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Abstract

A mono-fluid model with Landau damping is presented for strongly magnetized electron-proton

collisionless plasmas whose distribution functions are close to bi-Maxwellians. This description that

includes dynamical equations for the gyrotropic components of the pressure and heat flux tensors,

extends the Landau-fluid model of Snyder, Hammett and Dorland [Phys. Plasmas 4, 3974 (1997)]

by retaining Hall effect and finite Larmor radius corrections. It accurately reproduces the weakly

nonlinear dynamics of dispersive Alfvén waves whose wave lengths are large compared to the ion

inertial length, whatever their direction of propagation, and also the rapid Landau dissipation of

long magnetosonic waves in a warm plasma.

PACS numbers: 52.30.Cv, 52.35.Bj, 52.35.Mw, 52.65.Kj, 94.30.Tz
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I. INTRODUCTION

Both in natural and fusion plasmas, collisions are generally negligible, making the usual

magnetohydrodynamics questionable. On the other hand, in most situations, direct numer-

ical integrations of the Vlasov-Maxwell equations in three space dimensions are beyond the

capabilities of the present day computers when a broad range of scales is involved. The

gyrokinetic description1,2 that averages over the gyrotropic motion of the particles and that

is extensively used for fusion plasmas, reduces the number of independent variables but still

needs an enormous computational strength.

Situations involving a broad range of scales require a formalism that preserves most of the

aspects of a fluid description but includes realistic approximations of the pressure and heat

flux tensors. The effect of wave-particle resonances that provide the dominant dissipation

processes should in particular be retained. In a collisionless plasma, a fluid behavior can only

result from collective constraints, such as the presence of a strong magnetic field. In this case,

Chew, Goldberger, and Low3 first proposed the “double adiabatic laws” or CGL equations for

the parallel and perpendicular gyrotropic pressure components, where all the heat fluxes are

neglected. The conditions of validity of this assumption are rather stringent.4 The onset of

the mirror instability is for example not correctly described5 within this approximation that

requires a phase velocity much larger than the thermal velocity of the particles. Closures

that reproduce linear results from kinetic theory were also proposed but they depend on

the equilibrium state and are often presented in Fourier space, leading to the definition of

effective polytropic indices.6,7 In the context of fusion plasmas, an extensive literature was

devoted during the last decades to the gyrofluid description8,9 based on the evolution of

hydrodynamic moments obtained from the gyrokinetic equations, and thus also written in

a local coordinate system. A hybrid description of low frequency phenomena involving the

coupling of a monofluid description with pressure tensors for ions and electrons prescribed

by gyrokinetic equations was also developed.10

A simplified description more easily amenable to large-scale numerical simulations of a

collisionless plasma permeated by a strong magnetic field was suggested by Hammett and

coworkers in the form of Landau fluids built to account for wave-particle resonance effects

within a MHD framework. The full electromagnetic case is presented by Snyder, Hammett,

and Dorland,11 hereafter referred to as SHD. Hydrodynamic equations for the density and
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velocity of the plasma are obtained by taking moments of the microscopic equations. SHD

start from guiding center equations but an equivalent derivation can be made from the

Vlasov-Maxwell system. The resulting hierarchy must nevertheless be closed and the main

work consists in a proper determination of the pressure tensor associated with each species.

For the sake of simplicity, an electron-proton plasma is considered in a simple geometry

(no curvature drift), with an homogeneous equilibrium state characterized by bi-Maxwellian

distribution functions. In its original presentation, the model is limited to scales large enough

for both Hall effect and finite Larmor radius (FLR) corrections to be totally negligible. As

shown by SHD, this description predicts the correct threshold of the mirror instability. A

generalization is however needed in order to consider dispersive MHD turbulence.

Our goal is thus to develop a simple mono-fluid model able to accurately reproduce the

weakly nonlinear dynamics of most MHD waves, including kinetic Alfvén waves (KAW)

with transverse wavenumber small compared with the inverse proton inertial length. These

waves, characterized by an angle of propagation α such that cos2 α ¿ β (where β denotes

the squared ratio of the ion acoustic to the Alfvén speeds), are supposed to be produced by

the quasi-two-dimensional energy cascade that develops in Alfvén wave turbulence. A sim-

plified model was recently derived12 and benchmarked by direct comparisons with Vlasov-

Maxwell predictions in the limit of long wave-length small-amplitude perturbations. For

parallel Alfvén waves, a reductive perturbative expansion of this model reproduces the ki-

netic derivative nonlinear Schrödinger (KDNLS) equation13–15 (including its extension to

multidimensional wave trains16) derived from the Vlasov-Maxwell equations, up to the re-

placement of the plasma response function by its two- or four-pole Padé approximants. For

magnetosonic waves,17 agreement was obtained with the phase velocity and the Landau

damping given in the literature18 for the regime
me

mp

¿ β ¿ Te

Tp

of adiabatic protons and

isothermal electrons with isotropic temperatures. It however turns out that the description

of oblique and kinetic Alfvén waves requires a more refined description of the finite Lar-

mor radius effects associated with the non-gyrotropic contributions of both the pressure and

heat flux tensors. A first extension17 of this model was presented in the regime of adiabatic

protons and isothermal electrons with small β, that reproduces the classial dispersion and

Landau damping of kinetic Alfvén waves in this regime.18,19 This approach actually involves

a heuristic closure relation for the electron pressure that is here recovered as a limiting case

of a more general Landau fluid model whose derivation is the main object of the present
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paper.

In Section II, the scalings associated with the various MHD waves are explicited and

a mono-fluid description of the plasma is obtained, under conditions consistent with the

weakly nonlinear regime. In order to describe anisotropic situations, the pressure tensor of

each particle species is retained. It includes gyrotropic components that evolve on hydrody-

namic time scales, together with non-gyrotropic ones that rapidly adjust to the variations

of the hydrodynamic quantities (“slaved” dynamics) and are amenable to a perturbative

description (Section III). In Section IV, general closure approximations for the gytrotropic

and non gyrotropic heat fluxes are inferred from the kinetic theory of long oblique Alfvén

waves presented in Appendices A-C. As mentioned above, this regime that retains the ki-

netic effects to leading order, can indeed be viewed as a distinguished limit covering more

general situations. The resulting model and its validation are presented in Section V. A few

conclusions and projects for further developments are briefly presented in the last section.

II. AN ASYMPTOTIC FRAMEWORK FOR A FLUID DESCRIPTION

A. The small amplitude regime

The usual procedure5 to describe the dynamics of a strongly magnetized collisionless

plasma at scales large compared to those of the ion gyro-motion consists in performing an

asymptotics (refered to as a 1/Ωp expansion) where the small parameter is the ratio of

the typical considered frequency to the ion gyro-frequency. This approach is appropriate

when no smallness assumption is made on the amplitude of the fluctuations, but may be

conflicting with the weak-nonlinearity ordering required to close the moment hierarchy.

When addressing the weakly nonlinear regime, it is thus preferable to use a unique expansion

parameter to characterize the small amplitudes and the long wave lengths and low frequencies

of the perturbations. In the distinguished limit that ensures the balance of the nonlinear and

dispersive effects, a reductive perturbative expansion then leads to the classical long-wave

equations (such as Korteweg-de Vries or derivative nonlinear Schrödinger). This asymptotics

may retain terms which are subdominant in an 1/Ωp expansion that is relative to the scale

separation only.

The fluid equations to be derived in this paper are requested to correctly capture the
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weakly nonlinear dynamics of dispersive MHD waves, by fitting with the kinetic theory

within the ordering prescribed by a reductive perturbative expansion. This approach has

the main advantage to separate the various types of waves, retaining only those terms that

contribute to their dynamics. It also provides a rigorous framework for a nonlinear theory

where some terms are evaluated at the linear level, as for example requested at the level of

the heat flux closure.

B. The MHD wave scalings

In a reductive perturbative expansion, the various MHD waves are selected by prescribing

different orderings. The ambient magnetic field being taken in the z direction, we assume

a propagation in the (x, z) plane along an axis z′ making an angle α with the ambient

field. For perturbations depending only on z′ and propagating at velocity V0, we define the

stretched coordinate ξ = ε1/2(z′ − V0t).

(i) Oblique magnetosonic waves

The magnetosonic waves are selected by prescribing bx = εb
(1)
x + · · · , by = ε3/2b

(1)
y + · · · ,

bz = B0+εb
(1)
z +· · · , ρ = ρ(0)+ερ(1)+· · · , ux = εu

(1)
x +· · · , uy = ε3/2u

(1)
y +· · · , uz = εu

(1)
z +· · · ,

p⊥r = p
(0)
⊥r + εp

(1)
⊥r + · · · , p‖r = p

(0)
‖r + εp

(1)
‖r + · · · , where as usual b is the magnetic field, ρ

and u are the density and velocity of the plasma, p⊥r and p‖r are the transverse and parallel

pressures of the particles of species r. The dispersion and the nonlinearities then act on a

slow time τ = ε3/2t.

(ii) Oblique Alfvén waves

The reductive perturbative expansion now involves the scalings by = ε1/2(b
(1)
y + εb

(2)
y · · · ),

uy = ε1/2(u
(1)
y + εu

(2)
y + · · · ), while the previously defined scalings are retained for the other

quantities.

(iii) Parallel Alfvén waves

In the case of a propagation angle α = 0, one prescribes bx = ε1/4b
(1)
x +· · · , by = ε1/4b

(1)
y +· · · ,

bz = B0 + ε1/2b
(1)
z + · · · , ρ = ρ(0) + ε1/2ρ(1) + · · · , ux = ε1/4u

(1)
x + · · · , uy = ε1/4u

(1)
y + · · ·

uz = ε1/2u
(1)
z + · · · , p⊥r = p

(0)
⊥r + ε1/2p

(1)
⊥r + · · · , p‖r = p

(0)
‖r + ε1/2p

(1)
‖r + · · · , with a slow time

τ = εt.

Furthermore, for all the waves, the gyrotropic heat fluxes are scaled similarly to the

pressures. The magnitude of the non-gyrotropic components will be explicited later on,

5



when these contributions will be considered (Section IV.A).

The above scalings indicate that nonlinear effects comparable to dispersion occur with

an amplitude that is smaller for magnetosonic waves than for Alfvén waves. This reflects

the longitudinal character of the former waves for which a relatively strong dispersion is

requested to arrest shock formation. In contrast, parallel Alfvén waves can support much

larger amplitude since they are incompressible. It follows that a weakly nonlinear theory

of magnetosonic waves requires a higher order perturbation theory, as it will be discussed

in more details in Section V. This delicate situation can nevertheless be prevented by the

presence of Landau damping that, when the β of the plasma is not too small, acts on the

shortest time scale, making the nonlinear and dispersive corrections subdominant. The

small beta limit that makes the electron inertia relevant is in any case out of the scope of

a mono-fluid theory. For larger wave amplitude, the lowest order corrections in the usual

1/Ωp expansion together with a simple Landau-fluid closure for the gyrotropic pressures11,12

are sufficient. Furthermore, an expansion valid for oblique Alfvén waves, where both the

Hall term and non-gyrotropic heat flux components enter at dominant order, will retain

all the relevant terms for parallel waves (with possible additional subdominant corrections)

and also for magnetosonic waves in the most usual situations. As a consequence of these

observations, the construction of the mono-fluid model will be based on the weakly nonlinear

dynamics of oblique Alfvén waves with typical wavelengths large compared to the proton

inertial length. This approach involves several steps.

C. From a bi-fluid to a mono-fluid description

Starting from the Vlasov-Maxwell equations (A.1)-(A.4) and writing the equations sat-

isfied by the successive moments of the distribution function for particles of species r, one

derives an exact hierarchy of fluid equations for the corresponding density ρr = mrnr

∫
frd

3v,

hydrodynamic velocity ur =

∫
vfrd

3v∫
frd3v

, pressure tensor Pr = mrnr

∫
(v− ur)⊗ (v− ur)frd

3v

and heat flux tensor Qr = mrnr

∫
(v − ur)⊗ (v − ur)⊗ (v − ur)frd

3v, in the usual form5

∂tρr +∇ · (ρrur) = 0 (1)

∂tur + ur · ∇ur +
1

ρr

∇ ·Pr − qr

mr

(e +
1

c
ur × b) = 0 (2)

∂tPr +∇ · (urPr + Qr) +
[
Pr · ∇ur +

qr

mrc
b×Pr

]S
= 0 (3)

6



where the tensor b×Pr has elements (b×Pr)ij = εimlbmPr lj and where, for a square matrix

A, one defines AS = A + Atr. One has (b×Pr)
tr = −Pr×b. In order to distinguish between

scalar and tensorial pressures, bold letters are used to denote tensors of rank two and higher.

Coupled to Maxwell equations, such a multi-fluid description resolves the small spatio-

temporal scales associated with Langmuir waves that are unneeded when concentrating on

the large-scale dynamics of dispersive MHD waves. A mono-fluid description together with

the additional approximation of neglecting electron inertia, allows the filtering of these small

scales. One is thus led to consider the plasma velocity u =
1

ρ

∑
r

ρrur where ρ =
∑

r ρr

is the plasma density and to define the pressure and heat flux tensors associated with

each particle species in terms of the deviations from this barycentric velocity, in the form

pr = mrnr

∫
(v − u)⊗ (v − u)frd

3v and qr = mrnr

∫
(v − u)⊗ (v − u)⊗ (v − u)frd

3v. One

has

Pr = pr − ρr(u− ur)⊗ (u− ur) (4)

and

Qr ijk = qr ijk + pr ij(u− ur)k + pr ik(u− ur)j + pr jk(u− ur)i, (5)

where the subscripts ijk refer to components of the corresponding tensors.

Defining δr = Pr − pr and

Rr = ∇ · (urδr) +
[
δr · ∇ur + (∇ ·Pr)⊗ (u− ur)

]S
, (6)

one has in Eq. (3)

∇ · (urPr + Qr) +
[
Pr · ∇ur

]S
= ∇ · (upr + qr) +

[
pr · ∇u

]S
+ Rr. (7)

For the orderings involved in the reductive perturbative analysis of the various MHD waves

discussed above, neglecting δr and Rr contributions in the equation for pr is possible if the

expansion of this quantity is limited to orders strictly lower than ε2 for oblique Alfvén waves

and ε5/2 for magnetosonic waves. This leads to replace Eq.(3) by

∂tpr +∇ · (upr + qr) +
[
pr · ∇u +

qr

mrc
b× pr

]S
= 0. (8)

Furthermore, one easily gets that

∂tρ +∇ · (uρ) = 0 (9)
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and

∂t(ρu) +∇ · (ρu⊗ u) +∇ · p− 1

c
j × b = 0, (10)

where p =
∑

r

pr denotes the total pressure tensor and where the electric current

j =
∑

r

qrnr

∫
vfrd

3v =
∑

r

qr

mr

ρrur is given by j =
c

4π
∇× b. In this derivation, we neglect

the displacement current and also make the approximation of quasi-neutrality
∑

r

qrρr

mr

= 0,

as usual when considering slow motion of fluid elements of size greater than the Debye

length.20

The current j obeys

∂tj +∇ ·
( ∑

r

qrρr

mr

ur ⊗ ur

)
+

∑
r

qr

mr

∇ ·Pr −
∑

r

q2
rρr

m2
r

(
e +

1

c
ur × b

)
= 0. (11)

Using the identity

∑
r

qrρr

mr

ur ⊗ ur = u⊗ j + j ⊗ u−
∑

r

qrρr

mr

u⊗ u +
∑

r

qrρr

mr

(ur − u)⊗ (ur − u), (12)

and the fact that for a plasma of protons and electrons of electric charge qp = −qe = q,

∑
r

q2
r

m2
r

ρrur = q2
( 1

me

+
1

mp

) ρu

me + mp

− q
(mp

me

− me

mp

) j

me + mp

, (13)

one gets20

∂tj +∇ ·
(
u⊗ j + j ⊗ u−

∑
r

qrρr

mr

u⊗ u
)

+
∑

r

qr

mr

∇ · pr

−
∑

r

q2
rρr

m2
r

e− q2

c

( 1

me

+
1

mp

) ρ u× b

me + mp

+
q

c

(mp

me

− me

mp

) j × b

me + mi

= 0. (14)

This equation simplifies when terms involving the ratio
me

mp

are neglected and quasi-

neutrality is assumed, which leads to write ρr = mrn and u ≈ up. One obtains

∂tj +∇ · (u⊗ j + j ⊗ u)− q2n

me

(
e +

u× b

c
− j × b

nqc
+

1

qn
∇ · pe

)
= 0. (15)

For small nonlinearity and under the assumption β À me

mi

, the two first terms of the above

equation are subdominant. From Maxwell equation (A.2), one then obtains the induction

equation

∂tb−∇× (u× b) = −cmp

q
∇×

( 1

4πρ
(∇× b)× b− 1

ρ
∇ · pe

)
, (16)
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that includes the Hall term together with the effect of the electron pressure.

Equations (9), (10), (8) and (16) constitute a closed system, provided a closure approxi-

mation is made to express the heat fluxes. Nevertheless, a direct resolution of Eq. (8) would

have to resolve time scales associated with the gyro-motion of the particles, a condition that

is practically impossible to achieve in numerical simulations that also retain hydrodynam-

ical scales. As shown in Section III, this scale separation can in fact be used to define a

reduced description where the evolution of the gyrotropic components of the pressure ten-

sors is followed on hydrodynamic time scales,while the non-gyrotropic ones obey a slaved

dynamics in the sense that they are prescribed by the instantaneous values of hydrodynamic

quantities. A similar separation can be made at the level of the heat fluxes that contribute

to the gyrotropic pressures through both gyrotropic and non-gyrotropic components. Again

the gyrotropic heat fluxes require a closure approximation taking the form of dynamical

equations, while the non-gyrotropic ones are slaved (Section IV).

III. THE PRESSURE TENSORS

In order to isolate the gyrotropic components of the pressure tensor, it is convenient to

rewrite Eq. (8) for the pressure tensor of each particle species in the form

pr × b̂− b̂× pr = kr (17)

where b̂ =
b

|b| is the unit vector along the local magnetic field and

kr =
1

Ωr

B0

|b|
[dpr

dt
+ (∇ · u)pr +∇ · qr + (pr · ∇u)S

]
. (18)

In this equation, B0 denotes the amplitude of the ambient field and Ωr =
qrB0

mrc
is the gyro-

frequency of the particles of species r. Furthermore,
d

dt
= ∂t + u · ∇ denotes the convective

derivative.

A few classical results are first recalled for completeness.21,22 We first note that the left

hand side of Eq. (17) can be viewed as a self-adjoint linear operator acting on pr, whose

kernel is spanned by the tensors (I− b̂⊗ b̂) and b̂⊗ b̂. It is thus convenient to define the

projection a of any (3× 3) rank two tensor a on the image of this operator as

a = a− 1

2
a : (I− b̂⊗ b̂)(I− b̂⊗ b̂)− (a : b̂⊗ b̂)̂b⊗ b̂, (19)
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which implies tr a = 0 and a : b̂⊗ b̂ = 0. Here I is the identity matrix and the double con-

traction of two square matrices m and n is defined as m : n =
∑
ij

mijnij. In particular, the

pressure tensor is written as the sum pr = pG
r + πr of an element of the kernel

pG
r =

1

2
pr : (I− b̂⊗ b̂)(I− b̂⊗ b̂) + (pr : b̂⊗ b̂)̂b⊗ b̂ (20)

≡ p⊥r(I− b̂⊗ b̂) + p‖rb̂⊗ b̂ (21)

and of a non-gyrotropic component πr = pr that thus satisfies tr πr = 0 and πr : b̂⊗ b̂ = 0.

A. Dynamics of the gyrotropic pressures

To obtain the equations for the gyrotropic pressure components, one applies the trace

and the contraction with b̂⊗ b̂ on both sides of Eq. (17) to get

tr
dpr

dt
+ (∇ · u)trpG

r + tr (∇ · qr) + tr (pG
r · ∇u)S + s1r = 0 (22)

with s1r = tr (πr · ∇u)S and

dpr

dt
: b̂⊗ b̂ +

(
(∇ · u)pG

r +∇ · qr + (pG
r · ∇u)S

)
: b̂⊗ b̂ + s2r = 0 (23)

with s2r = (πr · ∇u)S : b̂⊗ b̂.

The trace and the time derivative commute but this is not the case for the contraction

with b̂⊗ b̂. One writes

dpr

dt
: b̂⊗ b̂ =

d

dt
(pr : b̂⊗ b̂)− pr :

d

dt
(̂b⊗ b̂) =

dp‖r
dt

− s3r (24)

where, using
(db̂

dt
⊗ b̂ + b̂⊗ db̂

dt

)
: (I− b̂⊗ b̂) = 0 and

(db̂

dt
⊗ b̂ + b̂⊗ db̂

dt

)
: b̂⊗ b̂ = 0, one has

s3r = πr :
d

dt
(̂b⊗ b̂). One thus gets generalized CGL equations that include heat fluxes and

coupling to the non-gyrotropic components of the pressure tensors,

∂tp⊥r +∇ · (u p⊥r) + p⊥r∇ · u− p⊥r b̂ · ∇u · b̂ +
1

2

(
tr∇ · qr − b̂ · (∇ · qr) · b̂

)

+
1

2
(s1r − s2r + s3r) = 0 (25)

∂tp‖r +∇ · (u p‖r) + 2p‖r b̂ · ∇u · b̂ + b̂ · (∇ · qr) · b̂ + s2r − s3r = 0. (26)

One easily checks that for the scalings defined in Sections II.A and the non-gyrotropic pres-

sure components given in Section III.B, the couplings s1r, s2r and s3r to the non-gyrotropic
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pressure components are negligible. Note that similar equations for the gyrotropic pressures

can be obtained in a bi-fluid description, up to the replacement of the plasma velocity u

by that of the individual species ur. It is noticeable that in the present derivation based

on the hypothesis of weak nonlinearity together with long spatial and temporal scales, the

parallel and transverse pressures decouple from the non-gyrotropic pressure components but

are sensitive to the gyrotropic and non-gyrotropic components of the heat fluxes qr that can

both contribute to the gyrotropic components of ∇ · qr.

B. Non-gyrotropic pressure contributions

In order to determine the non-gyrotropic contributions to the pressure tensor of the

various particle species, we start from Eq. (17). Using the solvability conditions provided

by the equations for the gyrotropic pressures, it is rewritten

πr × b̂− b̂× πr = kr (27)

where kr can be decomposed into the sum of a contribution involving the gyrotropic pressures

and the heat fluxes

κr =
1

Ωr

B0

|b|
[dpG

r

dt
+ (∇ · u)pG

r +∇ · qr + (pG
r · ∇u)S

]
(28)

and of a term linear in πr

L(πr) =
1

Ωr

B0

|b|
[dπr

dt
+ (∇ · u)πr + (πr · ∇u)S

]
. (29)

In κr, the second term of the r.h.s. of Eq. (28) does not contribute, while the first one

rewrites

dpG
r

dt
= (p‖r − p⊥r)

d

dt
(̂b⊗ b̂) = (p‖r − p⊥r)

1

|b|2
(db

dt
⊗ b + b⊗ db

dt
− 2

|b|
d|b|
dt

b⊗ b
)

(30)

that is explicited by using the induction equation (16).

It is then convenient to split the non-gyrotropic pressure as πr = πr,1 + πr,2 with

πr,1 × b̂− b̂× πr,1 = κr (31)

πr,2 × b̂− b̂× πr,2 = L(πr,1) + L(πr,2). (32)

In a weakly nonlinear regime, the quantity L(πr) is of higher order than πr, which enables

one to neglect L(πr,2) in Eq. (32). We restrict ourselves to this level of approximation since
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pushing further the above perturbative calculation would conflict with the approximations

made for the derivation of the pressure equation (8) used in a mono-fluid description. The

above equations can be solved in the form21

πr,1 =
1

4

[
b̂× κr · (I + 3b̂⊗ b̂)

]S
(33)

πr,2 =
1

4

[
b̂× L(πr,1) · (I + 3b̂⊗ b̂)

]S
(34)

where the overlines turn out not to be necessary in the above formulae. These expressions

are nevertheless cumbersome to be used in a numerical code.

In some situations, the contribution πr,1 is sufficient and can even be simplified by ap-

proximating b̂ by the unit vector ẑ along the ambient magnetic field. This leads to define

π
[1]
r by

π[1]
r × ẑ − ẑ × π[1]

r = χ
[1]
r (35)

together with ẑ · π[1]
r · ẑ = 0 and π

[1]
r : I = 0, where

χ[1]
r =

1

Ωr

[(dpG
r

dt

)[1]

+ (pG[1]
r · ∇u)S +∇ · qr

]
(36)

with p
G[1]
r = p⊥r(I− ẑ ⊗ ẑ) + p‖rẑ ⊗ ẑ and

(dpG
r

dt

)[1]

=
dp⊥r

dt
(I− ẑ ⊗ ẑ) +

dp‖r
dt

ẑ ⊗ ẑ + (p‖p − p⊥p)∂z

[
u⊗ ẑ − (ẑ · u)ẑ ⊗ ẑ

]S
. (37)

We here denote by a double overline the projection on the subspace orthogonal to (I− ẑ⊗ ẑ)

and ẑ ⊗ ẑ. The first two terms in the r.h.s. of Eq. (37) do not contribute to π
[1]
r but has

to be retained for the next corrective terms. The heat flux term ∇ · qr is to be kept at this

order when dealing with weakly nonlinear magnetosonic waves but arises at the next order

when dealing with Alfvén waves. It is estimated in Section IV. When ∇ · qr is neglected,

one recovers the classical gyro-viscous tensor,23–25

π[1]
p xx = −π[1]

p yy = − p⊥p

2Ωp

(∂yux + ∂xuy) (38)

π[1]
p zz = 0 (39)

π[1]
p xy = π[1]

p yx = − p⊥p

2Ωp

(∂yuy − ∂xux) (40)

π[1]
p yz = π[1]

p zy =
1

Ωp

[2p‖p∂zux + p⊥p(∂xuz − ∂zux)] (41)

π[1]
p xz = π[1]

p zx = − 1

Ωp

[2p‖p∂zuy + p⊥p(∂yuz − ∂zuy)], (42)
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here given for the protons (the electron contribution being negligible due to the large mass

ratio) and usually obtained in an 1/Ωp-expansion.

The next correction π
[2]
p originates from terms neglected in Eq.(31), together with the

dominant contributions in Eq. (32). We can consistently write (replacing single overlines

by double ones)

π[2]
p × ẑ − ẑ × π[2]

p = L(π
[1]
p ) + χ

[2]
p + D[χ[1]

p ] +
(
(̂b− ẑ)× π[1]

p

)S
, (43)

together with the conditions

ẑ · π[2]
p · ẑ +

(
(̂b− ẑ) · π[1]

p · ẑ
)S

= 0, π[2]
p : I = 0. (44)

At the order of the present approximation,

L(π
[1]
p ) =

1

Ωp

∂tπ
[1]
p . (45)

Furthermore,

D[χ[1]
p ] ≡ χ

[1]
p − χ

[1]
p =

1

2
[(̂b− ẑ)⊗ ẑ + ẑ ⊗ (̂b− ẑ)] : χ[1]

p (I− 3ẑ ⊗ ẑ)

+
1

2
(I− 3ẑ ⊗ ẑ) : χ[1]

p [(̂b− ẑ)⊗ ẑ + ẑ ⊗ (̂b− ẑ)] (46)

and

χ[2]
p =

1

Ωp

d

dt
(p‖p − p⊥p)

(
(̂b− ẑ)⊗ ẑ

)S

+
1

Ωp

(p‖p − p⊥p)
[
2(̂b− ẑ) · ∇u⊗ ẑ + 2ẑ · ∇u⊗ (̂b− ẑ)− 2(ẑ · ∇u · ẑ)(̂b− ẑ)⊗ ẑ

−
(
(̂b− ẑ) · ∇u · ẑ + ẑ · ∇u · (̂b− ẑ)

)
ẑ ⊗ ẑ + h⊗ ẑ − (h · ẑ)ẑ ⊗ ẑ

]S
(47)

with

h =
1

Ωp

∇×
( 1

4πρ
(b× (∇× b)− 1

ρ
∇ ·PG

e

)
. (48)

All the terms in D[χ
[1]
p ] and in χ

[2]
p with the exception of those involving h (that originates

from the generalized Ohm’s law) result from field line distortion and are only relevant for

the scaling of oblique Alfvén waves. For such waves, ẑ · (̂b − ẑ) is negligible, which enables

13



one to write

χ
[2]
p + D[χ[1]

p ] =
1

Ωp

(
(̂b− ẑ) · ∇u · ẑ + ẑ · ∇u · (̂b− ẑ)

)[
p⊥pI + (p⊥p − 4p‖p)ẑ ⊗ ẑ

]

+
1

Ωp

(
p⊥p∇ · u + (p⊥p − 4p‖p)ẑ · ∇u · ẑ

)[
(̂b− ẑ)⊗ ẑ

]S

+
2

Ωp

(p⊥p − p‖p)
[
(̂b− ẑ) · ∇u⊗ ẑ + ẑ · ∇u⊗ (̂b− ẑ)

]S

+
1

Ωp

(p⊥p − p‖p)(h⊗ ẑ). (49)

This contribution is usually neglected,26 and so are all the other terms in Eq. (43), ex-

cept
1

Ωp

∂

∂t
π[1]

p . Retaining the nonlinear terms originating from the field line distortion is

nevertheless important to prevent the onset of spurious nonlinearities (making the problem

ill-posed) in the equation governing the dynamics of weakly nonlinear oblique Alfvén waves.17

These waves appear to be governed by a linear Korteweg de Vries equation with nonlocal

damping. As in the Hall-MHD description, nonlinear couplings turn out to vanish.27,28

IV. MODELING OF THE HEAT FLUXES

It is again convenient in Eqs. (25) and (26), to separate the contributions to the gyrotropic

part of ∇ · qr, originating from the gyrotropic and non-gyrotropic heat fluxes, by writing

qr = qG
r + qNG

r with

qG
r ijk = q‖rb̂ib̂j b̂k + q⊥r(δij b̂k + δikb̂j + δjkb̂i − 3b̂ib̂j b̂k). (50)

The equations for the gyrotropic pressure components involve

b̂ · (∇ · qG
r ) · b̂ = ∇ · (̂b q‖r)− 2q⊥r∇ · b̂ (51)

1

2

(
tr(∇ · qG

r )− b̂ · (∇ · qG
r ) · b̂

)
= ∇ · (̂b q⊥r) + q⊥r∇ · b̂, (52)

together with the contribution of the non-gyrotropic heat fluxes to the gyrotropic part of

∇ · qr that we denote (∇ · qNG
r )G. The non-gyrotropic part of ∇ · qr contributes to the

non-gyrotropic pressure corrections.

A. Non-gyrotropic heat flux contributions

The gyrotropic heat flux contributions are comparable to the pressure perturbations (as

seen from the gyrotropic pressure equations), i.e. of order ε1/2 for parallel Alfvén waves
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and of order ε for oblique Alfvén and magnetosonic waves. On the other hand, the non-

gyrotropic heat flux components do not only behave like the product of a pressure and a

velocity but also involve an additional space derivative arising together with the 1/Ωr factor.

From the scaling assumptions, one can conclude that these contributions are subdominant

for both parallel Alfvén and oblique magnetosonic waves, while they are of the same order as

the gyrotropic heat flux components in the case of oblique Alfvén waves. This observation

is confirmed by the kinetic theory based on Vlasov-Maxwell equations (see refs.16,17 and

Appendix B).

The non-gyrotropic heat fluxes obtained for oblique Alfvén waves (Appendices B

and C) can be expressed in terms of current j =
c

4π
∇× b and diamagnetic drifts of

each particle species ud,r =
c

nq|b|2 b×∇ · pr that in the considered limit are given by

j

qn
≈ v2

A

Ωp

(
− ∂z

by

B0

, 0, ∂x
by

B0

)
and ud,r ≈ v2

∆r

Ωp

(
∂z

by

B0

, 0, 0
)
, where we define the squared

Alfvén velocity v2
A =

B2
0

4πρ(0)
and also v2

∆r =
p

(0)
⊥r − p

(0)
‖r

ρ(0)
. We thus infer the closure approxi-

mation

(∇ · qNG
e )G = 2∇⊥ · [p⊥e(ud,e − j

qn
)](I − b̂⊗ b̂) +∇⊥ · [p‖e(ud,e − j

qn
)]̂b⊗ b̂ (53)

(∇ · qNG
p )G = 2∇⊥ · [p‖pud,p ]̂b⊗ b̂, (54)

and also approximate the non-gyrotropic part of ∇ · qp by

∇ · qp =
p⊥p

2
(∇⊥ ⊗ udp − (ẑ ×∇⊥)⊗ (ẑ × udp))

+
[
ẑ ⊗

(
∇⊥q⊥p − p⊥p

v2
∆p

2Ωp

ẑ ×∆⊥b̂− 2p‖pẑ × (∇× udp)
)]S

. (55)

B. Gyrotropic heat fluxes

In order to infer closed expressions for the gyrotropic heat fluxes, based on the predictions

of the kinetic theory for oblique Alfvén waves (Appendix C), we adapt the approach devel-

oped in the context of parallel propagation12 where the closure approximations eventually

reduce to the replacement of the plasma response function Wr by its two or four-pole Padé

approximants.
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1. Parallel heat flux

In order to reduce the problem to a form close to that of parallel propagation, starting

from Eq. (C.11) where quantities proportional to me/mp have been neglected, we first define

q′‖r

vth,rp
(0)
‖r

=
q‖r

vth,rp
(0)
‖r
− 3

(v2
∆e + v2

A

v2
A

)(Ωp

Ωr

− 1
) j‖

nqvth,r

, (56)

where we used the relation c2
r = (v2

A + v2
∆e + v2

∆p)/v
2
th,r and the expression of the parallel

current in the asymptotics of long oblique Alfvén waves given in the previous sub-section.

It follows that
q′‖r

vth,rp
(0)
‖r

= cr
c2
r − 3 + W−1

r

c2
r − 1 + W−1

r

T
(1)
‖r

T
(0)
‖r

, (57)

where T
(1)
‖r denotes the parallel temperature perturbations for the particles of species r and

T
(0)
‖r the corresponding equilibrium value. Similar notations are used for the transverse

temperatures. We then proceed as in Ref.16. The parameter cr defined as the ratio of the

phase velocity projected on the direction of the ambient field to the thermal velocity of

species r, is now more generally viewed as the ratio X = − 1
vth,r

∂t∂
−1
z . The operator F‖(X)

defined by

q′‖r

vth,rp
(0)
‖r

= F‖(X)
T

(1)
‖r

T
(0)
‖r

(58)

is approximated by a homographic function

F‖(X) = (Q3
‖ + Q4

‖XH)−1(Q1
‖X + Q2

‖H). (59)

where H is the Hilbert transform with respect to the parallel coordinate z, which allows

one to eventually get a first order initial value problem. The constant coefficients Qi
‖ are

chosen in a way that ensures the correct asymptotic behavior of the parallel heat fluxes

in both the isothermal and adiabatic limits. As shown by SHD, this prescription results

in a satisfactory modeling in the intermediate regimes. In the isothermal limit (cr ¿ 1),

Wr ≈ 1 − c2
r +

√
π
2
crHξ and q′(1)

‖r = −
√

8
π
vth,rn

(0)HξT
(1)
‖r independent of cr. Differently, in

the adiabatic limit (cr À 1), Wr ≈ −1/c2
r − 3/c4

r − 15/c6
r and the heat fluxes are negligible.

One thus gets Q1
‖ = 0, Q2

‖ = −
√

8

π
, Q3

‖ = 1, Q4
‖ = −

√
8

π
(
3π

8
− 1). In this approximation,

the corrected parallel heat flux q′‖r is thus determined in terms of the parallel temperature
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T‖r by the partial differential equation

( d

dt
+

vth,r√
8
π
(1− 3π

8
)
H∂z

) q′‖r

vth,rp
(0)
‖r

=
1

1− 3π
8

vth,r∂z

T‖r

T
(0)
‖r

(60)

where, to restore Galilean invariance, the convective derivative ∂t + u · ∇ has been substi-

tuted to the partial time derivative.

2. Perpendicular heat flux

Proceeding in a similar way, starting from Eq. (C.12) or (C.13), we first define

q?
⊥r

vth,rp
(0)
⊥r

=
q⊥r

vth,rp
(0)
⊥r

+
[(

1 +
v2

∆e + v2
∆p

v2
A

)(Ωp

Ωr

+ 1
)
− v2

∆p

v2
A

+ 2
v2

∆r

v2
A

Ωp

Ωr

] j‖
nqvth,r

(61)

that, for long oblique Alfvén waves, can be expressed either in terms of A =
bz

B0

+
b2
y

2B2
0

or

in terms of
[T

(1)
⊥r

T
(0)
⊥r

− 3

vth,r

∂t∂
−1
z

Ωp

Ωr

v2
th,r

v2
A

j‖
nqvth,r

]
, by means of operators that as previously are

to be approximated. In order to accurately fit the adiabatic and isothermal limits, it is

convenient to use a mixed expression involving both dependencies, in the form

q?
⊥r

vth,rp
(0)
⊥r

= F1
⊥(− 1

vth,r

∂t∂
−1
z )

[T
(1)
⊥r

T
(0)
⊥r

− 3

vth,r

∂t∂
−1
z

Ωp

Ωr

v2
th,r

v2
A

j‖
nqvth,r

]
+ F2

⊥(− 1

vth,r

∂t∂
−1
z )A. (62)

Prescribing again a homographic form for the operators

F1
⊥(X) = (Q3

⊥ + Q4
⊥XH)−1(Q1

⊥X + Q2
⊥H) (63)

F2
⊥(X) = (Q3

⊥ + Q4
⊥XH)−1(Q5

⊥X + Q6
⊥H), (64)

we are led to choose Q1
⊥ = Q5

⊥ = 0, Q2
⊥ = Q4

⊥ = −
√

2

π
and Q6

⊥ =

√
2

π

(
1− T

(0)
⊥r

T
(0)
‖r

)
and get

(
∂

∂t
−

√
π

2
vth,rH∂z

)
q?
⊥r

vth,rp
(0)
⊥r

= vth,r∂z

((
1− T

(0)
⊥r

T
(0)
‖r

) |b|
B0

−
( T⊥r

T
(0)
⊥r

− 3vth,r

v2
A

Ωp

Ωr

∂t∂
−1
z

j‖
nqvth,r

))
.

(65)

Introducing

q′⊥r

vth,rp
(0)
⊥r

=
q?
⊥r

vth,rp
(0)
⊥r

− 3
v2

th,r

v2
A

Ωp

Ωr

j‖
nqvth,r

,

=
q⊥r

vth,rp
(0)
⊥r

+
[(

1 +
v2

∆e + v2
∆p

v2
A

)(Ωp

Ωr

+ 1
)
− v2

∆p

v2
A

+
2v2

∆r − 3v2
th,r

v2
A

Ωp

Ωr

] j‖
nqvth,r

, (66)
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we finally obtain

(
d

dt
−

√
π

2
vth,rH∂z

)
q′⊥r

vth,rp
(0)
⊥r

= vth,r∂z

((
1− T

(0)
⊥r

T
(0)
‖r

) |b|
B0

− T⊥r

T
(0)
⊥r

+ 3

√
π

2

v2
th,r

v2
A

Ωp

Ωr

H j‖
nqvth,r

)
.

(67)

As previously, a convective derivative has been substituted to the partial time derivatives in

order to restore Galilean invariance.

V. THE MODEL AND ITS VALIDATION

A mono-fluid model has thus been constructed. It is defined by the closed system formed

by Eqs. (9), (10), (16), (25), (26) where the sir terms are neglected and where Eqs. (51),

(52), (53) and (54) have been used, supplemented by Eqs. (56), (60), (66), (67), together

with the non-gyrotropic pressure corrections πr = π
[1]
r + π

[2]
r that are computed in Section

III.B and involve the non-gyrotropic heat flux given by Eq. (55).

To validate this model, we consider its predictions for the various MHD waves in the

long-wavelength limit. Our previous model12 specifically designed to describe parallel Alfvén

waves is easily recovered by prescribing the ordering associated to these waves. The non-

gyrotropic heat flux contributions then disappear and only the leading order gyro-viscous

tensor without the heat flux term is to be retained. In this regime, a reductive perturba-

tive expansion leads to a generalized kinetic derivative nonlinear Schrödinger equation that

identifies with that derived from the Vlasov-Maxwell system,16 up to the replacement of the

plasma response function by its two or four-pole Padé approximants.12

The model derived in the present paper is in contrast needed to describe oblique Alfvén

waves. We demonstrate in this section that the kinetic theory presented in Appendix C is

accurately reproduced, and so are the classical dispersion relations and Landau damping

rates of oblique and kinetic Alfvén waves.

Denoting by ξ the coordinate along the direction of propagation, one has ∇ =

(sin α ∂ξ, 0, cos α ∂ξ) and ∂t = −V0∂ξ with V0 = Λ0 cos α. From Eq. (60) , one immedi-

ately gets to leading order

q′‖r

vth,rp
(0)
‖r

=
−

√
8
π
H

1−
√

8
π

(
3π
8
− 1

)
crH

T
(1)
‖r

T
(0)
‖r

= cr
c2
r − 3 + W−1

4r

c2
r − 1 + W−1

4r

T
(1)
‖r

T
(0)
‖r

, (68)
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that for the protons and the electrons respectively give

q
(1)
‖p

vth,pp
(0)
‖p

= cp

c2
p − 3 + W−1

4p

c2
p − 1 + W−1

4p

T
(1)
‖p

T
(0)
‖p

(69)

q
(1)
‖e

vth,pp
(0)
‖p

= ce
c2
e − 3 + W−1

4e

c2
e − 1 + W−1

4e

T
(1)
‖e

T
(0)
‖e

− 3
v2

A + v2
∆e

vth,e

sin α

Ωp

∂ξ
b
(1)
y

B0

. (70)

This reproduces Eq. (C.11), up to the replacement of the plasma response function Wr by

its four-pole approximant defined as

W4r =
1
2
(8− 3π)c2

r −
√

2πcrH + 4
1
2
c4
r(3π − 8) +

√
2πc3

rH + 1
2
(16− 9π)c2

r − 3
√

2πcrH + 4
. (71)

Substituting in the equation for the parallel proton pressure that rewrites

p
(1)
‖p

p
(0)
‖p
− 3

n(1)

n(0)
+ 2A =

2

Λ0

v2
A + v2

∆e + v2
∆p

Ωp

sin α∂ξ
b
(1)
y

B0

+
1

cr

q
(1)
‖p

vth,pp
(0)
‖p

, (72)

one gets

p
(1)
‖p

p
(0)
‖p

= (c2
p +W−1

4p )
n(1)

n(0)
− (c2

p − 1 +W−1
4p )A + (c2

p − 1 +W−1
4p )

Λ0

Ωp

sin α∂ξ
b
(1)
y

B0

(73)

p
(1)
‖e

p
(0)
‖e
− 3

n(1)

n(0)
+ 2A =

c2
e − 3 +W−1

4e

c2
e − 1 +W−1

4e

(p
(1)
‖e

p
(0)
‖e
− n(1)

n(0)

)
(74)

that correspond to Eq. (C.6).

From the transverse heat flux equations, we get

q
(1)
⊥e

vth,ep
(0)
⊥e

=
−1

ce +
√

π
2
H

[(
1− T

(0)
⊥e

T
(0)
‖e

)
A− p

(1)
⊥e

p
(0)
⊥e

+
n(1)

n(0)

]
− v2

A + v2
∆e

vth,e

sin α

Ωp

∂ξ
b
(1)
y

B0

. (75)

Substituting in the equation for the electron parallel pressure that rewrites

p
(1)
⊥e

p
(0)
⊥e

=
n(1)

n(0)
+ A +

v2
A + v2

∆e

Λ0

sin α

Ωp

∂ξ
b
(1)
y

B0

+
q
(1)
⊥e

Λ0p⊥e

, (76)

one obtains

p
(1)
⊥e

p
(0)
⊥e

=
n(1)

n(0)
+

(
1−

T
(0)
‖e

T
(0)
‖e
W2e

)
A. (77)

Here,

W2r =
1

1−√
π
2
crH− c2

r

(78)
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is the two-pole approximant of the plasma response function Wr.

Similarly, for the protons

p
(1)
⊥p

p
(0)
⊥p

=
n(1)

n(0)
+ A− v2

A + v2
∆e

Λ0

sin α

Ωp

∂ξ
b
(1)
y

B0

+
q
(1)
⊥p

Λ0p⊥p

(79)

with

q
(1)
⊥p

vth,pp
(0)
⊥p

=
−1

cp +
√

π
2
H

[(
1− T

(0)
⊥p

T
(0)
‖p

)
A− p

(1)
⊥p

p
(0)
⊥p

+
n(1)

n(0)
+ 3

√
π

2
vth,pHsin α

Ωp

∂ξ
b
(1)
y

B0

]

+
(
3(v2

th,p − v2
∆p)− 2(v2

A + v2
∆e)

) sin α

vth,pΩp

∂ξ
b
(1)
y

B0

, (80)

which implies

p
(1)
⊥p

p
(0)
⊥p

=
n(1)

n(0)
+

(
1− T

(0)
⊥p

T
(0)
‖p

W2p

)
A− 3Λ0

sin α

Ωp

∂ξ
b
(1)
y

B0

. (81)

Again the result of the kinetic theory, as given by Eq. (C.8), is recovered up to the replace-

ment of the plasma response function by a Padé approximant.

To push further the validation of the present model, it is of interest to concentrate on

the regime
me

mi

¿ β ¿ Te

Tp

, with β =
1

v2
A

Te

mp

, assuming no temperature anisotropy for easier

comparison with classical results. This ordering corresponds to the limit ce → 0 of isothermal

electrons and cp →∞ of adiabatic protons.

In the limit ce → 0, W4e ≈ W2e ≈ We ≈ 1− c2
e +

√
π

2
ceH and we get

p
(1)
‖e

ρ(0)
= βv2

A

p
(1)
‖e

p
(0)
‖e

= v2
A

{[
β −

√
π

2

√
β

√
me

mp

H
]ρ(1)

ρ(0)
+

√
β

√
π

2

√
me

mp

HA
}

(82)

p
(1)
⊥e

ρ(0)
= βv2

A

p
(1)
⊥e

p
(0)
⊥e

= v2
A

[
β

ρ(1)

ρ(0)
−

√
β

√
π

2

√
me

mp

HA
]
, (83)

that provides a systematic derivation of relations previously based on a phenomenological

argument.17

The adiabatic limit cp → ∞ assumes that the phase velocity of the wave is much larger

than the thermal velocity, which is not consistent with the long-wave asymptotics. The

adiabatic limit is thus conveniently taken by prescribing zero heat fluxes, and the relations

(60)-(61) of Ref.17 are then immediately recovered. By inspection, it is also easily verified

that the gyro-viscous tensor defined by Eq. (43) identifies within the reductive perturbative

scaling with Eqs. (B2)-(B7) of Ref.17. In particular Eq. (49) reproduces Eqs. (B15)-(B18)
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of the same reference. The remaining of the asymptotic analysis is straightforward and is

performed in Ref.17. Direct comparisons are successfully made with kinetic results18,19. This

demonstrates that the present model correctly reproduces the dynamics of small amplitude

oblique and kinetic Alfvén waves.

The case of oblique magneto-sonic waves requires a more detailed discussion that we ex-

plicit in the regime of adiabatic ions and isothermal electrons with isotropic temperatures.

The leading order linear dispersion relation correctly reproduces that provided by the kinetic

theory (see Eqs. (29) and (A.21) of Ref.17). It includes a Landau damping rate that, up

to an angular factor, scales like kvA

√
β

√
me

mp

where, as above, β is defined as the ratio of

the electron to magnetic pressures and k the wavenumber of the perturbation. This level of

description is sufficient when this rate of damping is larger than the inverse nonlinear time

ku (where u is a typical velocity perturbation), that is to say when
√

β

√
me

mp

À ε
V0

vA

. The

parameter ε can be estimated as klp, where lp =
vA

Ωp

is the proton inertial length. Let us first

consider the distinguished limit where the wave amplitude scales like ε. For slow waves for

which V0 ∼
√

βvA, the condition reduces to klp ¿
(me

mp

)1/4

≈ 0.15. These waves are thus

strongly damped in the long-wave limit. For fast waves V0 ∼ vA, and the condition for rapid

damping reads β À mp

me

(klp)
4. When this condition is not satisfied, the Landau damping

arises at the same order as the nonlinear and dispersive terms and a weakly nonlinear anal-

ysis on the time scale τ = ε3/2 is required. In this regime, the equations for ∂τu
(1)
x and ∂τu

(1)
z

involve the quantities ∂xp
(2)
⊥ and ∂zp

(2)
‖ , and thus the gyrotropic heat fluxes q

(2)
⊥ and q

(2)
‖ , to-

gether with the FLR term π
[2]
r that through Eq. (43) is prescribed by

1

Ωp

(∂tπ
[1]
r +∇ · q(3/2)

p ).

These heat fluxes, when not negligible, are not properly modeled in the present formalism.

They are absent in the case of purely transverse propagation, a situation addressed in Ref.29.

The case of oblique propagation in the adiabatic limit was considered in30 where the term
1

Ωp

∂tπ
[1]
r was overlooked.

When the amplitude is larger, usual MHD supplemented by 1/Ωp corrections provides

a sufficient description. As the amplitude of these waves is reduced by dissipation, the

regime dominated by Landau damping is recovered. The only case where our model does

not provide a complete description of magnetosonic waves thus concerns small amplitude

waves with the distinguished scaling and very small β.
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The question arises whether the usual energy E =

∫ (
ρ
u2

2
+

b2

8π
+ p⊥ +

1

2
p‖

)
d3x is con-

served by the above mono-fluid model. The delicate contributions originate from the electron

pressure gradient in the induction equation and from the second order non-gyrotropic pres-

sure corrections. The first term that affects the magnetic field evolution only in the case of

pressure anisotropy, contributes in a long wave theory at the level of the linear dispersion

relation. In this limit, it can thus be replaced by
1

ρ0

∇p⊥e − v2
∆e

B2
0

∇ · (b⊗ b), a term that does

not contribute to the energy budget. Concerning the non-gyrotropic pressure contributions,

while the leading order π[1] preserves energy (at least in the absence of the heat flux term),

the effect of π[2] is still unsettled. This question requires further investigations. In fact, in a

way similar to the diamagnetic term in the generalized Ohm’s law, this contribution is only

relevant at the level of the linear dispersion relation of oblique and kinetic Alfvén waves. As

a consequence, even in the case where the energy is only conserved at the order of validity

of the performed approximations, the effect on the large-scale dynamics will be negligible.

VI. CONCLUSION

A mono-fluid model has been derived with the constraint to reproduce the weakly nonlin-

ear dynamics and the Landau damping of long MHD waves in a collisionless plasma, for any

β larger than the electron to proton mass ratio and any angle of propagation. It reproduces

the dynamics of small-amplitude oblique Alfvén waves, including the exact cancellation of

the nonlinearity. For parallel Alfvén waves, it leads to the KDNLS equation and describes

the transverse instability of a circularly polarized wave,31 resulting in the formation of intense

magnetic filaments. This Alfvén wave “collapse” was considered as a possible mechanism at

the origin of the cylindrical field aligned current tubes observed by the CLUSTER mission

in the terrestrial magnetosheath.32

Comparison of the model with gyrokinetic simulations and possibly with Vlasov-Maxwell

or particles in cells simulations, in particular in the nonlinear stage of parametric instabilities,

are in project. It is also necessary to evaluate the importance of particle trapping that

requires a nonlinear fluid closure, presently very difficult to design.33

This model can be used to perform three-dimensional numerical simulations of dispersive

MHD turbulence, taking into account realistic dissipation and heating mechanisms. The

retained second-order FLR corrections should in particular provide an accurate description
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of the kinetic Alfvén waves generated at small scales. Such simulations, that involve a self-

consistent treatment of the turbulent dynamics in the presence of Landau damping, could

significantly contribute to the understanding of cosmic ray scattering (by fast and Alfvén

modes) in the interstellar medium.34

This model will also be useful to study the formation of coherent structures such as

magnetic holes35,36, shocklets and also the structures resulting from the nonlinear evolution

of the mirror instability, observed in the solar wind37 and the magnetosheath.38 A correct

description of this instability that extends up to scales comparable to the ion Larmor radius

requires higher order FLR corrections that, as mentioned in Section III.B, cannot be di-

rectly obtained within a monofluid description. Their evaluation is possible through a 1/Ωp

expansion of all the fields in a multi-fluid description.43

Another development concerns hybrid simulations that could possibly be improved by re-

placing the usual MHD description of the electron dynamics by a more refined one including

physical processes retained by the present model.

Acknowledgments

We thank P. Goswami for very useful discussions. This work benefited of support from

CNRS programs “Soleil-Terre” and “Physique et Chimie du Milieu Interstellaire” and from

INTAS contract 00-292.

APPENDIX A: LONG-WAVE EXPANSION OF VLASOV-MAXWELL EQUA-

TIONS FOR OBLIQUE ALFVÉN WAVES

We write the Vlasov-Maxwell equations in the form

∂tfr + v · ∇fr +
qr

mr

(e +
1

c
v × b) · ∇vfr = 0 (A.1)

1

c
∂tb = −∇× e (A.2)

∇× b =
4π

c

∑
r

qrnr

∫
vfrd

3v +
1

c
∂te (A.3)

∇ · e = 4π
∑

r

qrnr

∫
frd

3v, (A.4)
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where fr and nr are the distribution function and the average number density of the particles

of species r with charge qr and mass mr. The displacement current
1

c
∂te turns out to be

negligible in the present analysis where perturbations propagate at a velocity small compared

with the speed of light. This contribution which might be important for auroral plasmas is

retained by Verheest.39

Let α be the angle between the ambient magnetic field B0ẑ (where ẑ is the unit vector

pointing along the z-axis) and the direction of propagation of the wave. It is then convenient

to perform the change of frame x′ = x cos α − z sin α, z′ = x sin α + z cos α, the dynamics

being assumed independent of the y variable. We then introduce the stretched variable

ξ = ε1/2(z′ − V0t) where V0 ¿ c is the Alfvén-wave propagation velocity in the z direction,

together with the slow time τ = ε3/2t. It follows that the spatial gradient rewrites ∇ =

(ε1/2 sin α ∂ξ , 0 , ε1/2 cos α ∂ξ).

In order to select oblique Alfvén waves, we expand

bx = ε(b(1)
x + εb(2)

x + · · · ) (A.5)

by = ε1/2(b(1)
y + εb(2)

y + · · · ) (A.6)

bz = B0 + ε(b(1)
z + εb(2)

z + · · · ). (A.7)

and thus, from Eq. (A.2),

ex = ε1/2(e(1)
x + εe(2)

x + · · · ) (A.8)

ey = ε(e(1)
y + εe(2)

y + · · · ) (A.9)

ez = ε1/2(e(1)
z + εe(2)

z + · · · ), (A.10)

with

V0

c
b(1)
x = − cos αe(1)

y (A.11)

V0

c
b(1)
y = cos αe(1)

x − sin αe(1)
z (A.12)

V0

c
b(1)
z = sin αe(1)

y . (A.13)

We also expand the distribution function in the form

fr = F (0)
r + ε1/2f (0)

r + εf (1)
r + ε3/2f (2)

r + · · · (A.14)

where F
(0)
r denotes the equilibrium velocity distribution function, assumed rotationally

symmetric around the direction of the ambient field and symmetric relatively to forward
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and backward velocities along this direction, thus excluding the presence of equilibrium

drifts.39–41

It is also convenient to express the velocity v in a cylindrical coordinate system by defining

the azimuthal angle φ = tan−1(vz/vy) of the velocity component transverse to the ambient

magnetic field. One writes

v = (vx = v⊥ cos φ , vy = v⊥ sin φ , vz = v‖) (A.15)

and

∇v = (cos φ ∂v⊥ −
sin φ

v⊥
∂φ , sin φ ∂v⊥ +

cos φ

v⊥
∂φ , ∂v‖) (A.16)

Furthermore
qr

cmr

(v ×B0ẑ) · ∇v = −Ωr∂φ, where Ωr =
qrB0

mrc
is the gyro-frequency of the

particles of species r.

Expanding to the successive orders, one gets from Eq. (A.1),

Ωr∂φF
(0)
r = 0 (A.17)

Ωr∂φf
(0)
r =

qr

mr

Σ
(1)
1 F (0)

r (A.18)

Ωr∂φf
(1)
r =

qr

mr

(
Σ

(1)
2 F (0)

r + Σ
(1)
1 f (0)

r

)
+ Σ3f

(0)
r (A.19)

Ωr∂φf
(2)
r =

qr

mr

(
Σ

(2)
1 F (0)

r + Σ
(1)
2 f (0)

r + Σ
(1)
1 f (1)

r

)
+ Σ3f

(1)
r (A.20)

where

Σ
(s)
1 = (e(s)

x − vz

c
b(s)
y )(cos φ ∂v⊥ −

sin φ

v⊥
∂φ) + (e(s)

z +
vx

c
b(s)
y ) ∂v‖ (A.21)

Σ
(s)
2 =

vy

c
b(s)
z (cos φ ∂v⊥ −

sin φ

v⊥
∂φ)

+(e(s)
y +

vzb
(s)
x − vxb

(s)
z

c
)(sin φ ∂v⊥ +

cos φ

v⊥
∂φ)− vyb

(s)
x

c
∂v‖ (A.22)

Σ3 = (vx sin α + vz cos α− V0)∂ξ. (A.23)

Equation (A.17) indicates that F
(0)
r is independent of the angle φ. The solvability of (A.18)

implies e
(1)
z = 0 and by (A.12), e(1)

x =
Λ0

c
b(0)
y where Λ0 =

V0

cos α
. This equation is then solved

as

f (0)
r = DF (0)

r sin φ
b
(1)
y

B0

(A.24)

with D = (Λ0 − v‖)∂v⊥ + v⊥∂v‖ . We also used the solvability condition of Eq. (A.19), that

reads f
(0)

r = 〈f (0)
r 〉 ≡ 1

2π

∫
f

(0)
r dφ = 0.
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It follows from the sin φ-dependence of f
(0)
r that ∂φf

(1)
r only contains sin φ and sin 2φ

Fourier modes.

The solvability condition of Eq. (A.20) reads

qr

mr

e(2)
z ∂v‖F

(0)
r − qr

2cmr

D+DF (0)
r b(1)

x

b
(1)
y

B0

− qr

cmr

D+〈sin φ∂φf
(1)
r 〉b(1)

y

−v⊥ sin α∂ξ〈sin φ∂φf
(1)
r 〉+ (v‖ cos α− V0)∂ξf

(1)

r = 0, (A.25)

where D± = (Λ0 − v‖)(∂v⊥ ± v−1
⊥ ) + v⊥∂v‖ and

〈sin φ∂φf
(1)
r 〉 = −1

2
DF (0)

r

b
(1)
x

B0

+
cos α

2Ωr

(v‖ − Λ0)DF (0)
r ∂ξ

b
(1)
y

B0

. (A.26)

Assuming that the perturbations of the distribution function vanish at large ξ, we obtain

(v‖ − Λ0)f
(1)

r = (v‖ − Λ0)Rr + Sr∂v‖F
(0)
r (A.27)

with

Rr =
1

2
D+DF (0)

r

b
(1)2
y

2B2
0

− v⊥
2

∂v⊥F (0)
r A +

sin α

2Ωr

v⊥DF (0)
r ∂ξ

b
(1)
y

B0

(A.28)

Sr =
qr

mr

ϕ +
1

2
v2
⊥A, (A.29)

where we have defined A =
b
(1)
z

B0

+
b
(1)2
y

2B2
0

and e(2)
z = −∂zϕ = cos α∂ξϕ. As done in Ref.16, the

electric potential ϕ can be determined in terms of the magnetic perturbations A, using Eq.

(A.4) that, to leading order, gives

sin α
Λ0

c
∂ξb

(1)
y = 4π

∑
r

qrnr

∫
f

(1)

r d3v. (A.30)

We do not use this approach here, but rather eliminate the electric potential using the

expression of the density perturbations.12

Furthermore, one has16 ∫
f

(1)

r dv‖ =

∫
Rrdv‖ + GrSr (A.31)

where we have defined the operator

Gr = P

∫
∂v‖F

(0)
r

v‖ − λ
dv‖ + π(∂v‖F

(0)
r )|v‖=λHξ, (A.32)

Hξ being the Hilbert transform with respect to the ξ variable.
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The z-component of Eq. (A.3) (together the previously obtained condition e
(1)
z = 0),

leads to the relation

sin α∂ξb
(1)
y =

4π

c

∑
r

qrnr

∫
v‖f

(1)

r d3v. (A.33)

The x-component of Eq. (A.3) taken to leading order gives

− cos α∂ξb
(1)
y =

4π

c

∑
r

qrnr

∫
v⊥ cos φf̃ (1)

r d3v

= −4π

c

∑
r

qrnr

∫
v⊥ sin φ∂φf̃

(1)
r d3v, (A.34)

which, when using (A.19), provides the dispersion relation for oblique Alfvén waves, in the

form

Λ2
0 = v2

A +
p

(0)
⊥

ρ(0)
−

p
(0)
‖

ρ(0)
. (A.35)

It involves the parallel and transverse pressures p
(0)
‖ =

∑
r p

(0)
‖r and p

(0)
⊥ =

∑
r p

(0)
⊥r, to-

gether with the corresponding density ρ(0) =
∑

r ρ
(0)
r . Here, p

(0)
‖r = mrnr

∫
v2
‖F

(0)
r d3v,

p
(0)
⊥r = mrnr

∫ v2
⊥
2

F
(0)
r d3v and ρ

(0)
r = mrnr

∫
F

(0)
r d3v denote the contributions of the vari-

ous species to the above quantities. Furthermore, v2
A =

B2
0

4πρ(0)
is the Alfvén velocity.

Finally, the y-component of Eq. (A.3) gives

∂ξ(cos αb(1)
x − sin αb(1)

z ) =
4π

c

∑
r

qrnr

∫
v⊥ sin φf̃ (2)

r d3v, (A.36)

that also rewrites

− 1

sin α
∂ξ

b
(1)
z

B0

=
4π

cB0

∑
r

qrnr

∫
v⊥ cos φ∂φf̃

(2)
r d3v. (A.37)

It follows that

− 1

sin α
∂ξ

b
(1)
z

B0

= − 4π

cB0

∑
r

qrnr

∫
(Λ0 − v‖)f

(1)

r d3v
b
(1)
y

B0

+
4π

B2
0

sin α
∑

r

mrnr

∫
v2
⊥
2

∂ξ

(
f

(1)

r − 1

2
〈sin 2φ∂φf̃

(1)
r 〉

)
d3v

−4π

B0

cos α
∑

r

mrnr

∫
v⊥(v‖ − Λ0)∂ξ〈sin φ∂φf̃

(1)
r 〉d3v. (A.38)

We are then led to compute

〈sin 2φ∂φf̃
(1)
r 〉 =

1

2
D−DF (0)

r

b
(1)2
y

2B2
0

+
sin α

4Ωr

v⊥DF (0)
r ∂ξ

b
(1)
y

B0

. (A.39)
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Using Eqs. (A.30) and (A.33) (with the condition Λ0 ¿ c) together with the relation

∑
r

mrnr

∫
v2
⊥
2

f (1)
r d3v = p

(1)
⊥ +

cos2 α

sin α

]
∂ξ

b
(1)
y

B0

(A.40)

where, as previously, we neglect the mass me of the electrons compared to that mp of the

protons and defined v2
∆r =

p
(0)
⊥r − p

(0)
‖r

ρ(0)
.

APPENDIX B: KINETIC FORM OF HYDRODYNAMIC QUANTITIES

1. Density fluctuations

The density fluctuations of the particles of r-species, defined to leading order as ερ
(1)
r with

ρ(1)
r = mrnr

∫
f

(1)

r d3v, (B.1)

are given by

ρ(1)
r = Prϕ + (ρ(0)

r +Or)A− sin α

Ωr

Λ0ρ
(0)
r ∂ξ

(b
(1)
y

B0

)
, (B.2)

where

Pr = 2πqrnr

∫ ∞

0

Grd(
v2
⊥
2

) , Or = 2π
∑

r

mrnr

∫ ∞

0

v2
⊥
2
Grd(

v2
⊥
2

). (B.3)

The total density fluctuations are then given by ρ(1) =
∑

r

ρ(1)
r .

2. Hydrodynamic velocities

The hydrodynamic velocity transverse to the local magnetic field is given by

U⊥ =

∑
r mrnr

∫
V⊥frd

3v∑
r mrnr

∫
frd3v

(B.4)

where V⊥ = v − (v · b̂)̂b with b̂ = b/|b|. One easily checks that V⊥ ≡
(
V⊥x, V⊥y, V⊥z

)
with

V⊥x = v⊥ cos φ− εv‖
b
(1)
x

B0

(B.5)

V⊥y = v⊥ sin φ− ε1/2v‖
b
(1)
y

B0

− εv⊥ sin φ
b
(1)2
y

B2
0

(B.6)

V⊥z = −ε1/2v⊥ sin φ
b
(1)
y

B0

+ ε(2v‖
b
(1)2
y

2B2
0

− v⊥ cos φ
b
(1)
x

B0

) (B.7)
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and thus

U⊥ ≡
(
U⊥x, U⊥y, U⊥z

)

=
(
− εΛ0

b
(1)
x

B0

− ε
cos α

Ωp

(v2
A + v2

∆e)∂ξ

(b
(1)
y

B0

)
, −ε1/2Λ0

b
(1)
y

B0

, εΛ0
b
(1)2
y

B2
0

)

(B.8)

where terms in me/mp have been neglected.

The hydrodynamic velocity along the local magnetic field is

U‖ =

∑
r mrnr

∫
V‖frd

3v∑
r mrnr

∫
frd3v

(B.9)

with V‖ = (v · b̂)̂b. One gets U‖ = εU
(1)
‖ + · · · with

U
(1)
‖ = −Λ0

b
(1)2
y

2B2
0

+
Λ0

ρ(0)
Pϕ +

Λ0

ρ(0)
OA− sin α

Ωp

v2
∆p∂ξ

b
(1)
y

B0

, (B.10)

that also rewrites

U
(1)
‖ = −Λ0

b
(1)2
y

2B2
0

+ Λ0
ρ(1)

ρ(0)
− Λ0A +

sin α

Ωp

(Λ2
0 − v2

∆p)∂ξ
b
(1)
y

B0

. (B.11)

By projecting U⊥ + U‖b̂ on the three axes, we recover the hydrodynamic velocity compo-

nents

ux ≈ −ε
(
Λ0

b
(1)
x

B0

+ (v2
A + v2

∆e)
cos α

Ωp

∂ξ
b
(1)
y

B0

)
(B.12)

uy ≈ −ε1/2Λ0
b
(1)
y

B0

(B.13)

uz ≈ ε
(
Λ0(

ρ(1)

ρ(0)
− b

(1)
z

B0

) + (v2
A + v2

∆e)
sin α

Ωp

∂ξ
b
(1)
y

B0

)
. (B.14)

3. Gyrotropic pressures

In the framework of a mono-fluid theory, the transverse and parallel components of the

gyrotropic pressures are defined as

p⊥r = mrnr

∫
1

2
(V⊥ − U⊥)2frd

3v (B.15)

p‖r = mrnr

∫
(V‖ − U‖)

2frd
3v. (B.16)
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Defining the operators

M =
∑

r

Mr = 2π
∑

r

qrnr

∫ ∞

0

d(
v2
⊥
2

)
v2
⊥
2
Gr (B.17)

N =
∑

r

Nr = 2π
∑

r

mrnr

∫ ∞

0

d(
v2
⊥
2

)
v4
⊥
4
Gr, (B.18)

the leading pressure perturbations (or order ε) are given by

p
(1)
⊥r = mrnr

∫
v2
⊥
2

f
(1)

r d3v − (Λ2
0

ρ
(0)
r

ρ(0)
− v2

∆r)ρ
(0) b

(1)2
y

2B2
0

= Mrϕ + (2p
(0)
⊥r +Nr)A− 2

sin α

Ωr

Λ0p
(0)
⊥r∂ξ

b
(1)
y

B0

(B.19)

and

p
(1)
‖r = mrnr

∫
v2
‖
2

f
(1)

r d3v − v2
∆rρ

(0) b
(1)2
y

2B2
0

= (−qrnr + Λ2
0Pr)ϕ + (−ρ(0)v2

∆r + Λ2
0Or)A− sin α

Ωr

Λ0p
(0)
‖r ∂ξ

b
(1)
y

B0

. (B.20)

4. Heat fluxes

a. Gyrotropic heat fluxes

The gyrotropic components of the heat flux tensor

qr =
∑

r

mrnr

∫
(v − U)⊗ (v − U)⊗ (v − U)frd

3v, (B.21)

(U denoting the hydrodynamic velocity) read

q⊥r = mrnr

∫
1

2
(V⊥ − U⊥)2(V‖ − U‖)frd

3v (B.22)

q‖r = mrnr

∫
(V‖ − U‖)

3frd
3v. (B.23)

To leading order, one has q⊥r = εq
(1)
⊥r + · · · and q‖r = εq

(1)
‖r + · · · where

q
(1)
⊥r = −p

(0)
⊥r

(
U

(1)
‖ + Λ0

b
(1)2
y

2B2
0

)
+ Λ0Mrϕ + Λ0NrA

+
sin α

Ωr

mrnr

∫
(v2
‖v

2
⊥ −

1

4
v4
⊥)F (0)

r d3v∂ξ
b
(1)
y

B0

, (B.24)

q
(1)
‖r = −3p

(0)
‖r

(
U

(1)
‖ + Λ0

b
(1)2
y

2B2
0

)
+ Λ3

0ρ
(1)
r − Λ0(Λ

2
0ρ

(0)
r + p

(0)
⊥r)A

−qrnrΛ0ϕ +
sin α

Ωr

[
Λ4

0ρ
(0)
r + mrnr

∫ (
v4
‖ −

3

2
v2
⊥v2

‖
)
d3v

]
∂ξ

b
(1)
y

B0

, (B.25)
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with U
(1)
‖ + Λ0

b
(1)2
y

2B2
0

given by Eq. (B.11).

b. Heat flux contributions to the gyrotropic pressures

The longitudinal and transverse pressures (relatively to the local magnetic field) involve

tr∇ · qr and b̂ · ∇ · qr · b̂. The heat flux components being also of order ε, the distortion of

the magnetic field lines can be neglected to leading order. We are thus led to write

tr ∇ · qr ≈ ∂x(qr 111 + qr 221 + qr 331) + ∂z(q⊥r + q‖r) (B.26)

and

b̂ · (∇ · qr) · b̂ ≈ ∂xqr 331 + ∂zq‖r, (B.27)

where the qr ijk’s hold for the components in the local frame of the heat flux associated with

the particles of species r. One has

qr 331 ≡
∫

(V‖ − U‖)
2(V⊥x − U⊥x)frd

3v = εq
(1)
r 331 + · · · (B.28)

with

q
(1)
r 331 =

{cos α

Ωp

p
(0)
‖r

[
v2

A + v2
∆e −

Ωp

Ωr

(v2
A + v2

∆p + v2
∆e)

]
− cos α

Ωr

∫
(v4
‖ −

3

2
v2
⊥v2

‖)F
(0)
r d3v

}
∂ξ

b
(0)
y

B0

.

(B.29)

Similarly, to leading order

qr 111 + qr 221 =

∫
(V⊥ − U⊥)2(V⊥x − U⊥x)frd

3v = ε(q
(1)
111,r + q

(1)
221,r) + · · · (B.30)

with

q
(1)
r 111+q

(1)
r 221 =

{
−cos α

Ωr

[
4p

(0)
⊥rΛ

2
0+2mrnr

∫
(v2
‖v

2
⊥−

1

4
v2
⊥)F (0)

r d3v
]
+4

cos α

Ωp

p
(0)
⊥r(v

2
A+v2

∆e)
}

∂ξ
b
(0)
y

B0
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(B.31)

c. Heat flux contribution to the non-gyrotropic pressures

Neglecting the magnetic field line distortions that are irrelevant at the considered order,

we write the non-gyrotropic contribution to ∇ · qp in the form

∇ · qp = ∂k




1
2
(qp 11k − qp 22k) qp 12k qp 13k

qp 21k −1
2
(qp 11k − qp 22k) qp 23k

qp 31k qp 32k 0


 (B.32)
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where we concentrate on the proton contribution. To leading order

qp ijk =

∫
(vi − ui)(vj − uj)(vk − uk)fpd

3v ≈ εq
(1)
p ijk. Since we assume no dependency

in the y-variable, we are led to compute

q
(1)
p 111 = −3p

(0)
⊥pu

(1)
x + mpnp

∫
v3
⊥ cos3 φf (1)

p d3v (B.33)

q
(1)
p 221 = −p

(0)
⊥pu

(1)
x + mpnp

∫
v3
⊥ sin2 φ cos φf (1)

p d3v (B.34)

q
(1)
p 112 = mpnp

∫
v3
⊥ cos2 φ sin φf (1)

p d3v (B.35)

q
(1)
p 113 = −p

(0)
⊥pu

(1)
z + mpnp

∫
v2
⊥v‖ cos2 φf (1)

p d3v (B.36)

q
(1)
p 223 = −p

(0)
⊥pu

(1)
z + 2(p

(0)
⊥p − p

(0)
‖p )uy

b
(1)
y

B0

+ mpnp

∫
v2
⊥v‖ sin2 φf (1)

p d3v (B.37)

q
(1)
p 123 = mpnp

∫
v2
⊥v‖ sin φ cos φf (1)

p d3v (B.38)

q
(1)
p 133 = −p

(0)
‖p u(1)

x + mpnp

∫
v⊥v2

‖ cos φf (1)
p d3v (B.39)

q
(1)
p 233 = mpnp

∫
v⊥v2

‖ sin φf (1)
p d3v. (B.40)

Since f
(1)
p only projects on 1, cos φ and cos 2φ, one has

q
(1)
p 112 = q

(1)
p 123 = q

(1)
p 233 = 0, (B.41)

and the only integrals to be computed read

mpnp

∫
v3
⊥ sin φ∂φf

(1)
p d3v = 4Λ0p

(0)
⊥p

b
(1)
x

B0

+
(
4Λ2

0p
(0)
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+4mpnp
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⊥
4

)F (0)
p d3v
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∂ξ
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(B.42)

mpnp
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(1)
p d3v = Λ0p
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+
(
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(B.43)

mpnp

∫
v2
⊥v‖ sin 2φ∂φf

(1)
p d3v = −8Λ0(p

(0)
⊥p − p

(0)
‖p )

b
(1)2
y

2B2
0

+

∫
(v2
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2
⊥ −

v4
⊥
4

)F (0)
p d3v

sin α

Ωp

∂ξ
b
(1)
y
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. (B.44)

The fourth-order velocity moments are explicited in Appendix C where bi-Maxwellian dis-

tribution functions are assumed for the equilibrium state.
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APPENDIX C: EQUILIBRIUM BI-MAXELLIAN DISTRIBUTION

It is possible to simplify the above general expressions for the hydrodynamic moments

by assuming that the plasma contains electrons and only one species of ions (with Z = 1),

with bi-Maxwellian equilibrium distribution functions

F (0)
r =

1

(2π)3/2

m
3/2
r

T
(0)
⊥r T

(0)1/2
‖r

exp
{
−

( mr

2T
(0)
‖r

v2
‖ +

mr

2T
(0)
⊥r

v2
⊥
)}

. (C.1)

Using the quasi-neutrality condition that prescribes nr = n(0) and ρ
(1)
r = mrn

(1), one obtains

Mr = −n(0)qr
T

(0)
⊥r

T
(0)
‖r
Wr , Nr = −2n(0)T

(0)2
⊥r

T
(0)
‖r
Wr , (C.2)

Or = −n(0)mr
T

(0)
⊥r

T
(0)
‖r
Wr , Pr = −n(0)mrqr

1

T
(0)
‖r
Wr (C.3)

where, normalizing the propagation velocity of the wave by the thermal velocity vth,r =√
T

(0)
‖r /mr in the form cr = Λ0/vth,r, one writes

Wr ≡ W(cr) =
1√
2π

P

∫
ζe−ζ2/2

ζ − cr

dζ +

√
π

2
cre

−c2r/2Hξ, (C.4)

or42

W(cr) = 1− cre
− c2r

2

∫ cr

0

e
ζ2

2 dζ +

√
π

2
cre

−c2r/2Hξ. (C.5)

This function is related to the plasma response function R used by SHD by W(X) =

R(X/
√

2).

This leads to express

p
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p
(0)
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(C.6)

and

T
(1)
‖r

T
(0)
‖r

≡
p

(1)
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(0)
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n(0)
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n(0)
− A +

sin α

Ωr

Λ0∂ξ
b
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y
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)
. (C.7)
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Similarly,

T
(1)
⊥r

T
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(1)
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. (C.8)

When considering the heat flux components, we have to evaluate the integrals

mrnr

∫
(v4
‖ −

3

2
v2
‖v

2
⊥)F (0)

r d3v = −3v2
∆rp
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‖r (C.9)

and
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∫
(v2
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2
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4
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r d3v = −2v2
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We get
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(C.11)

and
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, (C.12)

that also rewrites

q
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. (C.13)

Note that for α = 0, the parallel and transverse energy fluxes computed in12,16 in the case

of parallel Alfvén waves are recovered.

Furthermore, the non-zero coefficients entering the non-gyrotropic proton heat flux com-

ponents considered in Appendix B, become

q
(1)
p 111 − q

(1)
p 221 = 0 (C.14)
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(C.15)

q
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, (C.16)
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together with
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(C.17)

where we have used Eqs. (B.24), (B.11) and (B.19).

Equation (B.32) then reads

∇ · qp =




λp 0 µp

0 −λp 0

µp 0 0


 (C.18)

with
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