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Abstract: In this article, we present new high-order, semi-Lagrangian schemes for

solving the Vlasov-Poisson system on an unstructured four-dimensional phase-space

mesh. The method is based on the propagation of the distribution function and its

jacobian by following the characteristic curves backward. Then the distribution

function is reconstructed using high-order and few diffusive interpolation operators

coming from the finite element and the computer aided geometric design (CAGD)

literature. Numerical tests in plasma physics and charged-particle beam transport are

investigated.

Keywords: Semi-Lagrangian schemes, Vlasov-Poisson, charge particle beams,

plasma physics

1. INTRODUCTION

Many problems in plasma physics as well as in beam physics are modeled by the

Vlasov equation, nonlinearly coupled to Poisson’s equation or the Maxwell
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system for the self-consistent fields. Such a model can be solved numerically

using the particle-in-cell (PIC) method. This method solves the Vlasov

equation by directly integrating the equations of motion of the particles in

time, the self-consistent fields being computed on a grid of configuration

space. This method has been very successful for a vast variety of physical

problems. However, in some cases it is useful to get a more precise description

of the distribution function, especially in the less-populated parts of phase

space. In this case, it is useful to use a more precise numerical method to

directly solve the Vlasov equation on a grid of phase space. Many such

methods have been investigated (Fijalkow 1999; Filbet et al. 2001; Feix et al.

1994; Filbet and Sonnendrücker 2003; Ghizzo et al. 1990; Nakamura and

Yabe 1999). One method that has been particularly successful is the semi-

Lagrangian method which has been introduced in a simplified form, using a

time-splitting procedure and cubic spline interpolation, by Cheng and Knorr

(1976). This method has been extended to a more general context in

(Sonnendrücker et al. 1999) still using a uniform grid of phase space. The

semi-Lagrangian method consists in following the characteristic curves

backward at each time-step and interpolating the values at the feet of characteris-

tics by an interpolation scheme. Therefore, the semi-Lagrangian method rests

on solving the ordinary differential equations (ODEs) (Ẋ(t) ¼ f(t, X(t))) associ-

ated to the transport operator and building the less diffusive and the more

accurate stable interpolation operator. If we choose to solve the full transport

operator we have to solve nonlinear ODEs which can be solved by appropriate

ODE solver like Runge-Kutta schemes. Nevertheless, as the second member

of the ODEs ( f(t, X(t))) is known at time tn and the unknowns of the ODEs

(X(t)) are known at time tnþ1 (the mesh nodes), then solving the ODE leads to

solving a fixed-point problem where convergence numerical difficulties can

arise. Another strategy is to split the complete transport operator in several

simple transport operators whose associated ODEs are more simple to solve. In

the case of the Vlasov-Poisson system, if we split the transport in physical

space and the transport in velocity space, we can integrate the characteristic

curves backward analytically. Then we will choose the latter strategy.

Therefore the method presented in this article still belongs to the class of

semi-Lagrangian methods but has the distinctive feature of using a splitting of

the transport operator.

In some cases, for geometrical reasons in particular, it is very convenient

to use an unstructured mesh of configuration space. In addition, unstructured

meshes are well suited for adaptive mesh refinement which is very useful to

increase the ratio of the accuracy on the computational cost as Vlasov

equation describes multi-scale phenomena. A method using an unstructured

mesh of phase space in 1D and 1D1/2 has been introduced in Besse and

Sonnendrücker 2003. This method is based on finite element-like

interpolation techniques on triangular grids and on time-splitting schemes

which are also applied to inhomogeneous equations of the gradients of the

distribution function. A convergence analysis of our method has been

N. Besse et al.312
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carried out in Besse (submitted). This article presents a generalization of this

technique to 2D, i.e., 4D in phase space which is not trivial, as it is not easy

and perhaps not efficient to generate a fully unstructured mesh of 4D space.

Moreover, in the 1D and 1D1/2 case treated in Besse and Sonnendrücker

(2003) we do not need to directly compute the gradient of the electric field

or the gradient of the force applied to the particles because we can deduce

it from other physical quantities (in 1D @x E(t, x) ¼ r(t, x) and in 1D1/2

@r F(t, r) ¼ r(t, r) 2 Er(t, r)/r2 2(I/r2)2 2 v0
2 where I ¼ rvu). In the

two-dimensional case we have to compute the gradient of the electric field

by finding an equation on the gradient. Besides, the treatment of boundary

conditions is more complex on curve domains when we solve the Poisson

equation with high-order finite element methods. This article is devoted to

introducing a new method based on a tensor product like mesh of phase

space which is fully unstructured in configuration space and uniform in

velocity space.

The model we consider throughout the article is the two-dimensional

nonrelativistic Vlasov-Poisson system, which is four-dimensional in phase

space. The 2D nonrelativistic Vlasov equation reads

@f

@t
þ v � rx f þ

q

m
ðEs þ EaÞ � rvf ¼ 0; ð1Þ

where f ¼ f(t, x, v) ¼ f(t, x, y, vx, vy), is the particle distribution function, Ea(x)

is a given applied field which we assume for the sake of simplicity not to

depend on time, and Es(t, x) ¼ Es(t, x, y) is the self-consistent electric field

which is obtained by solving the Poisson equation

Esðt; x; vÞ ¼ �rxfðt; x; yÞ

�Dxfðt; x; yÞ ¼
r

e0

ðt; x; yÞ

rðt; x; yÞ ¼ q
Ð
R2 f ðt; x; vÞdv

8>><>>: ð2Þ

In the sequel, we shall denote by

Fðt; x; yÞ ¼
q

m
ðEs þ EaÞ;

the total force field (divided by the particle mass m), and (Fx, Fy) its

components.

The article is organized as follows: first we present the numerical algorithm

for the Vlasov equation. It makes use of a time-splitting procedure which

enables the decoupling of the transport in configuration space from the

transport in velocity space, and thus the associated meshes. The interpolation

part uses cubic Hermite-type finite elements where the degree of freedom are

the values of the function and its derivatives. Because of this, the gradients

of the force field are needed which calls for a specific, careful procedure to

solve the Poisson equation. This will be described in details. Finally, the code

is validated on two classical problems of plasma physics and beam physics.

Semi-Lagrangian Schemes 313
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2. NUMERICAL RESOLUTION OF THE VLASOV

EQUATION

We numerically solve the Vlasov equation using a semi-Lagrangian algorithm.

This algorithm is based on the property of the distribution function, that it is

conserved along the characteristics of the Vlasov equation (which are the

particle trajectories). Using this feature the distribution function at all the

grid points can be updated with the following two steps:

1. Follow the characteristics of the Vlasov equation backward in time for

one time step.

2. Interpolate the old value of the distribution function at the origin of the

characteristics.

The first step can be rendered very simple thanks to a time-splitting

procedure between position and velocity so that the origin of the characteritics

at each split step can be computed explicitly. The interpolation step is based on

a Hermite-type finite element interpolation procedure. This interpolation

makes use of the values of f as well as of those of the derivatives.

2.1. Time Advance

Let us define the transport operators in position and velocity space associated

to the Vlasov equation. The transport equation with velocity v ¼ (vx, vy) reads

@f

@t
þ vx

@f

@x
þ vy

@f

@y
¼ 0:

Its solution on one time step is given explicitly by

f ðt þ Dt; x; y; vx; vyÞ ¼ f ðt; x� vxDt; y� vyDt; vx; vyÞ:

We denote by Sx,y (Dt) the operator f(t) 7! f(tþ Dt) associated to this

transport equation. In the same way, we define the transport operator in

velocity space at a given position by

@f

@t
þ Fx

@f

@vx
þ Fy

@f

@vy
¼ 0: ð3Þ

Here again, the solution on one time step is given explicitly by

f ðt þ Dt; x; y; vx; vyÞ ¼ f ðt; x; y; vx � FxDt; vy � FyDtÞ:

Indeed, integrating the transport Equation (3) with respect to velocity,

it follows that r ¼ q
Ð

f dvx dvy is conserved by this equation and thus also

Es. For this reason, Fx and Fy are constants in this setting. We then denote

N. Besse et al.314
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by Svx
,vy(Dt) the operator f(t) 7! f(tþ Dt) associated to this transport

equation.

Note that the explicit values of the solution of both these transport

operators can be derived with respect to all the position and velocity

variables and thus yield their espressions with respect to the old ones.

The solution operator S(Dt) associated to the full Vlasov equation can

then be approached with third-order accuracy in time by

SðDtÞ � Sx;yðDt=2Þ WSvx;vy ðDtÞ
WSx;yðDt=2Þ:

This procedure is called the Strang splitting. It is third-order accurate in time

on one time step, and thus second-order accurate globally in time.

Assume the distribution function f(tn, x, y, vx, vy) is known at time tn;

then the following steps are necessary to compute the distribution function

at time tnþ1 with our splitting scheme (note that the terms on the right-

hand-side need to be evaluated thanks to an interpolation procedure that

will be detailed later):

1. First half advection in position space and computation of the derivatives:

f �ðx; y; vx; vyÞ ¼ f ðtn; x� vxDt=2; y� vyDt=2; vx; vyÞ;

@xf
�ðx; y; vx; vyÞ ¼ @xf ðt

n; x� vxDt=2; y� vyDt=2; vx; vyÞ;

@yf
�ðx; y; vx; vyÞ ¼ @yf ðt

n; x� vxDt=2; y� vyDt=2; vx; vyÞ;

@vx f
�ðx; y; vx; vyÞ ¼ @vx f ðt

n; x� vxDt=2; y� vyDt=2; vx; vyÞ

�
Dt

2
@xf ðt

n; x� vxDt=2; y� vyDt=2; vx; vyÞ

@vy f
�ðx; y; vx; vyÞ ¼ @vy f ðt

n; x� vxDt=2; y� vyDt=2; vx; vyÞ

�
Dt

2
@yf ðt

n; x� vxDt=2; y� vyDt=2; vx; vyÞ:

2. Computation of the electric field Es
�(x, y) by using f� as a source term in

the Poisson equation:

E�
s ðx; yÞ ¼ �rxf

�ðx; yÞ

�Dxf
�ðx; yÞ ¼

r�

e0

ðx; yÞ

r�ðx; yÞ ¼ q
Ð
R2 f �ðx; y; vx; vyÞdvxdvy:

8>><>>:
3. Computation of the gradient of the electric field rx Es

�(x, y) by solving

the following derived Poisson equation:

rxE
�
s ðx; yÞ ¼ �rxðrxf

�ðx; yÞÞ
�Dxðrxf

�ðx; yÞÞ ¼ rxr
�ðx; yÞ

rxr
�ðx; yÞ ¼ q

Ð
R2 rxf

�ðx; y; vx; vyÞdvxdvy:

8<:

Semi-Lagrangian Schemes 315
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4. Advection in velocity space and computation of the derivatives:

f ��ðx; y; vx; vyÞ ¼ f �ðx; y; vx � F�
x ðx; yÞDt; vy � F�

y ðx; yÞDtÞ;

@xf
��ðx; y; vx; vyÞ ¼ @xf

�ðx; y; vx � F�
x ðx; yÞDt; vy � F�

y ðx; yÞDtÞ

� Dt@xF
�
x ðx; yÞ@vx f

�ðx; y; vx � F�
x ðx; yÞDt; vy

� F�
y ðx; yÞDtÞ;

� Dt@xF
�
y ðx; yÞ@vy f

�ðx; y; vx � F�
x ðx; yÞDt; vy

� F�
y ðx; yÞDtÞ;

@yf
��ðx; y; vx; vyÞ ¼ @yf

�ðx; y; vx � F�
x ðx; yÞDt; vy � F�

y ðx; yÞDtÞ

� Dt@yF
�
x ðx; yÞ@vx f

�ðx; y; vx � F�
x ðx; yÞDt; vy

� F�
y ðx; yÞDtÞ;

� Dt@yF
�
y ðx; yÞ@vy f

�ðx; y; vx � F�
x ðx; yÞDt; vy

� F�
y ðx; yÞDtÞ;

@vx f
��ðx; y; vx; vyÞ ¼ @vx f

�ðx; y; vx � F�
x ðx; yÞDt; vy

� F�
y ðx; yÞDtÞ

@vy f
��ðx; y; vx; vyÞ ¼ @vy f

�ðx; y; vx � F�
x ðx; yÞDt; vy

� F�
y ðx; yÞDtÞ

where

F�
x ðx; yÞ ¼ E�

x ðx; yÞ þ Eax ðx; yÞ;F
�
y ðx; yÞ ¼ E�

y ðx; yÞ þ Eay ðx; yÞ:

5. Second half advection in position space and computation of the

derivatives:

f ðtnþ1; x; y; vx; vyÞ ¼ f ��ðx� vxDt=2; y� vyDt=2; vx; vyÞ;

@xf ðt
nþ1; x; y; vx; vyÞ ¼ @xf

��ðx� vxDt=2; y� vyDt=2; vx; vyÞ;

@yf ðt
nþ1; x; y; vx; vyÞ ¼ @yf

��ðx� vxDt=2; y� vyDt=2; vx; vyÞ;

@vx f ðt
nþ1; x; y; vx; vyÞ ¼ @vx f

��ðx� vxDt=2; y� vyDt=2; vx; vyÞ

�
Dt

2
@xf

��ðx� vxDt=2; y� vyDt=2; vx; vyÞ

@vy f ðt
nþ1; x; y; vx; vyÞ ¼ @vy f

��ðx� vxDt=2; y� vyDt=2; vx; vyÞ

�
Dt

2
@yf

��ðx� vxDt=2; y� vyDt=2; vx; vyÞ

N. Besse et al.316

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 L

os
 A

ng
el

es
 (

U
C

L
A

)]
 a

t 0
9:

22
 0

6 
Ju

ne
 2

01
2 



2.2. Interpolation Procedure

In order to perform the necessary interpolations, the phase space is gridded in

a tensor product manner, in order to be convenient for the different split steps.

We use a triangular unstructured mesh in position space and a structured

rectangular mesh in velocity space overlying each mesh point of position

space. Each rectangle of the velocity space is then subdivided into two

triangles for the interpolation scheme.

Interpolation schemes on unstructured meshes have been thoroughly

studied in the frame of the finite-element method; see, for example, Ciarlet

(1978). Lagrange-type interpolation methods have been proven to be unstable

on triangles (Besse 2003). On the other hand, Hermite-type methods, in

the spirit of the CIP method introduced by Nakamura and Yabe (1999),

work well. They have been studied for the Vlasov equation in one

dimension in Besse and Sonnendrücker (2003). Before describing the inter-

polation procedure we choose for each advection step, we briefly recall the

description of the finite element we use. In order to use local interpolation

operators, we have to define the triple (T, PT, ST) (see Ciarlet 1978). In fact

we just have to define ST, the set of degrees of freedom on the finite

element T and PT the local interpolation operator on T. Next we denote,

respectively, by P2, and P3 the sets of polynomials of degree two and three.

Finally, we introduce the notation mod where imodj ¼ i2 int(i/j) � j.

The C1 cubic Nielson Rational Singular Element (NC1)

The set of the degrees of freedom is given by

ST ¼ f f ðaiÞ : 1 � i � 3; @xf ðaiÞ; @yf ðaiÞ : 1 � i � 3g;

and the local interpolation operator PT is determined for all f in C1(̄ T̄) by

PT f ¼
X3

i¼1

f ðaiÞðl
2
i ð3 � 2liÞ þ 6wliðlkaij þ l jaikÞÞ

þ rxf ðaiÞ � ða j � aiÞ½l
2
i l j þ wlið3l jaik þ lk � l jÞ�

þ rxf ðaiÞ � ðak � aiÞ½l
2
i lk þ wlið3lkaij þ l j � lkÞ�;

where

w ¼
l1l2l3

l1l2 þ l2l3 þ l1l3

; aij ¼
jjeijj

2 þ jje jjj
2 � jjekjj

2

2jje jjj
2

;

and jjeijj denotes the length of edge ei opposite to the vertex ai. We have the

relationship P2 , PT , P3. In fact, we recover the C1 continuity through the

edge by adding rational polynomials (see Ciarlet 1978; Nielson 1980).

Moreover, NC1 operator has a good stability property since it is a

Semi-Lagrangian Schemes 317
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discretization of the operator M[f] characterized as the unique interpolant

which minimizes the pseudo-norm

ð
T

@2f

@x@y
ðx; yÞ

���� ����2dxdy
 !1=2

among all functions in C4(T) which interpolate any f [ C4(T) and its first

derivative on the boundary of T (see Nielson 1980).

The C1 Cubic Hsieh-Clough-Tocher Element (HCTC)

If ai is a vertex of a triangle T, then we denote, respectively, by li, and mi the

length and the middle of the edge of T opposite to the vertex ai. We denote by

hi the intersection point of the edge opposite to the vertex ai and the perpen-

dicular to this edge which goes through ai. Then we introduce ni ¼ jhi2 aij

and ni the unit exterior normal of the edge opposite to ai. Let a be the bary-

centre of T, then Ki denotes the subtriangle of T built with the vertex a, aj,

and ak where 1 � i � 3, j ¼ imod3 þ 1 and k ¼ jmod3 þ 1. The set of the

degrees of freedom is given by

ST ¼ f f ðaiÞ : 1 � i � 3; @xf ðaiÞ; @yf ðaiÞ; @ni f ðmiÞ : 1 � i � 3g;

where @ni denotes the normal derivative. We can replace ST by ST
0 where

S
0

T ¼ f f ðaiÞ : 1 � i � 3; @xf ðaiÞ; @yf ðaiÞ; @xf ðmiÞ; @yf ðmiÞ : 1 � i

� 3g:

The local interpolation operator PT is determined for all f in C1(̄ T) by

PT fjKl ¼
Xðlþ1Þmod3þ1

i¼l

f ðaiÞC
0
l;i þ ðrxf ðaiÞ:aiak

��!
ÞC1

l;i;k

þ ðrxf ðaiÞ:aia j
�!

ÞC1
l;i;j þ ðrxf ðmiÞ:hiai

�!
ÞC1

?;l;i

or by

PT fjKl ¼
Xðlþ1Þmod3þ1

i¼l

f ðaiÞC
0
l;i þ ðrxf ðaiÞ:aiak

��!
ÞC1

l;i;k

þ ðrxf ðaiÞ:aia j
�!

ÞC1
l;i;j � ni

@f

@ni
ðmiÞ

� �
C1

?;l;i;

where the basis functions fClg are detailed in Bernadou and Boisserie (1982)

and Besse (2003). We have the equality PT ¼ P3. For the proof of C1

continuity and the interpolation error estimates we refer to Ciarlet (1978).

N. Besse et al.318
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We can also use other interpolation operators coming from finite

element literature like the reduced Hermite element (HR), the reduced

Hsieh-Clough-Tocher element (HCTR), the C0 Nielson element, and the

Ganev-Dimitrov element (GD). Their description can be found in Bernadou

and Boisserie (1982), Bernadou (1994), Besse (2003), and Ciarlet 1978 and

a comparison of some of them are investigated in Besse (2003) and Besse

and Sonnendrücker (2003).

Now we present the interpolation procedure we choose for each advection

step.

2.2.1. Advection in Position Space

1. The reconstruction of fh in position space is done using one of the Hermite

interpolation schemes HCTC, HCTR, NC1, or GD.

2. The gradient rx,y fh which is not one of the degrees of freedom is

computed by taking the derivatives of the reconstructed fh.

3. The gradient rvx
,vy fh is computed using a first-order Lagrange

interpolation on the triangles or a modified second-order interpolation

which preserves maxima and minima (see Berzins (2000)), as second-

order Lagrange interpolation does not ensure the numerical stability of

the gradients.

2.2.2. Advection in Velocity Space

1. The reconstruction of fh can be performed using the NC1 or HCTR

schemes or using symmetric Lagrange interpolation of any order on the

regular grid. This is stable provided the reconstruction is used only in

the middle cell which is the middle of the support of the local

interpolation function (see Besse 2003).

2. The gradient rvx
,vy fh which is not one of the degrees of freedom is

computed by taking the derivatives of the reconstructed fh or using a

symmetric Lagrange interpolation (of any order) of the derivatives.

3. The gradient rx,y fh is computed using a Lagrange interpolation of any

order.

Remark 1

Positivity of the distribution function and mass conservation property can be

enforced a posteriori by optimizing between a low-order and a high-order

interpolation. In fact, as described in Besse and Sonnendrücker (2003), for

each advection step, we recover at the discrete level the following maximum

principle:

f nmin � f nþ1
h;l � f nmax; 8l; 8n ð4Þ
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where

f nmin ¼ min
k
f f nh;kg; f nmax ¼ max

k
f f nh;kg;

and the conservation of mass, i.e.,X
k

f nh;kAk ¼
X
k

f 0
h;kAk ¼ M0; ð5Þ

whereAk is the area associated to the node Nk such that<kAk ¼ V. The final

values fh,k
n of the distribution function at the node Nk ¼ (xk, vk) and at the time

tn are given by

f nh;k ¼ gnk f
n
Hh;k

þ ð1 � gnkÞf
n
Lh;k

where f nHh,k
and f nLh,k

are, respectively, the linear approximation and a high-

order approximation of f at the node Nk and at the time tn. The coefficients

gk
n are computed such that the properties (4) and (5) are satisfied (for more

details see Besse and Sonnendrücker, 2003 and references therein).

Remark 2

In order to have good efficiency, two different data structures have been

constructed for the advections in position and velocity space. Moreover, the

code is parallelized by distributing the velocity variables on the processors

for the position advection and by distributing the position variables for the

velocity advection. This procedure allows no communication during each

split step. However, a global redistribution of the data is necessary when

going from one advection step to the next.

3. RESOLUTION OF THE POISSON EQUATION

Due to our Hermite interpolation method, we need to compute not only the

electric field E but also its gradient rE at each time step. Because of this,

special care needs to be taken for the resolution of the Poisson equation.

3.1. Poisson Equation with Periodic Boundary Conditions

We denote the computational domain by V ¼ [x0, x0 þ Lx[�]y0, y0 þ Ly],

where Lx and Ly are, respectively, the periods in the directions x and y.
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The Poisson problem consists in computing the electric field E such that

curl E ¼ 0 in V

divE ¼
r

10

in V

rðx; yÞ ¼ q
Ð
R2 f ðx; y; vx; vyÞdvxdvy;

Eðxþ Lx; yÞ ¼ Eðx; yÞ
Eðx; yþ LyÞ ¼ Eðx; yÞ

8>>>>><>>>>>:
or, equivalently, introducing the scalar potential f, in computing f and E such

that

E ¼ �rf

�Dfðx; yÞ ¼
r

e0

ðx; yÞ

rðx; yÞ ¼ q
Ð
R2 f ðx; y; vx; vyÞdvxdvy;

fðxþ Lx; yÞ ¼ fðx; yÞ
fðx; yþ LyÞ ¼ fðx; yÞ:

8>>>>>><>>>>>>:
ð6Þ

This last problem (6) can be solved numerically using a finite element

technique based on P1, HR, NC1, HCTR, or HCTC elements on the

periodic torus. To this aim, we introduce a variational formulation of the

system (6) which reads:

Find f [ H1(V) such thatð
V

rf:rcdV ¼

ð
V

rc; 8c [ H1ðVÞ:

Remark 3

If Hermite-type finite elements like HR, NC1, HCTC, or HCTR are used,

periodic boundary condition on 2rf ¼ E are also needed. Then f belongs

to H2(V), where Hm(V) denotes the space of square integrable functions

whose derivatives up to order m are square integrable.

As the Poisson problem is linear, the gradient of the electric field can be

computed by taking the derivative of the Poisson equation. Denoting by

F ¼ rf the unknown vector, we get

rE ¼ �rF

�DF ¼
rr

10

rrðx; yÞ ¼ q
Ð
R2 rx;yf ðx; y; vx; vyÞdvxdvy;

Fðxþ Lx; yÞ ¼ Fðx; yÞ
Fðx; yþ LyÞ ¼ Fðx; yÞ:

8>>>>>><>>>>>>:
ð7Þ

The variational formulation associated to (6) reads:
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Find F [ (H1(V))2 such thatð
V

rF : rCdV ¼

ð
V

rr �C; 8C [ ðH1ðVÞÞ
2

that can be solved by a traditional P1 (using linear basis functions) finite

element method on a torus.

3.2. Poisson Equation with Dirichlet Boundary Conditions

3.2.1. Variational Formulation

The Poisson problem with Dirichlet boundary conditions consists in finding

the electric field E such that

curl E ¼ 0 in V

div E ¼
r

10

in V

rðx; yÞ ¼ q
Ð
R2 f ðx; y; vx; vyÞdvxdvy;

E � t ¼ 0 on @V

8>>><>>>: ð8Þ

where t is the tangent at the boundary @V of V. Problem (8) is equivalent to

problem

DE ¼ r
r

e0

in V

div E ¼
r

e0

in @V

curl E ¼ 0 on @V
E � t ¼ 0 on @V
rðx; yÞ ¼ q

Ð
R2 f ðx; y; vx; vyÞdvxdvy:

8>>>>>>><>>>>>>>:
ð9Þ

Proof. Let us show first that (8) ) (9). As

curl curl E ¼ rðdiv EÞ � DE ð10Þ

using the first two equations of (8) we get

0 ¼ curl curl E

¼
rr

10

� DE

whence the first equation of (9). If div E ¼ r/10 in C(V), then div E ¼ r/10

on @V. In the same way curl E ¼ 0 in C(V) then curl E ¼ 0 on @V. Let us

prove now that (9) ) (8). Using relation (10), the first equation of (9) rewrites

curl curl E ¼ r div E�
r

10

� �
: ð11Þ
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Let F be a test function belonging to H(curl, div; V) ¼ H(curl; V) >
H(div; V), where

Hðcurl;VÞ ¼ u [ L2ðVÞ; curl u [ L2ðVÞ
� �

; Hðdiv;VÞ

¼ u [ L2ðVÞ; div u [ L2ðVÞ
� �

with L2(V) ¼ L2(V) � L2(V).

Multiplying (11) by a test function F and using the Green formulaeð
V

u � curlw dV�

ð
V

curl uw dV ¼

ð
@V

u � tw dG;

8u [ Hðcurl;VÞ; w [ H1ðVÞ;

ð12Þ

and ð
V

u � rw dVþ

ð
V

div uw dV ¼

ð
@V

u � nw dG;

8u [ Hðdiv;VÞ; w [ H1ðVÞ;

ð13Þ

with n the normal vector at the boundary @V, we obtainð
V

curlF curl E dV þ

ð
V

divF divE dV þ

ð
@V

F � t curl E dG

¼

ð
@V

F � n divE dG�

ð
V

rr � F dV: ð14Þ

Using again the Green formula (13), (14) becomesð
V

curlF curlE dVþ

ð
V

divF divE dVþ

ð
@V

F � t curl E dG

¼

ð
V

divF r dVþ

ð
@V

F � ðdivE� rÞdG ð15Þ

Using relations divE ¼ r/e0 on @V and curl E ¼ 0 on @V we finally obtainð
V

curlF curlE dVþ

ð
V

div F divE dV ¼

ð
V

divF r dV: ð16Þ

If F ¼ rc, with c [ H2(V) then (16) becomesð
V

Dc divE�
r

e0

� �
dV ¼ 0 ¼) divE ¼

r

e0

in L2ðVÞ

If F ¼ curlw, with w [ H2(V) then (15) becomesð
V

Dw curlE dV ¼ 0 ¼) curlE ¼ 0 in L2ðVÞ:
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Problem (9) can be solved numerically using a finite element method using

HR, NC1, HCTR, or HCTC elements. To this aim the following variational

formulation is used:

Find E [ X such thatð
V

curlF curlE dV þ

ð
V

divF divE dV ¼

ð
V

divF rdV; 8F

[ Hðcurl, div;VÞ ð17Þ

with

X ¼ fu [ H1ðVÞ � H1ðVÞ; E � t ¼ 0 on @V; @sðE � tÞ ¼ 0 on @Vg

where s is the curvilinear abscissa.

Remark 4

Note that when using Hermite-type finite elements, where both function values

and values of the derivatives belong to the degrees of freedom, then the values

of both E and rE are directly obtained from the finite element solution.

3.2.2. Boundary Conditions

Using Hermite-type finite elements requires the additional use of the boundary

conditions

E � t ¼ 0 on @V; @sðE � tÞ ¼ 0 on @V:

The resolution of the linear system stemming from the variational

formulation (17) is performed in the Cartesian frame with basis vectors

(e1(x1, x2), e2(x1, x2)) where (x1, x2) are the Cartesian coordinates. Only the

boundary conditions for the electric field cannot be expressed in a simple way

in the basis (e1(x1, x2), e2(x1, x2)). However, they have a simple expression

in the moving Frenet frame (t, n) associated to the domain boundary illus-

trated by Figure 1. Let us introduce the local change of basis (a1(u1, u2),

a2(u1, u2)) with t ¼ a1(u1, 0) and n ¼ a2(u1, 0) (see Figure 1). In the Frenet

frame, for a point belonging to the boundary, the boundary conditions can

be expressed by

Et ¼ 0; @u1Et ¼ 0:

Denote by Nfr the set of all boundary points.

Then for all i [ Nfr the unknown vector Li whose expression in the basis

(e1(x1, x2), e2(x1, x2)) is

Li ¼ ðEx1

i ;E
x2

i ; @x1Ex1

i ; @x2Ex1

i ; @x1Ex2

i ; @x2Ex2

i Þ
T

becomes in the basis (t, n) ¼ (a1(u1, 0), a2(u1, 0)) the unknown vector Ji
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whose expression is

Ji ¼ ðEt
i ;E

n
i ; @u1Et

i ; @u2Et
i ; @u1En

i ; @u2En
i Þ

T :

Hence, we need the transformation matrix Ri enabling to pass from Ji to Li,

that is such that we have

Li ¼ RiJi; i [ Nfr:

The global change of variables then reads

L ¼ RJ;

where

R ¼

. .
.

0 0 0 0

0 Ri 0 0 0

0 0 . .
.

0 0

0 0 0 Id6 0

0 0 0 0 . .
.

0BBBBBBB@

1CCCCCCCA
The matrix Id6 is the 6 � 6 identity matrix and represents the identity

transform for the points that are inside the domain. The initial linear system

which reads

ðK
,curl;curl. þM

,div;div.ÞL ¼ LdivFr

where K,curl,curl., M,div,div., and Ldiv, represent, respectively, an approxi-

mation of the bilinear forms

k�; �lcurl;curl ¼

ð
V

curlð�Þ curlð�Þ dV; k�; �ldiv;div ¼

ð
V

divð�Þ divð�Þ dV;

Figure 1. Change of variables: the (x1, x2)-Cartesian coordinate system versus the

(u1, u2)-curvilign coordinate system.
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and of the linear form

Ldivð�Þ ¼

ð
V

rdivð�Þ dV

becomes

RT ðK
,curl;curl. þM

,div;div.
ÞRJ ¼ RTLdivFr:

We now need to determine Ri. To this aim, we use tensor calculus and the fact

that the absolute differential dE does not depend on any bases. A point x can be

expressed in the following way x ¼ M(u1, u2) ¼ g (u1) þ u2n (u1). The para-

meterization of the point x in the curvilign coordinate system (u1, u2) is illus-

trated by the Figure 1. Then, thanks to the following classical definition

ai ¼
@x

@ui
¼

@M

@ui
and aiaj ¼ dij ¼

1 if i ¼ j

0 if i = j

�
ð18Þ

We can compute the covariant components ai and the contravariant

components ai of the basis vectors. On the one hand, we have

E ¼ Eaaa

whence the expression of the absolute differential dE

dE ¼ DuE
aaa ¼ DubE

uadubaa ð19Þ

where DubE
ua is the covariant derivative. On the other hand, we have

E ¼ Exiei;

where the expression of the absolute derivative dE is

dE ¼ DxE
xjej ¼ DxiE

xjdxiej ¼ @xiE
xjdxiej: ð20Þ

Identifying (19) and (20) we obtain

@xiE
xj ¼ DubE

ua @u
b

@xi
@xj

@ua
: ð21Þ

With the notations

E1ðu1; 0Þ ¼ Et; E2ðu1; 0Þ ¼ En; @u1E1ðu1; 0Þ ¼ @u1Et;

@u2E1ðu1; 0Þ ¼ @u2Et; @u1E2ðu1; 0Þ ¼ @u1En; @u2E2ðu1; 0Þ ¼ @u2En;
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and relation (21) we find for Ri

Riðni;<ciÞ ¼

ny;i nx;i 0 0 0 0

�nx;i ny;i 0 0 0 0

0 �
n2
y;i

<ci

n2
y;i nx;iny;i nx;iny;i n2

x;i

� 1
<ci

nx;iny;i
<ci

�nx;iny;i n2
y;i �n2

x;i nx;iny;i

1
<ci

nx;iny;i
<ci

�nx;iny;i �n2
x;i n2

y;i nx;iny;i

0 �
n2
x;i

<ci

n2
x;i �nx;iny;i �nx;iny;i n2

y;i

0BBBBBBBBBB@

1CCCCCCCCCCA
where <ci

is curvature radius at the point Pi, i [ Nfr.

4. NUMERICAL VALIDATION

We validate our code using two classical problems of plasma physics and

beam physics. The first test case is the linear Landau damping, the second

is the evolution of a gaussian beam in a uniform focusing channel.

4.1. Linear Landau Damping

We here solve the system

@f

@t
þ v � rxf þ Es � rvf ¼ 0;

Esðt; x; yÞ ¼ �rfðt; x; yÞ; �Dfðt; x; yÞ ¼

ð
R2

f ðt; x; y; vx; vyÞdvxdvy � 1:

where x ¼ (x, y), v ¼ (vx, vy) and Es ¼ (Exs
, Eys

).

The initial data is

f ð0; x; y; vx; vyÞ ¼
1

2p
e�ðv2

xþv2
y Þ=2ð1 þ a cosðkxxÞ cosðkyyÞÞ;

8ðx; yÞ [ ½0; Lx� � ½0; Ly�; ðvx; vyÞ [ ½�vmax; vmax�
2

where a ¼ 0.05, vmax ¼ 7.5, and Tfinal ¼ 22vp
21. The wave numbers kx and ky

are equal to 0.5. The size of the periodic computation domain is chosen

according to the wave numbers such that Lx ¼ Ly ¼ 2p/kx ¼ 2p/ky ¼ 4p.

The position space discretization consists in an unstructured mesh of 7938

triangles (�64 points in x and 64 points in y) and of 32258 right angle

triangles in velocity space (�128 points in vx by 128 points in vy). A HCTC

finite-element interpolation is used in (x, y) and a NC1 scheme in (vx, vy).

We choose Dt ¼ 1/8 for the time discretization step. The result is displayed

on Figure 2. The evolution of the two components of the electric field are
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identical as the initial data is symmetric with respect to the x and y axes. ThebExðkx ¼ 0:5; ky ¼ 0:5Þ mode that carries the potential energy during the linear

phase decreases exponentially with a damping rate g ¼ 2 0.394 and a

frequency v ¼ 1.69, exactly as predicted by the linear Landau theory.

4.2. Gaussian Beam

The initial data is

f0ðx; y; vx; vyÞ ¼
n0

2pv2
thpa

2
e�ðv2

xþv2
y Þ=2v2

th e�ðx2þy2Þ=2R2

with a ¼ 1. In order to have an adapted beam, we compute vth, v0, n0 and R

using the concept of equivalent beams, which consists in matching the

second-order moments of the beam to those of a Kapchinsky-Vladimirsky

(KV) beam which can be matched analytically (Kapchinsky and Vladimirsky

1959; Davidson and Qin 2001). The K-V distribution is of the form

f0ðx; y; x
0; y0Þ ¼ d

x2

a2
þ

y2

a2
þ

x02

a02
þ

y02

a02
� 1

� �
:

This distribution is a steady state solution of the Vlasov equation for which the

self-consistent electric field is linear. Hence, the total electric field reads

Esðt; xÞ þ Eaðt; xÞ ¼ �v2x;

Figure 2. Evolution of the mode bExðkx ¼ 0:5; ky ¼ 0:5Þ.
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where Es is the solution of the Poisson Equation (2) and Ea ¼ 2v0
2x. Defining

the tune depression h ¼ v/v0, we match the beam by setting

R2 ¼ ðx f
rmsÞ

2
¼

Ð
R4 x2f 0dx0dv0Ð
R4 f 0dx0dv0

¼ ðxK-V
rms Þ

2
¼

a2

4
;

R2 ¼ ðy f
rmsÞ

2
¼

Ð
R4 y2f 0dx0dv0Ð
R4 f 0dx0dv0

¼ ðyK-V
rms Þ

2
¼

a2

4
;

v2
th

u2
z

¼ ðv
x
f
rms
Þ
2
¼

Ð
R4 x02f 0dx0dv0Ð
R4 f 0dx0dv0

¼ ðvK-V
xrms

Þ
2
¼

a02

4
¼

ðkaÞ2

4
;

v2
th

u2
z

¼ ðv f
yrms

Þ
2
¼

Ð
R4 y02f 0dx0dv0Ð
R4 f 0dx0dv0

¼ ðvK-V
yrms

Þ
2
¼

a02

4
¼

ðkaÞ2

4
;

where v ¼ kuz, and uz being the longitudinal velocity of the beam that we have

supposed constant. Setting h ¼ 1/4 and vth ¼ 1 and computing the matching

condition for the KV beam which yields v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

n0

2ð1�h2Þ

q
, the model is perfectly

determined. The physical space which is a disk of radius 6 is discretized by

6084 triangles and the velocity space is a [ 2 vxmin
, 2 vxmax

] � [ 2 vymin
, 2 vymax

]

square with vxmin
¼ vxmax

¼ vymin
¼ vymax

¼ 9 which is discretized by 32258

triangles. We set Dirichlet boundary conditions for the Poisson problem as

it is described in section 3.2. The triangulation must be regular in the

sense of finite element, i.e., there exists a constant s such that hT/rT � s,

8T [ Th, where hT and rT, respectively, stand for the diameter of the

smallest ball which contains T and the diameter of the biggest ball

contained in T. We set the time step Dt ¼ T/250 where T ¼ 2pv0
21. Even if

the time step is not restricted by a stability condition (like CFL condition),

here we choose a small time step in order to keep good accuracy. The

computation runs on 128 processors of a Compaq Alphaserver ES45 1GHz

and takes around 5 hours when the final time step Tfinal ¼ 2T. The

algorithm is inevitably slower on unstructured meshes than on structured

grids because characteristic tracking is more complex and expensive on

unstructured meshes than on structured grids. In the case of structured grids,

the characteristic tracking cost is reduced to N divisions if N is the

dimension of the phase space, whereas in the case of unstructured meshes

the cost is equivalent to 3dnT where d is the cost of a N-dimensional determi-

nant (whose sign indicates if the characteristic origin is contained in the

element or in which direction you have to search the element) and nT is

the number of element T you have to cross in order to reach the origin of

the characteristic. Like for the Landau damping case test, a HCTC finite-

element interpolation operator is used in (x, y) and a NC1 reconstruction in

(vx, vy). Looking at Figure 3, we notice that a hole starts to form at the

center of the beam, so that the density becomes higher at the edge of the

beam and the particles start moving inwards. Then a density wave is
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created with particles moving from the inner part to the outer part of the beam

and in again.

Starting around time t ¼ 0.80v0
21 and again at t ¼ 1.68v0

21, a halo sur-

rounding the core of the beam appears. The halo appears at radius r ¼ 2.6 and

its density represents 3 to 5% of the core density. The same result has been

already obtained in Besse and Sonnendrücker (2003) with a three-dimensional

code in the variable (r, vr, vu) in the case of the axisymetric geometry. Other

simulations related to the halo formation can be found in Sonnendrücker et al.

5. CONCLUSION

A new method for solving the Vlasov equation on a mesh of phase space,

which is completely unstructured in configuration space, has been introduced

Figure 3. Evolution of the density r (t, x, y).
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and validated on some problems of plasma physics and transport of charged

particle beams. This method relies on semi-Lagrangian principle (the

characteristic curves associated to the transport operator are integrating

backward), time splitting techniques (the full dimensional complex transport

operator is decomposed in several transport operators of lower dimension

that are more simple to solve) and uses finite element (HCT-C) and/or

CAGD (computer-aided geometric design) (NC1) reconstruction schemes.

The method involves the propagation of the jacobian of the distribution

function and leads to the computation of the gradient of the force field (here

the electric field) for which the boundary conditions have been treated

carefully. The method works well and should be useful for some problems

with specific geometries. This method can also be extended in an adaptive

mesh refinement version which will improve result accuracy and compu-

tational effectiveness since Vlasov equation develops multi-scale phenomena.

The cost of this method is probably more expensive on unstructured meshes

than on structured grids because of the characteristic tracking problem.

Nevertheless, unlike classical Eulerian methods such as, for example, finite

volume, finite element, finite differences, and discontinuous-Galerkin

methods, semi-Lagrangian methods are not restricted by CFL condition

which can be very restrictive and leads to a high computational cost when

we solve the Vlasov equation in high velocity regions. A good compromise

is to use our method (semi-Lagrangian scheme with propagation of the

partial derivatives of f) on unstructured meshes near the curved boundaries

and on structured or adaptive grids (adaptive dyadic grids generated, for

example, by wavelet multiresolution analysis, see Besse et al. (2001)

elsewhere in a self-consistent code. Besides, our method can easily be used

to solve the Vlasov-Maxwell system provided that we have a Maxwell

solver which supplies the gradient of the electromagnetic field. This

numerical scheme needs important computing resources; that is why the

code is parallelized.

REFERENCES
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