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ABSTRACT

A monofluid model including Landau damping, generalized

Ohm’s law and FLR corrections is presented for

a magnetized collisionless electron-proton plasma with

distribution functions close to bi-Maxwellians. Applications

to the dynamics of weakly nonlinear dispersive MHD waves

are discussed.
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I. Introduction

The magnetosheath (buffer between the earth bow shock and the

magnetopause) plays an important role: decrease the impact of solar

activity on the earth environment.

- There is a wide spectrum of low frequency modes (Alfvén, slow and fast
magnetosonic, mirror). Cluster spacecrafts allow one to determine k-spectra
and clearly identify modes (Sahraoui et al. 2004).

- Size of perturbuations can be smaller than the ion gyroradius.

- The plasma is relatively warm and collisionless.

- Landau damping and finite Larmor radius corrections play an important role.

- There is evidence of coherent solitonic structures in the form of magnetic holes and
shocklets, whose origin is still debated (Tsurutani et al. 2004).



Another context

Turbulence at small scale in the warm and hot ionized phases of the Interstellar
medium, in HII regions or in the Galactic halo.

Several questions can be asked:

- What is the connection between this small-scale turbulence and the cascade originating from the

large-scale motions

- What is the role of these fluctuations on cosmic ray scattering and acceleration or vice-versa the

impact of cosmic ray streaming instabilities in generating such fluctuations

- What is the minimal reasonable model for understanding short-scale fluctuations?

- What modes and structures are involved? what are the 3D spectra?

- What is the dominant dissipation mechanism and the resulting heating? How does it affect

chemestry?



Electron density irregularities (scintillation measurements) extends to (10-100 km), beyond the ion

Larmor radius and well below the ion-neutral and Coulomb mean free paths:

ion gyro-radius ≈ 108/B(µG) cm.

ion-neutral mean free path: ≈ 1015/n cm.

Coulomb mean free path: ≈ 1014/ni cm.

The model should include

- equations for the ions, electrons and neutrals

- coupling to dust, cosmic rays, radiation

- proper account of dispersive and kinetic effects of plasma waves

- inclusion of (few) collisions



Which tool?

• Description of intermediate-scale dynamics by usual MHD is questionable.

• Numerical integration of Vlasov-Maxwell or gyrokinetic equations often beyond the
capabilities of present day computers.

• This suggests the development of a reduced description that retains most of the
aspects of a fluid model but includes realistic approximations
of the pressure tensor and wave-particle resonances.

Should remain simple enough to allow numerical simulation of 3D dispersive MHD
turbulence with realistic dissipation.

? Gyrofluids: hydrodynamic moments obtained from gyrokinetic equations. Capture
high order FLR but need a specific closure and are written in a local reference frame.

? Landau fluids [Hammett and co-authors (1990s)]: monofluid taking into account
wave-particle resonances in a way consistent with linear kinetic theory.



II. Outline of the method

• Goal: Extend Landau-fluid model, to reproduce the weakly nonlinear dynamics
of dispersive MHD (magnetosonic and Alfvén) waves whatever their direction of
propagation, in particular of kinetic Alfvén waves (KAW) with kρL ≤ 1, by retaining
FLR corrections and a generalized Ohm’s law in addition to Landau damping.

• Starting point: Vlasov-Maxwell (VM) equations.

• Small parameter: ratio between the ion Larmor radius and the typical (smallest)
wavelength. Field amplitudes also supposed to be small.

• Main problem: Exact hydrodynamic equations are obtained by taking moments of
VM equations. The hierarchy must however be closed and the main work resides in a
proper determination of the pressure tensor.

• Assumptions: Homogeneous equilibrium state with bi-Maxwellian distribution
functions.



III. The equations:

• From Vlasov-Maxwell equations, derive a hierarchy of moment equations for each
particle species r.

• Monofluid approximation.
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∂t(ρu) +∇ · (ρu⊗ u) +∇ · p− 1

c
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Two problems:
(a) Heat fluxes require a closure approximation.
(b) Equation for pr involves small time scale.

• Closure: Reductive perturbative expansion on the Vlasov-Maxwell
equations associated with the various types of (long) MHD waves
provides asymptotically exact (possibly nonlocal) relations
between the heat fluxes and lower order moments, from
which we infer general closure assumptions.

Advantages:
Relative simplicity: isolates waves of different kinds and get rid of irrelevant terms.
Rigor: expansion in terms of a single small parameter.
Bonus: allows to test the equations in the weakly nonlinear regime.

Provides relations between heat fluxes and lower order moments.



Modeling the heat fluxes:
The gyrotropic and non-gyrotropic contributions to the heat fluxes qr are separated
by writing qr = qG

r + qNG
r with

qG
ijk,r = q‖rb̂ib̂j b̂k + q⊥r(δij b̂k + δikb̂j + δjkb̂i − 3b̂ib̂j b̂k),

Linear (or weakly nonlinear) kinetic theory in the long-wave asymptotics:
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Replace the plasma response function by two or four poles Padé approximants, in a
way that leads to initial value problems for the heat fluxes.



Heat flux closure:
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with p‖r = nT‖r and p⊥r = nT⊥r.

To properly describe oblique and kinetic Alfvén waves, these equations have to
be modified by including the effect of parallel current. Nongyrotropic heat flux
components are also to be modeled by fitting with the kinetic theory.



Equations for the pressures

Applying the trace operator and the contracting with b̂⊗ b̂ on both sides of the
pression equation gives equations for the gyrotropic pressures

∂tp⊥r +∇ · (u p⊥r) + p⊥r∇ · u− p⊥r b̂ · ∇u · b̂ +
1
2
(tr∇ · qr − b̂ · (∇ · qr) · b̂)

+
1
2
(s1r − s2r + s3r) = 0

∂tp‖r +∇ · (u p‖r) + 2p‖r b̂ · ∇u · b̂ + b̂ · (∇ · qr) · b̂ + s2r − s3r = 0.

CGL eqs. with heat fluxes and coupling to non-gyrotropic components
s1r = tr (πr · ∇u)S , s2r = (πr · ∇u)S : b̂⊗ b̂ , s3r = πr : d

dt(̂b⊗ b̂).

For weak perturbations of an equilibrium state with uniform density, gyrotropic
pressures and uniform magnetic field, s1r, s2r and s3r are subdominant at all the
relevant orders of the present analysis.

Both gyrotropic and non-gyrotropic heat flux components a priori contribute to the
gyrotropic components of ∇ · qr.



Finite Larmor radius corrections:

The non-gyrotropic part of the pressure satisfies

πr × b̂− b̂× πr = kr

where a = a− 1
2a : (I− b̂⊗ b̂)(I− b̂⊗ b̂)− (a : b̂⊗ b̂)̂b⊗ b̂,

This equation is solved perturbatively

• me/mi ¿ 1: only non-gyrotropic corrections due to ions are relevant.

• Leading order π
(1)
p reproduces Yajima’s (1966) result
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IV. Validation
• For parallel Alfvén waves, the long-wave reductive perturbative expansion performed on the Landau-

fluid model reproduces KDNLS equations derived from Vlasov-Maxwell, up to the replacement of the

plasma response function W by the corresponding two- or four-pole approximants.

• For Alfvén waves at finite angle of propagation, FLR corrections of order 1/Ω2
p are to be retained.

The governing equation is linear and reads, assuming me
mp

¿ β ¿ Te
Tp

, (adiabatic protons and

isothermal electrons) and β ¿ 1 (ξ: stretched coordinate along the propagation)
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• For magnetosonic waves, Landau damping rate is (assuming me
mp
¿ β ¿ Te
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)
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an expression identical to that found by a direct derivation from the Vlasov-Maxwell equations. The

long-wave equation is KdV+damping term.



VI. Numerical simulations of the model in a slab geometry

• Landau dissipation for an oblique fast wave.
To approach the asymptotic regime we take Te/Tp = 10, and prescribe small values
of β. An agreement of the order of 1 % percent is obtained in the regime where β is
such that Landau dissipation dominates the dynamics.
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Figure 1: Time evolution (in lin-log scales) of magnetosonic wave energy
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∫
[ρ(u2

x + ũ2
z) + (bz − B0 sin α)2]dx, assuming Rp = 7. 10−3.



An Alfvén wave is generated that rapidly evolves to a large-scale profile, the
small-scale oscillations being damped at a rate that scales like k3/R2

p. After a while,
the magnetosonic contribution to the solution has been almost completely dissipated
and the resulting state can be viewed as an Alfvén wave essentially insensitive to
Landau damping.

This evolution results in an increase of T‖e by about 20% in the case of a wave
of initial amplitude a0 = 2.2 10−2. The associated time scale corresponds to the
formation and dissipation of the high frequency modes in the dispersive shocks.
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Figure 2: Snapshots at times t = 1, 32, 45, 101, 150, 501, 1002, 4000 and 17000 of the velocity

component ũz (left) and uy (right) for a magnetosonic wave of initial amplitude a0 = 2.2 10−2, with

β = 10−2 and Rp = 7 10−3.



• Small dissipation limit

When dissipation is small enough to permit a balance between dispersion and
nonlinearity, a reductive perturbative expansion leads to a perturbed Korteweg de
Vries equation (Janiki et al.)

To simulate such a regime, it is appropriate to decrease the scale separation (taking
Rp = 10−1) and increase the wave amplitude (with a0 = 10−2).

We first observe, on the typical steepening time scale, the formation of solitonic
structures with a hump for the velocity uz and density depressions correlated with
magnetic holes.

Eventually, on a time 15 times larger, the solution profile becomes significantly
distorted and progressively evolves to a quasi-stationary wave. In this regime, the
dissipation of the magnetosonic wave remains very weak during the whole simulation
and the Alfvén waves remain subdominant.
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Figure 3: Profiles of the ũz component (left), of the density perturbation (middle) and of the

magnetic field perturbation (right) at successive times (denoted by solid, dashed, dotted-dashed and

triple-dotted-dashed lines) separated by 1.5 units starting at t = 104.3 (top) and at t = 1502.3 (bottom),

in the case a0 = 10−2, Rp = 10−1 and β = 10−3.



• Parametric instabilities of parallel propagating Alfvén waves
Non dispersive regime
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Figure 4: Growth rates for β = 0.6 and Te/Ti = 33 (left), Te/Ti = 5 (middle) and Te/Ti = 1

(right).

Reduction of the instability growth rate and broadening of its spectral range, as Ti is
increased. Compares very well with drift-kinetic treatment of Inhester (1990).



Saturation by Landau damping, with very small excitation of higher harmonics.
Ions are predominantly heated in the nonlinear phase.

Figure 5: Time evolution of the amplitude logarithm for density mode k=1.5 in run with Te = Ti (left),

time evolution of ion parallel (solid) and ion perpendicular (dashed-dotted) temperature (middle), same for

electrons (right).



Dispersive regime

For the right-handed mode at β = .4 and a pump amplitude B0 = 0.1, an
algebraic inverse cascade develops. Excitation is transfered to larger
and larger scales while the direction of propagation of the wave
switches alternatively at each step of the process.

At β = .45, a pump amplitude B0 = 0.5 and Te = 0 the cascade extends to k = 1.
Each step is associated with a parallel ion temperature increase.
Electrons remain cold, which supports the isothermal fluid description of electrons in
the hybrid code (Vasquez 1995).

Figure 6: Ion temperature evolution for a run with a right-handed wave with amplitude b0 = .5, in a

plasma with β = .45 and Te = 0.



COMPARISON WITH FLUID THEORY

Decay instability can persist at high values of β. Taking Rp = 0.1, b0 = .5 and β = 5,
a decay instability is clearly visible at early time, that leads to the dominance of the
(backward) m = 4 mode, whereas the fluid theory predicts a modulational instability.
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Figure 7: Spectral density for the complex quantity b+ = bx + iby in the linear phase of the decay

instability at t = 2000 (left) and in the nonlinear phase at t = 3700 (right) for the run with a right-hand

polarized wave with amplitude b0 = .5, in a plasma with β = 5, Rp = .1 and Ti/Te = 1.5.

When taking Rp = 1 a small-scale instability associated with FLR terms is observed (limit of validity

of the model: unsufficient scale separation).



For the left-handed mode at β = 1.5 kinetic effects induce a modulational instability
(Mjølhus & Wyller 1988) whereas fluid theory predicts only beat instability.
This is verified numerically, choosing k0 = 0.408 (length unit being the ion inertial
length) and a pump amplitude B0 = 0.3. Ions significantly heated but not electrons.

Figure 8: Spectral density for the complex quantity b+ in the linear phase of the modulational instability

at t = 2000 (left) and in the nonlinear phase at t = 3700 (right) for the run with LH wave with B0 = 0.3,

β = 1.5 and Te = 2Tp.



When T⊥ > T‖ mirror modes may become unstable (Hasegawa).
The description of these modes requires an accurate modeling of the kinetic effects .

When Te = Ti, the condition for the instability reads
p
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p
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> 1 +

1

p
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B2
0

8π
. Assuming an angle of

propagation such that cos α = 0.01 and β = 1 with Rp = 10−10 we numerically calculate the

growth rate. The agreement is excellent.
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Figure 9: Mirror mode growth rate predicted by the kinetic theory and given by time integration of

the model equations, versus the equilibrium temperature anisotropy for a plasma with β = 1 and equal

temperatures for electrons and protons.



Perspectives

• Benchmark the model by comparison with PIC and possibly Vlasov-Maxwell
simulations.

• Explore the nonlinear stage of parametric instabilities.

• Modelisation of coherent structures (magnetic holes and shocklets) observed in the
solar wind and magnetosheath.

• Simulation of dispersive Alfvén wave turbulence:

? Generation of KAW at small scales: importance of higher-order FLR corrections (that

are to be described in a computationally manageable way). Also important to reproduce the
mirror instability at small scale.

? Self-consistent computation of turbulent dissipation.
? Determination of the fast wave spectrum (important for cosmic ray scattering).
? Possible emergence of coherent structures.

• Treat electrons as a Landau fluid in hybrid simulations.

• Explore the possible description of nonlinear Landau damping.
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