
(0)
⊥ /B2

0 of parallel or transverse to magnetic pressure at equilibrium
respectively.

The mean field 〈U〉 results from the combination

〈U〉 = 〈u(1)
‖ 〉+

λ

2B0
〈b(1)
‖ 〉+

1
λρ(0)

(p(0)
‖ − p

(0)
⊥ )〈A〉+

1
2λρ(0)

(〈p(1)
⊥ 〉 − 〈p(1)

‖ 〉) (15)

where the various terms are prescribed by the equations

∂τ 〈u(1)
‖ 〉 =

1
ρ(0)B0

∇⊥ · 〈P̃ b
(0)
⊥ 〉 (16)

〈p(1)
⊥ 〉+

B2
0

4π
〈A〉 = Γ(τ) (17)

d

dτ
Γ(τ) = − 1

2λρ(0)

(B2
0

4π
+ p

(0)
⊥

)
〈〈ÃK∂ξÃ〉〉 (18)

∂τ

( 〈p(1)
⊥ 〉

p
(0)
⊥

− 〈ρ(1)〉
ρ(0)

− 〈A〉
)

= 0 (19)

∂τ

( 〈p(1)
‖ 〉ξ
p
(0)
‖

− 3
〈ρ(1)〉ξ
ρ(0)

+ 2〈A〉
)

=
2λ

p
(0)
‖
〈ÃK∂ξÃ〉. (20)

One also has the fluctuating quantities

p̃
(1)
⊥ = (2p

(0)
⊥ +K)Ã (21)

p̃
(1)
‖ = (p(0)

‖ − p
(0)
⊥ )Ã + λ2(ρ̃(1) − ρ(0)Ã) (22)

ρ̃(1) = (ρ(0) +O −PL−1M)Ã. (23)

where O =
∑

r Or and P =
∑

r Pr with

Or = 2πmrnr

∫ ∞

0

v2
⊥
2
Grd(

v2
⊥
2

) , Pr = 2πqrnr

∫ ∞

0

Grd(
v2
⊥
2

). (24)

Furthermore, the (O(ε2)) leading order fluctuating contribution to the perpendicular and parallel heat flux compo-
nents are given by

q̃
(1)
⊥ = λp

(0)
⊥

(
p̃
(1)
⊥

p
(0)
⊥

− ρ̃(1)

ρ(0)
− Ã

)
(25)

q̃
(1)
‖ = λp

(0)
‖


 p̃

(1)
‖

p
(0)
‖

− 3
ρ̃(1)

ρ(0)
+ 2Ã


 . (26)
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B. Further expressions of the moments

The density, pressures and heat fluxes are given in Section III.A in terms of the magnetic perturbations only, as a
consequence of the use of the quasi-neutrality condition that leads to express the electric field along the local magnetic
field in terms of the magnetic perturbation [see eq. (49) of Paper I]. Such a relation is exact in the long-Alfvén wave
asymptotics but appears too restrictive in more general regimes involving for example the propagation of ion-acoustic
waves. One thus comes back to the distribution function given by eqs. (39)-(41) of Paper I and computes for each
species r the fluctuating parts of the moments in the form (the tildes are hereafter suppressed in order to simplify the
writing)

ρ(1)
r = ρ(0)

r A +OrA + Prϕ (27)

p
(1)
⊥r = 2p

(0)
⊥rA +NrA +Mrϕ (28)

p
(1)
‖r = (p(0)

‖r − p
(0)
⊥r)A + λ2OrA + λ2Prϕ− qrnrϕ (29)

q
(1)
⊥r = λ

(
p
(0)
⊥rA− p

(0)
⊥r

ρ(0)
ρ(1) +NrA +Mrϕ

)
(30)

q
(1)
‖r = λ

(
3p

(0)
‖r (A− ρ(1)

ρ(0)
)− p

(0)
⊥rA + λ2(ρ(1)

r − ρ(0)
r A)− qrnrϕ

)
. (31)

At this step, it is convenient to eliminate the electric potential ϕ by algebraic combinations rather than by using the
quasi-neutrality condition. One gets

p
(1)
⊥r = (2p

(0)
⊥r +Nr)A +MrP−1

r (ρ(1)
r − ρ(0)

r A−OrA) (32)

p
(1)
‖r = (p(0)

‖r − p
(0)
⊥r + λ2Or)A + (λ2 − qrnrP−1

r )(ρ(1)
r − ρ(0)

r A−OrA) (33)

q
(1)
⊥r = λ

[
MrP−1

r ρ(1)
r − p⊥r(0)

ρ(1)

ρ(0)
+

(
p
(0)
⊥r +Nr − ρ(0)

r MrP−1
r −MrP−1

r Or

)
A

]
(34)

q
(1)
‖r = λ

[(
λ2 − qrnrP−1

r

)
ρ(1)

r − 3p
(0)
‖r

ρ(1)

ρ(0)

+
(
3p

(0)
‖r − p

(0)
⊥r + λ2Or − (λ2 − qrnrP−1

r )(ρ(0)
r +Or)

)
A

]
(35)

C. The case of a bi-maxwellian equilibrium distribution

It is possible to simplify the above general expressions for the moments by assuming that the plasma contains
electrons and only one species of ions (with Z = 1) with bi-maxwellian equilibrium distribution17 functions

F (0)
r =

1
(2π)3/2

m
3/2
r

T
(0)
⊥r T

(0)1/2
‖r

exp
{
−

( mr

2T
(0)
‖r

v2
‖ +

mr

2T
(0)
⊥r

v2
⊥

)}
. (36)

Using the quasi-neutrality conditions that prescribe nr = n(0) and ρ
(1)
r = mrn

(1), one obtains

Lr = −n(0)q2
r

1

T
(0)
‖r
Wr , Mr = −n(0)qr

T
(0)
⊥r

T
(0)
‖r
Wr , Nr = −2n(0) T

(0)2
⊥r

T
(0)
‖r

Wr , (37)

Or = −n(0)mr
T

(0)
⊥r

T
(0)
‖r
Wr , Pr = −n(0)qr

1

T
(0)
‖r
Wr (38)

where, normalizing the propagation velocity of the wave by the the thermal velocity vth,r =
√

T
(0)
‖r /mr in the form

cr = λ/vth,r, one writes

Wr ≡ W(cr) =
1√
2π

P
∫

ζe−ζ2/2

ζ − cr
dζ +

√
π

2
cre

−c2
r/2Hξ, (39)
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or16

W(cr) = 1− cre
− c2r

2

∫
e

ζ2

2 dζ +
√

π

2
cre

−c2
r/2Hξ. (40)

This function is related to the plasma response function R used by SHD by W(X) = R(X/
√

2).
One has

T
(1)
‖r

T
(0)
‖r

≡
p
(1)
‖r

p
(0)
‖r

− n(1)

n(0)
= (c2

r − 1 +W−1
r )

(n(1)

n(0)
−A

)
(41)

T
(1)
⊥r

T
(0)
⊥r

≡ p
(1)
⊥r

p
(0)
⊥r

− n(1)

n(0)
=

(
1− T

(0)
⊥r

T
(0)
‖r
Wr

)
A (42)

and

q
(1)
‖r

vth,rp
(0)
‖r

= cr(c2
r − 3 +W−1

r )
(n(1)

n(0)
−A

)
(43)

q
(1)
⊥r

vth,rp
(0)
⊥r

= −T
(0)
⊥r

T
(0)
‖r

crWrA, (44)

or

q
(1)
‖r

vth,rp
(0)
‖r

=
cr(c2

r − 3 +W−1
r )

c2
r − 1 +W−1

r

T
(1)
‖r

T
(0)
‖r

(45)

q
(1)
⊥r

vth,rp
(0)
⊥r

= −T
(0)
⊥r

T
(0)
‖r

crWr

1− T
(0)
⊥r

T
(0)
‖r

Wr

T
(1)
⊥r

T
(0)
⊥r

. (46)

The formulae for the pressures are consistent with those of Quataert, Dorland and Hammett13 where the parameter
cr is defined for monochromatic perturbations as cr = ω

k
1

vth,r
. They also permit one to calculate generalized polytropic

indices.14

In the nearly isothermal limit (cr ¿ 1), Wr ≈ 1 − c2
r +

√
π
2 crHξ and one gets q

(1)
‖r = −

√
8
π vth,rn

(0)HξT
(1)
‖r

independent of cr and q
(1)
⊥r ¿ 1. Differently, in the adiabatic limit (cr À 1), Wr ≈ −1/c2

r − 3/c4
r and the heat fluxes

are negligible.

IV. TOWARDS A LANDAU FLUID CLOSURE

A. Heat flux closures

The expressions for the heat fluxes obtained in Section 3, that involve Alfvén wave velocity through the parameter
cr, are specific of one-directional long Alfvén waves propagating along an ambient magnetic field. Some heuristic
transformations are necessary in order to extend the closure formulae to more general situations. It is thus appropriate
at this step to come back to the original variables. In order to derive a closure in a context where all types of waves
coexist, the parameter cr should not be interpreted as the ratio of the (signed) Alfvén speed to the thermal velocity
of species r, but should more generally be viewed as the ratio − 1

vth,r
∂t∂

−1
x . Furthermore, eqs. (45)-(46) for the heat

fluxes, which involve complicated (and even non-analytic) functions of cr, cannot directly be used to close the fluid
hierarchy. Simple formulae can nevertheless be obtained if one prescribes a linear or homographic dependence on cr.
Noting that the plasma response function has the form W(cr) = A(|cr|) + crB(|cr|)H, where the functions A and B
do not depend on the sign of cr, we propose to take A and B constant. Here H is the Hilbert transform with respect
to x. Plugging this ansatz in eqs. (45)-(46), the parallel and perpendicular heat fluxes take the form

q
(1)
‖r

vth,rp
(0)
‖r

= F‖(−
1

vth,r
∂t∂

−1
x )

T
(1)
‖r

T
(0)
‖r

(47)
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q
(1)
⊥r

vth,rp
(0)
⊥r

= F1
⊥(− 1

vth,r
∂t∂

−1
x )

T
(1)
⊥r

T
(0)
⊥r

+ F2
⊥(− 1

vth,r
∂t∂

−1
x )A (48)

where in the homographic approximation

F‖(X) = (Q3
‖ + Q4

‖XH)−1(Q1
‖X + Q2

‖H) (49)

F1
⊥(X) = (Q3

⊥ + Q4
⊥XH)−1(Q1

⊥X + Q2
⊥H) (50)

F2
⊥(X) = Q5

⊥X + Q6
⊥H. (51)

The linear fit corresponds to taking Q3
‖ = Q3

⊥ = 1 and Q4
‖ = Q4

⊥ = 0.
The ansatz for the parallel heat flux results directly from eq. (45). The expression for the perpendicular heat flux

is suggested by both eqs. (44) and (46) and the constraint that q
(1)
⊥r should vanish in the limit cr → 0. This functional

form is however not unique and using the same number of free parameters, an alternative form is for example

F1
⊥(X) = (Q

′3
⊥ + Q

′4
⊥XH)−1(Q

′1
⊥X + Q

′2
⊥H) (52)

F2
⊥(X) = (Q

′3
⊥ + Q

′4
⊥XH)−1(Q

′5
⊥X + Q

′6
⊥H). (53)

The coefficients Qi
‖ and Qi

⊥ (or Q
′i
⊥) are chosen in a way that ensures the correct asymptotic behavior of the heat

fluxes in both the isothermal (cr ¿ 1) and adiabatic (cr À 1) limits. For the parallel heat flux, the fit is made
between eqs. (47) and (45). For the perpendicular heat flux, it is first necessary to express temperature fluctuations
in terms of magnetic perturbations in eq. (48) by means of eq. (42). The fit is then performed by comparison with
eq. (44).

This procedure results in approximating the response function of the plasma in eq. (45) by

W‖(X) =
F‖(X)−X

(1−X2)F‖(X) + X(X2 − 3)
(54)

and in eq. (46) by

W⊥(X) =
T

(0)
‖r

T
(0)
⊥r

F1
⊥(X) + F2

⊥(X)
F1
⊥(X)−X

. (55)

In the case where F‖ is taken linear in X, one obtains Q1
‖ = 0 and Q2

‖ = −
√

8
π

, leading to the isothermal limit

mentioned in Section III.C

q
(1)
‖r

vth,rp
(0)
‖r

= −
√

8
π
H

T
(1)
‖r

T
(0)
‖r

. (56)

In this case W‖ reduces to the three-pole model W3 of W, as given by eq. (43) of SHD.

When F‖ is taken homographic in X, one has Q1
‖ = 0, Q2

‖ = −
√

8
π , Q3

‖ = 1, Q4
‖ = −

√
8
π ( 3π

8 − 1) which leads for
W‖, to the four-pole approximation W4. The parallel heat flux is now determined by the partial differential equation


 d

dt
+

vth,r√
8
π (1− 3π

8 )
H∂x


 q

(1)
‖r

vth,rp
(0)
‖

=
1

1− 3π
8

vth,r∂x

T
(1)
‖r

T
(0)
‖r

(57)

where, to restore Galilean invariance, convective derivatives have been substituted to partial time derivatives. In the
isothermal limit where the time derivative is neglected, eq. (57) reduces to eq. (56).

Concerning the transverse heat flux q
(1)
⊥r , the linear form of F1

⊥ leads to Q1
⊥ = Q4

⊥ = Q5
⊥ = 0, Q2

⊥ = −
√

2
π and

Q6
⊥ =

√
2
π

(
1 − T

(0)
⊥r

T
(0)
‖r

)
. In this case the approximate response function W⊥ reduces to the one-pole model W1 of W.

The closure for the perpendicular heat flux then reads

q
(1)
⊥r

vth,rp
(0)
⊥r

= −
√

2
π
HT

(1)
⊥r

T
(0)
⊥r

+

√
2
π

(1− T
(0)
⊥r

T
(0)
‖r

)HA, (58)
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that reproduces eq. (40) of SHD. In the case where F1
⊥ is homographic in X, one has Q1

⊥ = 1 +
√

π
2 f , Q2

⊥ = Q4
⊥ = f ,

Q3
⊥ = 1, Q5

⊥ = 0, Q6
⊥ = (T

(0)
⊥r

T
(0)
‖r

− 1)f , with f = −
√

8
π

(
1 +

√
1 + 8

π (T
(0)
⊥r

T
(0)
‖r

− 1)
)−1

. When f is complex of the form

f1 + if2, it should be understood as f1 + f2H. It follows that q
(1)
⊥ obeys

(
d

dt
+

vth,r

f
H∂x

)
q
(1)
⊥r

vth,rp
(0)
⊥r

=
(T

(0)
⊥r

T
(0)
‖r

− 1
)
f

d

dt
H

(
A− T

(1)
⊥r

T
(0)
⊥r

)
+ vth,r∂x




(
1− T

(0)
⊥r

T
(0)
‖r

)
A− T

(1)
⊥r

T
(0)
⊥r


 . (59)

A simpler equation is obtained when using the ansätze (52)-(53). One has Q
′1
⊥ = Q

′5
⊥ = 0, Q

′2
⊥ = Q

′4
⊥ = −

√
2
π and

Q
′6
⊥ =

√
2
π (1− T

(0)
⊥r

T
(0)
‖r

). Equation (59) is then replaced by

(
d

dt
−

√
π

2
vth,rH∂x

)
q
(1)
⊥r

vth,rp
(0)
⊥r

= vth,r∂x




(
1− T

(0)
⊥r

T
(0)
‖r

)
A− T

(1)
⊥r

T
(0)
⊥r


 (60)

which turns out to be much simpler.
In both approaches the approximate response function W⊥ reduces to the two-pole model W2 of W. Moreover, the

isothermal limit of eq. (60) reduces to the perpendicular heat flux given by eq. (58).
The refined “3+1” Landau closure (57) and (60) reproduce the same response functions as the “4+2” closure of

SHD. These equations identify with the linearized heat flux equations (32)-(35) of SHD when prescribing bi-Maxwellian
values for the fourth-order moments.

B. The Hall Landau-fluid model

The quasi-neutrality condition implying a simple relation between the velocities of the ions and the electrons, it
is convenient to consider the density ρ =

∑
r ρr = n

∑
r mr and the plasma velocity u = 1

ρ

∑
r ρrur. Considering as

above a unique ion species with Z = 1, one has at dominant order u = ui = ue
20 and thus

∂tρ +∇ · (uρ) = 0 (61)

ρ (∂tu + u · ∇u) +∇ · (P (0) + Π)− 1
c
j × b = 0, (62)

where j =
c

4π
∇× b is the current vector, P (0) =

∑
r P

(0)
r and where, to leading order in Ω−1

i , the finite Lamor radius

corrections (FLR) Π are given by5

Πyy = −Πzz = − p⊥i

2Ωi
(∂yuz + ∂zuy) (63)

Πxx = 0 (64)

Πyz = Πzy =
p⊥i

2Ωi
(∂yuy − ∂zuz) (65)

Πzx = Πxz = − 1
Ωi

[p⊥i(∂xuy − ∂yux)− 2p‖i∂xuy] (66)

Πxy = Πyx =
1
Ωi

[p⊥i(∂xuz − ∂zux)− 2p‖i∂xuz]. (67)

Such a simple description of the FLR corrections are sufficient when dealing with parallel propagating waves. Cor-
rective terms have nevertheless to be retained in cases such as obliquely propagating Alfvén waves for which the
dispersion coefficient scales like Ω−2

i .18,19
Furthermore, the parallel and perpendicular components of the gyrotropic pressure of each particle species obey

∂tp‖r +∇ · (u p‖r) +∇ · (̂b q‖r) + 2p‖r b̂ · ∇u · b̂− 2q⊥r∇ · b̂ = 0, (68)

∂tp⊥r +∇ · (u p⊥r) +∇ · (̂b q⊥r) + p⊥r∇ · u− p⊥r b̂ · ∇u · b̂ + q⊥r∇ · b̂ = 0. (69)
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The induction equation including the Hall-effect is

∂tb−∇× (u× b) = −mic

qi
∇×

[ 1
4πρ

(∇× b)× b− 1
ρ
∇ · P (0)

e

]
. (70)

This system is closed by prescribing that the heat fluxes evolve according to
( d

dt
+

vth,r√
8
π (1− 3π

8 )
H∂x

) q‖r

vth,rp
(0)
‖

=
1

1− 3π
8

vth,r∂x

T‖r

T
(0)
‖r

(71)

(
d

dt
−

√
π

2
vth,rH∂x

)
q⊥r

vth,rp
(0)
⊥r

= vth,r∂x




(
1− T

(0)
⊥r

T
(0)
‖r

) |b|
B0

− T⊥r

T
(0)
⊥r


 , (72)

the temperatures being given by p‖r = nT‖r and p⊥r = nT⊥r.
This formulation where Landau damping is computed by integration along the ambient field is restricted to weakly

nonlinear dynamics such as for example, that described by long Alfvén wave asymptotics. The extension of this model
to more nonlinear regimes would require integration along perturbed field lines12 and also the inclusion of stronger
parallel nonlinearities as mentioned by SHD. Furthermore, the above formulation assumes that the Hall term does
not arise at the level of the closure equations. This prescription, that is justified for parallel Alfvén waves and also
for oblique magnetosonic waves, can become questionable in the case of oblique Alfvén waves19

V. LANDAU-FLUID DESCRIPTION OF LONG DISPERSIVE ALFVÉN WAVES

The long wave asymptotics performed by Mjølhus and Wyller4 on eqs. (61) and (62), (63)-(67) and (70) leads to eq.
(9) without mean fields, where in P̃ = B2

0
4π Ã + p̃

(1)
⊥ the transverse pressure p̃

(1)
⊥ is determined by these authors using a

kinetic approach based on the guiding center equation. Note that the dispersion term in eq. (9) originates from both
the Hall term and the electron pressure gradient included in the induction equation and from finite Larmor radius
corrections to the gyrotropic pressure. An alternative approach consisting in a long wave asymptotics performed
directly on eqs. (1)-(3) is used by Verheest.11

In this section we show that a reductive perturbation expansion on the above Hall Landau-fluid model is able to
accurately reproduce the full KDNLS system (9), (10) and (11) derived from the Vlasov-Maxwell equations, with no
reference to the kinetic theory. At this level one only needs to calculate the fluctuating transverse pressure and the
equations for the mean fields.

By eliminating u using eq. (61) and (70),9 it is convenient to rewrite eqs. (68)-(69) in the form of CGL (for
Chew-Goldberger-Low) equations8 including heat fluxes13 together with Hall effect and electron pressure gradient.15
They read

ρ|b| d
dt

(
p⊥r

ρ|b|
)

= −∇ · (q⊥r b̂)− q⊥r∇ · b̂ + p⊥rb · [∇× mic

ρqi
(j × b−∇P (0)

e )] (73)

ρ3

|b|2
d

dt

(
p‖r|b|2

ρ3

)
= −∇ · (q‖r b̂) + 2q⊥r∇ · b̂− 2p‖rb ·

[
∇× mic

ρqi
(j × b−∇ · P (0)

e )
]
. (74)

When plugging the rescaled variables in these equations, one notices that the Hall and electron pressure corrections
are negligible in the present asymptotics. When considering the fluctuating contributions, the time derivative is, to
leading order, replaced by −λ∂ξ, the divergence ∇· b̂ reduces to −ε4∂ξA and the right-hand-side of eq. (73) reduces to
leading order to −b̂ · ∇ ≈ −ε2∂xiq̃⊥. This reproduces eq. (25) for the fluctuating transverse heat flux q̃

(1)
⊥ . A similar

argument applied to eq. (74) for the parallel pressure reproduces eq. (26) for q̃
(1)
‖ .

From expansion to leading order of eq. (71), it is easy to see, by carrying backwards the closure procedure, that
the parallel heat flux fluctuation q̃

(1)
‖ predicted by the Hall Landau-fluid model is given by eq. (45) where W should

be replaced by W4. Similarly the corresponding perpendicular heat flux fluctuation q̃
(1)
⊥ is given by eq. (46) with W

replaced by W2.
Plugging these heat fluxes in eqs. (25) and (26) one gets

p̃
(1)
⊥ = p

(0)
⊥

ñ(1)

n(0)
+

∑
r

p
(0)
⊥r

(
1− T

(0)
⊥r

T
(0)
‖r
W2(cr)

)
Ã (75)



9

p̃
(1)
‖ =

∑
r

p
(0)
‖r

(
c2
r +W−1

4 (cr)
) ñ(1)

n(0)
−

∑
r

p
(0)
‖r

(
c2
r − 1 +W−1

4 (cr)
)
Ã. (76)

Furthermore, the mass, longitudinal velocity and induction equations lead to

ũ
(1)
‖
λ

+
b̃
(1)
x

B0
− ñ(1)

n(0)
= 0 (77)

−λρ(0)ũ
(1)
‖ + λ2ρ(0) |̃b|2

2B2
0

+ p̃
(1)
‖ + (p(0)

⊥ − p
(0)
‖ )Ã = 0. (78)

Equations (76), (77) and (78) yield

ñ(1)

n(0)
=

(
1− p

(0)
⊥∑

r p
(0)
‖r (c2

r +W−1
4 (cr))− λ2ρ(0)

)
Ã (79)

Substituting in eq. (75) and noting that λ2ρ(0) =
∑

r c2
rp

(0)
‖r , one gets

p̃
(1)
⊥ = 2p

(0)
⊥ Ã−

( p
(0)2
⊥∑

r p
(0)
‖r W−1

4 (cr)
+

∑
r

p
(0)
⊥r

T
(0)
⊥r

T
(0)
‖r
W2(cr)

)
Ã (80)

Defining the operators Ls, Ms, Ns with s = 2 or 4 by means of eq. (37) up to the replacement of W by the
corresponding two or three-pole approximation, one gets after some straightforward algebra

p
(0)2
⊥∑

r p
(0)
‖r W−1

4 (cr)
= M2

4L−1
4 − N4

2
(81)

and thus

p̃
(1)
⊥ =

(
2p

(0)
⊥ +

N2 +N4

2
−M2

4L−1
4

)
Ã. (82)

This result provides a substitute for the kinetic computation of the perpendicular pressure fluctuations based on the
guiding center4 or the full Vlasov-Maxwell equations.1,2 The good accuracy of this approximation is visible in Figs.

1 and 2 that display the contributions pR and pI to the transverse pressure
p̃
(1)
⊥

p
(0)
⊥

= −(pR + pIH)Ã versus β−1/2,

where β = T
(0)
‖e /(miλ

2), for various conditions on the temperatures. When all the temperatures are equal (Figs. 1a
and 1b) the curves presented in figures 3 and 4 of SHD are reproduced. Figure 2 reproduces the quasi-singularity
that develops near β = 1 in the regime where the electron temperature strongly exceeds that of the ions. Figure 3
illustrates the influence of an ion temperature anisotropy. In this case, the curve is plotted as a function of β

−1/2
‖p

since β is bounded from above.
We now turn to the determination of the longitudinally averaged quantities. It is convenient to sum eqs. (73)-(74)

over the species before expanding at order ε6 (after expliciting the convective time derivative) and averaging over the
ξ variable. It is noticeable that only the fluctuating part of the heat fluxes, given by eqs. (25)-(26) after summation
over the species, enter these equations since 〈b⊥〉 = 0 and ∇ · b̂ = −∂ξA. After some algebra one gets

∂τ

( 〈p(1)
⊥ 〉

p
(0)
⊥

− 〈ρ(1)〉
ρ(0)

− 〈A〉
)

= 0 (83)

∂τ

( 〈p(1)
‖ 〉

p
(0)
‖

− 3
〈ρ(1)〉ξ
ρ(0)

+ 2〈A〉
)

= − 2λ

p
(0)
‖
〈p̃(1)
⊥ ∂ξÃ〉. (84)

This reproduces exactly eqs. (19) and (20) after substitution of the exact perpendicular fluctuating pressure (22)
which, when starting with the (unclosed) fluid hierarchy, turns out to be the only quantity to be computed in the
long-wave aymptotics by means of the kinetic theory. In the context of the Hall Landau-fluid model, this quantity is
approximated by eq. (82).
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FIG. 1: Contributions pR (top) and pI (bottom) of the perpendicular pressure response versus β−1/2, where β = T‖e/(miλ
2),

for T‖e = T‖i = T⊥e = T⊥i. The solid line refers to the exact (long-wave) kinetic calculation and the thin dashed line to the
Landau-fluid closure. The plasma is constituted of protons and electrons.

From the mass and longitudinal induction equation averaged along the ξ coordinate, one easily gets after using (77)

∂τ
〈ρ(1)〉
ρ(0)

= ∂τ
〈b(1)

x 〉
B0

. (85)

Writing the longitudinal velocity equation at order ε6 and averaging over the ξ variable, one gets

∂τ 〈u‖〉 = ∇⊥ ·
[ λ

B0
〈ũ(1)
‖ b

(0)
⊥ 〉+

1
4πρ(0)

〈̃b(1)
‖ b

(0)
⊥ 〉

+
p
(0)
‖ − p

(0)
⊥

ρ(0)

( 〈b(1)
‖ b

(0)
⊥ 〉

B2
0

+
〈|b(0)
⊥ |2b(0)

⊥ 〉
B3

0

)
− 1

ρ(0)B0
〈(p(1)

‖ − p
(1)
⊥ )b(0

⊥ 〉
]
. (86)

Note that the FLR terms do not contribute. Using (78), one recovers eq. (16).
Equation (17) is obtained when deriving the KDNLS equation and prescribing that a mean transverse magnetic field

is not driven. Finally, proceeding as in paper I, eq. (18) is readily recovered from the already established equations
as a consequence of mass conservation.

We thus conclude that the Hall-Landau fluid model reproduces exactly the long-wave asymptotics performed on the
Vlasov-Maxwell equation, up to the substitution of the fluctuating perpendicular pressure p̃

(1)
⊥ by the approximate

value given by eq. (82).
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FIG. 2: Same as Fig. 1 for isotropic ion and electron temperatures with Te = 8Ti.

VI. CONCLUSION

In this paper we have derived a closed system of equations that can be viewed as a Hall Landau-fluid model, suitable
to describe magnetohydrodynamic waves in a collisionless plasma where the Landau damping is the main dissipation
process. It is derived for a plasma of electrons and one species of Z = 1 ions, with bi-Maxwellian equilibrium
distributions. This model appears as a refined formulation of SHD’s 3+1 Landau closure, that reproduces the same
response functions as the 4+2 closure without involving the full dynamical equations governing the heat fluxes.
Furthermore, the Hall-effect retained in the generalized Ohm’s law makes the Alfvén waves dispersive, permitting
in particular modulational instabilities and wave collapse. Is is demonstrated that this Hall-Landau fluid model
accurately describes the long-wave dynamics of parallel dispersive Alfvén waves. The KDNLS equation derived in
paper I from the full Vlasov-Maxwell equations is exactly reproduced from a long-wave asymptotics performed on the
Hall Landau-fluid model up to an approximation of the plasma response function. This fluid model should provide
an efficient tool to simulate regimes of dispersive Alfvén wave turbulence and estimate the resulting heating of the
plasma. A question concerns the numerical stability of this Hall Landau-fluid model. It is unclear whether a numerical
viscosity is needed in the nonlinear dynamics to prevent formation of arbitrary small scales.
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