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Abstract. A semi-Lagrangian scheme is proposed for solving the periodic one-dimensional
Vlasov–Poisson system in phase space on unstructured meshes. The distribution function f(t, x, v)
and the electric field E(t, x) are shown to converge to the exact solution values in the L∞ norm. The
rate of convergence is in O(h4/3).
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1. Introduction. The numerical resolution of the Vlasov equation is usually
performed by Lagrangian methods like particles-in-cell methods (PIC), which consist
of approximating the plasma by a finite number of macroparticles. The trajectories
of these particles are computed from the characteristic curves given by the Vlasov
equation, whereas self-consistent fields are computed by gathering the charge and
current densities of the particles on a mesh of the physical space (see Birdsall and
Langdon [10] for more details). Although this method allows us to obtain satisfying
results with a small number of particles, it is well known that the numerical noise
inherent to the particle method becomes too large to allow a precise description of
the tail of the distribution function, which plays an important role in charged particle
beams. To remedy this problem, Eulerian methods have been proposed which consist
of discretizing the Vlasov equation on a mesh of phase space. For example, finite
volume schemes, which are known to be robust and computationally cheap, have been
implemented by Boris and Book [11], Cheng and Knorr [13], and more recently Mineau
[32], Fijalkow [19], and Filbet, Sonnendrücker, and Bertrand [21]. Nevertheless, finite
volume schemes are low order, too dissipative, and restricted by a CFL condition.

Other kinds of Eulerian method are the semi-Lagrangian methods which, in some
particular cases, can be regarded as local versions of characteristic Galerkin methods
[3, 4], which have been used in convection-diffusion problems [17, 35, 25]. Semi-
Lagrangian methods were introduced at the beginning of the 1980s for the time-
advection of various atmospheric and fluid dynamics models [43, 42, 37], which can
be formulated as abstract Liouville systems (ALS). Semi-Lagrangian advection at-
tempts to combine the advantages of both Eulerian and Lagrangian advection schemes
while ameliorating their drawbacks. Eulerian advection schemes have good resolution
properties, but CFL condition number, which is a necessary condition for achieving
numerical stability, often leads to overly restrictive time steps. On the other hand,
Lagrangian advection schemes allow one to use larger time steps, but, at later times,
Lagrangian distortion (an initial regularly spaced set of particles will generally become
highly irregularly spaced over long times) implies that important features of the flow
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may not be well described. A semi-Lagrangian method uses a regular Cartesian mesh
and different sets of particles. At each time step the set of particles is chosen such
that they arrive exactly at the points of the mesh at the end of the time step, and is
advected by the characteristic curves of the ALS. More precisely, the method consists
of directly computing the distribution function of the ALS on a fixed Cartesian grid
of phase space, by integrating (or following) the characteristic curves backward (from
the end of the characteristic, which is a point of the fixed mesh, to the beginning
of characteristic, during a time step) at each time step and interpolating the value
at the base of the characteristics. In recent applications of semi-Lagrangian meth-
ods to lower-dimensional relativistic Vlasov–Maxwell (RVM) calculations [1, 2, 40],
cubic splines are used for the interpolation scheme, linear interpolation being too dis-
sipative. Semi-Lagrangian methods have been efficiently implemented using parallel
computers [41] and give considerable promise for displaying the detailed structure of
distribution functions in weak density regions.

The author extends semi-Lagrangian schemes on unstructured meshes with a dif-
ferent kind of high order local interpolation operator and with the possibility of having
a positive and conservative method by introducing a linear combination of low order
solutions and high order solutions tempered by a limiter coefficient (cf. [9]). Here we
present the convergence of the method for the simplest interpolation operator, that
is, the Lagrange first order interpolation operator. The scheme preserves positiv-
ity because the basis functions associated with the Lagrange first order interpolation
operator are always positive. Additionally, the scheme is not limited by a CFL con-
dition. More complicated interpolation on a triangle, which involves knowledge of
the gradient of the distribution function, has been implemented successfully (cf. [9]),
but it seems to be a challenge to show the convergence of these methods because we
advect not only the distribution function f but also its gradients. A first result on
the convergence analysis of semi-Lagrangian methods with propagation of gradients
is stated in [8].

Let us note that a first work on convergence of one-dimensional particle methods is
[33], where Neunzert and Wick consider nonuniform initial loadings of particles asymp-
totically distributed with respect to initial data. Cottet and Raviart [16] present a
mathematical analysis of the particle method for solving the one-dimensional Vlasov–
Poisson system, where uniform initial loadings of particles are considered. A number
of additional authors have studied the convergence of particle methods for the multidi-
mensional Vlasov–Poisson system [22, 45, 46, 49]. They have also proved convergence
results on random and deterministic particle methods for the Vlasov–Poisson–Fokker–
Planck kinetic equations [26, 27]. Finally, Glassey and Schaeffer have done the conver-
gence analysis of a particle method for the RVM system [24]. Schaeffer [39] has also
proved the convergence of a finite difference scheme for the one-dimensional Vlasov–
Poisson–Fokker–Planck system, and Filbet [20] has shown the convergence of a finite
volume scheme for the one-dimensional Vlasov–Poisson system.

Although a number of papers present satisfactory numerical results using semi-
Lagrangian methods [43, 13, 40, 1, 2, 18, 9], few rigorous mathematical results on con-
vergence analysis of semi-Lagrangian methods have been stated. Although interesting
a priori estimates have been pointed out (cf. [4, 5, 18]), a lot of work still remains to
give complete and rigorous results in more general situations. The more difficult step
in the convergence analysis of semi-Lagrangian methods is obtaining a stability result
for the interpolation operators. If stability results in the L∞ norm seem inaccessible
for high order interpolation operators because of the Runge phenomena (artificial os-
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cillations, whose amplitude increases with the degree of the polynomial in the case of
Lagrange interpolation, appear at the edges of finite elements), a more appropriate
mathematical framework is L2 stability. If Fourier analysis tools as Fourier series are
useful for proving L2 stability in the case of grids, convenient mathematical tools are
lacking for unstructured meshes such as triangulation and have to be developed in the
future. Nevertheless new results on the convergence analysis of classes of high order
schemes can be found in [7, 8, 6].

This paper is organized as follows. In the first part we present the continuous
problem. In the second part we expose the discrete problem and the numerical scheme
to solve it. Then we study the convergence of our numerical scheme. In the last section
we give refined convergence results.

2. The continuous problem. We consider a noncollisional plasma of charged
particles (electrons and ions) in one dimension. We take into account the electrostatic
forces and neglect the magnetic effects. Due to the great inertia of the ions compared
to the electrons, we assume that the ions form a neutralizing uniform background.

Denoting by f(t, x, v) ≥ 0 the distribution function of electrons in phase space
(with mass normalized to one, the charge to plus one), and by E(t, x) the self-
consistent electric field, the adimensional Vlasov–Poisson system reads

∂f

∂t
+ v

∂f

∂x
+ E(t, x)

∂f

∂v
= 0,(2.1)

dE

dx
(t, x) = ρ(t, x) =

∫ +∞

−∞
f(t, x, v)dv − 1.(2.2)

We consider a periodic plasma of period L. Hence in (2.1) and (2.2) we have x ∈ [0, L],
v ∈ R, t ≥ 0, and the functions f and E satisfy the periodic boundary conditions

f(t, 0, v) = f(t, L, v), v ∈ R, t ≥ 0,(2.3)

and

E(t, 0) = E(t, L) ⇐⇒ 1

L

∫ L

0

∫ +∞

−∞
f(t, x, v)dvdx = 1, t ≥ 0,(2.4)

which means that the plasma is globally neutral. In order to have a well-posed
problem, we add to (2.1)–(2.4) a zero-mean electrostatic condition,∫ L

0

E(t, x)dx = 0, t ≥ 0,(2.5)

and an initial condition,

f(0, x, v) = f0(x, v), x ∈ [0, L], v ∈ R.(2.6)

If we introduce the electrostatic potential φ = φ(t, x) such that

E(t, x) = −∂φ

∂x
(t, x),

and if we denote by G = G(x, y) the Green function associated with our problem—
that is to say, for y ∈ ]0, L[, G(., y) is the solution of

−∂2G

∂x2
(x, y) = δ(x− y), x ∈ [0, L], G(0, y) = G(L, y),
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where δ is the Dirac distribution—then G(x, y) and K(x, y) = −∂xG(x, y) are given
by

G(x, y) =

⎧⎪⎨⎪⎩
x
(
1 − y

L

)
, 0 ≤ x ≤ y,

y
(
1 − x

L

)
, y ≤ x ≤ L,

K(x, y) =

⎧⎪⎨⎪⎩
( y

L
− 1

)
, 0 ≤ x < y,

y

L
, y < x ≤ L.

Therefore φ is given by

φ(t, x) =

∫ L

0

G(x, y)

(∫ +∞

−∞
f(t, y, v)dv − 1

)
dy,

and E can be rewritten as

E(t, x) =

∫ L

0

K(x, y)

(∫ +∞

−∞
f(t, y, v)dv − 1

)
dy.(2.7)

In addition, assuming that the electric field E is smooth enough, we can solve (2.1),
(2.3), and (2.6) in the classical sense as follows. For the existence, uniqueness, and
regularity of the solutions of the following differential system we refer the reader to
[12] and [36].

We consider the first order differential system

dX

dt
(t; s, x, v) = V (t; s, x, v),

dV

dt
(t; s, x, v) = E(t,X(t; s, x, v))

(2.8)

and denote by t → (X(t; s, x, v), V (t; s, x, v)) the characteristic curves, which are the
solution of (2.8) with the initial conditions

X(s; s, x, v) = x, V (s; s, x, v) = v.(2.9)

Then the solution of problem (2.1), (2.6) is given by

f(t, x, v) = f0(X(0; t, x, v), V (0; t, x, v)), x, v ∈ R, t ≥ 0.(2.10)

We note that the periodicity in x of f0(x, v) and E(t, x) implies the periodicity in x
of f(t, x, v). Moreover, as ∣∣∣∣∂(X,V )

∂(x, v)

∣∣∣∣ = 1,

we get

1

L

∫ L

0

∫ +∞

−∞
f(t, x, v)dvdx =

1

L

∫ L

0

∫ +∞

−∞
f0(x, v)dvdx = 1.

Therefore, according to the previous considerations, an equivalent form of the
Vlasov–Poisson periodic problem is to find a pair (f,E), smooth enough, periodic
with respect to x, with period L, and solving (2.7), (2.8), (2.9), and (2.10).
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2.1. Definitions and notation. We now introduce basic notation. If N denotes
the set of nonnegative integers, a multi-index α is an n-tuple of nonnegative integers
α := (α1, . . . , αn), αi ∈ N, i = 1, . . . , n. We have the following definitions:

|α| = α1 + · · · + αn,

Dα = ∂α1
x1

. . . ∂αn
xn

.

Let Ω be a domain in R
n. For any nonnegative integer m let C m(Ω) be the vector

space consisting of all functions φ that, together with all their partial derivatives Dαφ
of orders |α| ≤ m, are continuous on Ω.

We define the vector space C m
b (Ω) of all functions φ ∈ C m(Ω) for which Dαφ is

bounded and uniformly continuous on Ω for 0 ≤ |α| ≤ m. C m
b (Ω) is a Banach space

with the norm given by

||φ||Cm
b (Ω) = max

0≤|α|≤m
sup
z∈Ω

|Dαφ(z)|.

We define C m
c (Ω) as the subspace of C m

b (Ω) consisting of those functions φ for which,
for 0 ≤ |α| ≤ m, Dαφ has compact support in Ω.

If 0 < λ ≤ 1, we define C m,λ(Ω) to be the subspace of C m
b (Ω) consisting of those

functions φ for which, for 0 ≤ |α| ≤ m, Dαφ satisfies in Ω a Hölder condition of
exponent λ; that is, there exists a constant K such that

|Dαφ(x) −Dαφ(y)| ≤ K|x− y|λ, x, y ∈ Ω.

C m,λ(Ω) is a Banach space with norm given by

||φ||Cm,λ(Ω) = ||φ||Cm
b (Ω) + max

0≤|α|≤m
sup

x, y ∈ Ω
x �= y

|Dαφ(x) −Dαφ(y)|
|x− y|λ .

For all φ : R
n −→ R we let

Lip(φ) = sup
x, y ∈ Ω
x �= y

|φ(x) − φ(y)|
|x− y| .

Furthermore,

Lip(Ω) = {φ : R
n −→ R | Lip(φ) < ∞}

is a Banach space with the norm given by

||φ||Lip(Ω) = ||φ||C0,1(Ω).

We define C m
b,perxi

(Ωxi×Ωn−1) as the subspace of C m
b (Ω) consisting of those functions

φ which are periodic with respect to the variable xi and bounded with respect to other
variables. We also define C m

c,perxi
(Ωxi × Ωn−1) as the subspace of C m

c (Ω) consisting

of those functions φ which are periodic with respect to the variable xi and compactly
supported with respect to the other variables.
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We denote by Lp(Ω), 1 ≤ p ≤ ∞, the space of all equivalence classes of real-valued
Lebesgue-measurable functions. Lp(Ω) is a Banach space with the norm given by

||φ||Lp(Ω) =

{∫
Ω

|φ|pdΩ
}1/p

, 1 ≤ p < ∞,

||φ||L∞(Ω) = ess sup
z∈Ω

|φ(z)|.

We define Wm,p(Ω) to be the Sobolev space consisting of all functions φ which, to-
gether with all their partial derivatives Dαφ taken in the sense of distribution of orders
|α| ≤ m, belong to the Lp(Ω) space. If we define the seminorm as

|φ|Wk,p(Ω) =

⎧⎨⎩ ∑
|α|=k

|Dαφ|pLp(Ω)

⎫⎬⎭
1/p

, 1 ≤ p < ∞,

|φ|Wk,∞(Ω) = max
|α|=m

ess sup
z∈Ω

|Dαφ(z)|,

then we provide Wm,p(Ω) with the norm

||φ||Wm,p(Ω) =

{
m∑

k=0

|φ|p
Wk,p(Ω)

}1/p

, 1 ≤ p < ∞,

||φ||Wm,∞(Ω) = max
0≤k≤m

|φ|Wk,∞(Ω).

Let X be a Banach space with norm || · ||X . We denote by C m(0, T ;X), 0 < T < +∞,
the space of m-times continuously differentiable functions from (0, T ) into X, and by
Lp(0, T ;X) the space of all strongly measurable functions φ : t −→ φ(t) from (0, T )
into X. The following norms are defined:

||φ||C (0,T ;X) = sup
t∈[0,T ]

||φ(t)||X ,

||φ||Cm(0,T ;X) =

m∑
k=0

∥∥∥∥dkφdtk

∥∥∥∥
C (0,T ;X)

,

||φ||Lp(0,T ;X) =

{∫ T

0

||φ(t)||pXdt

}1/p

, 1 ≤ p < ∞,

||φ||L∞(0,T ;X) = ess sup
0<t<T

||φ(t)||X .

Finally, we introduce the space �∞(0, T ;X) defined by

�∞ (0, T ;X) :=

{
f : {t0, . . . , tM} → X| ||f ||�∞(0,T ;X) = max

1≤n≤M
||f(tn)||X < ∞

}
,

where X denotes a functional space (in our context X should be Lp, p ∈ [1,∞]), and
the space L1,∞ defined by

L1,∞ =
{
f ∈ L1 ∩ L∞ | ‖f‖L1,∞ < ∞

}
,

where

‖f‖L1,∞ = ‖f‖L1 + ‖f‖L∞ .
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2.2. Existence, uniqueness, and regularity of the solution of the contin-
uous problem. In this section we recall a theorem of existence of a classical solution
for the Vlasov–Poisson system. The following theorem gives the existence, unique-
ness, and regularity of the classical solutions, global in time, of the Vlasov–Poisson
periodic system in one dimension.

Theorem 2.1. Assuming f0 ∈ C 1
c,perx(Rx × Rv), positive, periodic with respect

to the variable x with period L, and Q(0) ≤ R with R > 0 and Q(t) defined as

Q(t) = 1 + sup {|v| : ∃x ∈ [0, L], τ ∈ [0, t] | f(τ, x, v) �= 0}

and

1

L

∫ L

0

∫ +∞

−∞
f0(x, v)dvdx = 1,

then the periodic Vlasov–Poisson system has a unique classical solution (f,E), peri-
odic in x, with period L, for all time t in [0, T ], such that

f ∈ C 1
b

(
0, T ; C 1

c,perx(Rx × Rv)
)
,

E ∈ C 1
b

(
0, T ; C 1

b,perx(R)
)
,

and there exists a constant C = C (R, f0) dependent on R and f0 such that

Q(T ) ≤ CT.

Moreover, if we assume f0 ∈ C m
c,perx(Rx × Rv), then (f,E) ∈ C m

b (0, T ; C m
c,perx(Rx ×

Rv)) × C m
b (0, T ; C m

b,perx
(R)) for all finite time T.

Proof. We do not write out the proof because it is a straightforward adaptation
of the proof done by Schaeffer in [38]. We refer the reader to the articles [34, 28, 29,
23, 15, 30, 31].

2.3. Regularity assumptions for the continuous problem. For our pur-
pose, we first suppose that f0(x, v) satisfies the following regularity assumptions:

f0 ∈ C 2
c,perx(Rx × Rv).

Then, as is proven in Glassey [23], if f0 is smooth and compactly supported, the
solution of the Vlasov–Poisson system remains smooth and compactly supported for
all time. Theorem 2.1 gives the existence and uniqueness of the solution (f,E) such
that

f ∈ C 2
b

(
0, T ; C 2

c,perx(Rx × Rv)
)
,(2.11)

E ∈ C 2
b

(
0, T ; C 2

b,perx(R)
)
.(2.12)

Further, we prove that we still have convergence under weaker regularity assumptions.

3. The discrete problem.

3.1. Space of approximation and the interpolation operator. Let Q =
[0, L] × R, Ω = [0, L] × [−R,R] with R > 0, and Th be a triangulation of Q.
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Before going further we impose some regularity assumptions on the triangulation
Th as follows:

(H1) The triangulation Th is regular; that is to say, there exists a constant σ such
that

hT

ρT
≤ σ ∀T ∈ Th,

and the quantity h = max{T∈Th} hT approaches zero, where hT and ρT de-
note, respectively, the exterior and the interior diameter of a finite element
T .

(H2) All the finite elements (T, PT ,ΣT ), T ∈ Th, are affine equivalent to a single

reference finite element (T̂ , P̂ , Σ̂) (see [14]).
Let Pm be the space Lagrange polynomial of degree less than or equal to m, and

let Xh be the space defined by

Xh = {g ∈ W 1,∞ ∩W 1,p(Q), g|T ∈ Pm ∀T ∈ Th}.

Let πh be a continuous linear interpolation operator from Wm+1,∞∩Wm+1,p(Q),
1 ≤ p < ∞, onto Xh. The interpolation error estimations in Sobolev spaces (see [14])
give, with k ∈ {0, 1} and q ∈ {p,∞},

||f − πhf ||Wk,q(Q) ≤ Chm+1−k|f |Wm+1,q ∀f ∈ Wm+1,∞ ∩Wm+1,q(Q).(3.1)

The space Xh is characterized by its basis functions, denoted by {ψk}.
3.2. Transport operators. Now we introduce some transport operators. Let

T1 and T2 be the operators defined as

T1g(t, x, v) = g

(
t, x− v

∆t

2
, v

)
,

T2g(t, x, v) = g(t, x, v − ∆tẼ(t, x)),

where Ẽ(t, x) is the solution of the following problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
dẼ

dx
(t, x) =

∫
v

T1g(t, x, v)dv − 1,∫ L

0

Ẽ(t, x)dx = 0.

(3.2)

Let T̃1 be the transport operator defined as

T̃1g(t, x, v) = πhg

(
t, x− v

∆t

2
, v

)
,

where

πhg(t, x, v) =
∑
k

g(t, xk, vk)ψk(x, v),

and let T̃2 be defined as

T̃2g(t, x, v) = πhg(t, x, v − ∆tẼ(t, x)).
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Finally we introduce

T̃ �
2 g(t, x, v) = πhg(t, x, v − ∆tEh(t, x)),

where Eh(t, x) is the solution of the following problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
dEh

dx
(t, x) =

∫
v

T̃1g(t, x, v)dv − 1,∫ L

0

Eh(t, x)dx = 0.

(3.3)

Notice that (2.7) implies that Ẽ(t, x) and Eh(t, x) are respectively given by

Ẽ(t, x) =

∫ L

0

K(x, y)

(∫ +∞

−∞
T1g(t, y, v)dv − 1

)
dy

and

Eh(t, x) =

∫ L

0

K(x, y)

(∫ +∞

−∞
T̃1g(t, y, v)dv − 1

)
dy.

4. The numerical scheme. We suppose that we know fh(tn) defined on Th.
Therefore the numerical scheme which allows us to go from time tn to tn+1 and
compute fh(tn+1) can be described in four steps:

(A1) We evaluate the distribution at time tn at the foot of the field-free characteris-
tics starting at (x, v) at time tn+1/2 using a Lagrange interpolation operator.

This action is described by the transport operator T̃1.
(A2) The output from (A1) is integrated with respect to velocity to provide an

approximation for the density at time tn+1/2, which is then substituted into
the Poisson equation (3.3) to compute the approximation of the electric field
at time tn+1/2.

(A3) The result obtained from (A1) is evaluated at the foot of the velocity char-
acteristic starting at (x, v) at time tn+1 with the acceleration field found in
(A2) using a Lagrange interpolation operator. This action is described by the

transport operator T̃ �
2

(A4) Between time tn+1/2 and tn+1, we apply step (A1) to the output from (A3).

This action is described by the transport operator T̃1. Then we obtain
fh(tn+1), which is the new initial data for the algorithm (A1)–(A4).

Using transport operators defined above in section 3.2, the numerical scheme can be
written as

fh(tn+1, x, v) = T̃1 ◦ T̃ �
2 ◦ T̃1fh(tn, x, v),

where fh(0, x, v) = πhf0(x, v) is a discretization of f0 for the initial data,

fh(tn, x + L, v) = fh(tn, x, v) ∀|v| ≤ Q(T )

is the boundary condition in x, and

fh(tn, x, v) = 0 ∀|v| > Q(T ), ∀x ∈ [0, L]

is the boundary condition in v.
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5. Convergence analysis.

5.1. Main theorem. We next give the convergence theorem.
Theorem 5.1. Assuming f0 ∈ C 2

c,perx(Rx × Rv), positive, periodic with respect
to the variable x with period L, then the numerical solution of the Vlasov–Poisson
system (fh, Eh), computed by the numerical scheme exposed in section 4, converges
toward the solution (f,E) of the periodic Vlasov–Poisson system, and there exists a
constant C = C(||f ||C2(0,T ;W 2,∞(Q))) independent of ∆t, h such that

||f − fh||�∞(0,T ;L∞(Q)) ≤ C
(
||f ||C2(0,T ;W 2,∞(Q))

)(
∆t2 + h2 +

h2

∆t

)
and

||E − Eh||�∞(0,T ;L∞([0,L])) ≤ C
(
||f ||C2(0,T ;W 2,∞(Q))

)(
∆t2 + h2 +

h2

∆t

)
.

Remark 5.2. In Theorem 5.1 we have a lot of choices for the time step. We
note that the convergence rate is slightly better than first order: If we make the
choice ∆t = h2/3, then the error estimate involves h4/3 rather than h to the first
power. Therefore we see that the main reason for using semi-Lagrangian schemes in
lieu of particle schemes comes from the nice flexibility of the error estimates stated in
Theorem 5.1, because they allow us to choose larger time steps and get convergence
rates higher than one.

5.2. Idea of the proof. We want to evaluate the global error at time tn+1:

en+1 = ||f(tn+1, x, v) − fh(tn+1, x, v)||L∞(Q).

Therefore we decompose f(tn+1, x, v) − fh(tn+1, x, v) as

f(tn+1, x, v) − fh(tn+1, x, v) = f(tn+1, x, v) − T1 ◦ T2 ◦ T1f(tn, x, v)

+ T1 ◦ T2 ◦ T1f(tn, x, v) − T̃1 ◦ T̃2 ◦ T̃1f(tn, x, v)

+ T̃1 ◦ T̃2 ◦ T̃1f(tn, x, v) − T̃1 ◦ T̃ �
2 ◦ T̃1f(tn, x, v)

+ T̃1 ◦ T̃ �
2 ◦ T̃1(f(tn, x, v) − fh(tn, x, v)).

In order to estimate en+1 we will estimate the four terms on the right-hand side
of this equation. These estimations are described in the following section.

5.3. A priori estimates. We begin with the following lemma, which gives an
estimate of the time discretization error.

Lemma 5.3. Assume that f ∈ C 2
b (0, T ; C 2

c,perx(Rx × Rv)); then there exists a
constant C such that∥∥f(tn+1) − T1 ◦ T2 ◦ T1f(tn)

∥∥
L∞(Q)

≤ C
(
‖f‖C2(0,T ;W 2,∞(Q))

)
∆t3.

Proof. As f is constant along the characteristic curves, we have

f(tn+1, x, v) = f(tn+1, X(tn+1; tn+1, x, v), V (tn+1; tn+1, x, v))

= f(tn, X(tn; tn+1, x, v), V (tn; tn+1, x, v))

= f(tn, X(tn), V (tn)),
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where X(tn) = X(tn; tn+1, x, v) and V (tn) = V (tn; tn+1, x, v). On the other hand, we
have

T1 ◦ T2 ◦ T1f(tn) = T1 ◦ T2 ◦ T1f(tn, x, v)

= T1 ◦ T2f
(
tn, x− v∆t

2 , v
)

= T1f
(
tn, x− v∆t

2 + ∆t2

2 Ẽ(tn+1/2, x), v − ∆tẼ(tn+1/2, x)
)

= f
(
tn, x− v∆t + ∆t2

2 Ẽ
(
tn+1/2, x− v∆t

2

)
, v − ∆tẼ

(
tn+1/2, x− v∆t

2

))
= f(tn, X̃(tn; tn+1, x, v), Ṽ (tn; tn+1, x, v))

= f(tn, X̃(tn), Ṽ (tn)),

where

X̃(tn) = x− v∆t +
∆t2

2
Ẽ

(
tn+1/2, x− v

∆t

2

)
and

Ṽ (tn) = v − ∆tẼ

(
tn+1/2, x− v

∆t

2

)
.

In order to justify the following Taylor expansion, we remember that assumption
(2.12) gives E ∈ C 2

b (0, T ; C 2
b,perx

(R)). We notice that Ẽ has the same regularity in
space as E, as the source terms in Poisson equations (3.2) and (2.2) also have the
same regularity.

Hence a Taylor expansion gives

X(tn+1/2) −
(
x− v∆t

2

)
= X(tn+1/2) −

(
X(tn+1) − V (tn+1)∆t

2

)
= X(tn+1/2) −

(
X(tn+1) − ∆t

2 Ẋ(tn+1)
)

= O(∆t2).

(5.1)

As f ∈ C 2
b (0, T ; C 2

c,perx(Rx × Rv)), we have

f(tn+1/2, x, v) − f
(
tn, x− v∆t

2 , v
)

∆t
2

= ∂tf(tn+1/2, x, v) + v∂xf(tn+1/2, x, v) + O(∆t)

= −E(tn+1/2, x)∂vf(tn+1/2, x, v) + O(∆t).(5.2)

Then, using (2.7) and (5.2), we get

E(tn+1/2, x) − Ẽ(tn+1/2, x)

=

∫ L

0

K(x, y)

(∫ +∞

−∞

[
f(tn+1/2, y, v) − f

(
tn, y − v∆t

2 , v
)]

dv

)
dy

≤ C
(
‖f‖C2(0,T ;W 2,∞(Q))

)
∆t2.(5.3)
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Using (5.1) and (5.3), we obtain

V (tn) − Ṽ (tn) = V (tn) −
(
V (tn+1) − ∆tẼ

(
tn+1/2, X(tn+1) − V (tn+1)∆t

2

))
= V (tn) −

(
V (tn+1) − ∆tẼ

(
tn+1/2, X(tn+1/2) + O(∆t2)

))
= V (tn) −

(
V (tn+1) − ∆tE

(
tn+1/2, X(tn+1/2) + O(∆t2)

))
+ ∆t

(
Ẽ

(
tn+1/2, X(tn+1/2) + O(∆t2)

)
− E

(
tn+1/2, X(tn+1/2) + O(∆t2)

))
= V (tn) −

(
V (tn+1) − ∆tE(tn+1/2, X(tn+1/2))

)
+ O(∆t3)

= V (tn) − V (tn+1) + ∆tV̇ (tn+1/2) + O(∆t3)

≤ C
(
‖f‖C2(0,T ;W 2,∞(Q))

)
∆t3

and

X(tn) − X̃(tn) = X(tn) −
(
X(tn+1) − ∆tV (tn+1)

+ ∆t2

2 Ẽ
(
tn+1/2, X(tn+1) − V (tn+1)∆t

2

))
= X(tn) −

(
X(tn+1) − ∆tV (tn+1)

+ ∆t2

2 Ẽ
(
tn+1/2, X(tn+1/2) + O(∆t2)

))
= X(tn) −

(
X(tn+1) − ∆tV (tn+1)

+ ∆t2

2 E
(
tn+1/2, X(tn+1/2) + O(∆t2)

))
− ∆t2

2

(
Ẽ(tn+1/2, X(tn+1/2) + O(∆t2))

− E(tn+1/2, X(tn+1/2) + O(∆t2))
)

= X(tn) −
(
X(tn+1) − ∆tV (tn+1)

+ ∆t2

2 E(tn+1/2, X(tn+1/2))
)

+ O(∆t4)

= X(tn) −
(
X(tn+1) − ∆tẊ(tn+1) + ∆t2

2 Ẍ(tn+1/2)
)

+ O(∆t4)

= X(tn) −
(
X(tn+1) − ∆tẊ(tn+1) + ∆t2

2 Ẍ(tn+1)
)

+ O(∆t3)

≤ C
(
‖f‖C2(0,T ;W 2,∞(Q))

)
∆t3.

Finally, we deduce that

T1 ◦ T2 ◦ T1f(tn) = f(tn, X(tn) + O(∆t3), V (tn) + O(∆t3))

= f(tn, X(tn), V (tn)) + ∇f(tn, X(tn), V (tn)) ·O(∆t3)

= f(tn+1, X(tn+1), V (tn+1)) + ∇f(tn, X(tn), V (tn)) ·O(∆t3)

= f(tn+1, x, v) + ∇f(tn, X(tn), V (tn)) ·O(∆t3)
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and

||f(tn+1) − T1 ◦ T2 ◦ T1f(tn)||Lp(Q) ≤ C
(
‖f‖C2(0,T ;W 2,∞(Q))

)
||∇f ||L∞([0,T ]×Q)∆t3.

We continue with the following result.
Proposition 5.4. Assume that f ∈ L∞(0, T ; C m+1

c,perx(Rx × Rv)), m ≥ 0, and πh

is a continuous linear interpolation operator from Wm+1,∞(Q) onto Xh; then there
exists a constant C such that for i = 1, 2, 1 ≤ p ≤ ∞,

||Tif ||L∞(0,T ;Wm+1,p(Q)) ≤ C||f ||L∞(0,T ;Wm+1,p(Q)),(5.4)

||T̃if ||L∞(0,T ;Lp(Q)) ≤ C||f ||L∞(0,T ;Wm+1,p(Q)),(5.5)

and

‖(Ti − T̃i)f‖L∞(0,T ;Lp(Q)) ≤ Chm+1||f ||L∞(0,T ;Wm+1,p(Q)).(5.6)

Proof. It is obvious that∥∥∥f(t, x− v∆t
2 , v

)∥∥∥
L∞(0,T ;Lp(Q))

= ‖f‖L∞(0,T ;Lp(Q))(5.7)

and

‖f(t, x, v − Ẽ(t, x)∆t)‖L∞(0,T ;Lp(Q)) = ‖f‖L∞(0,T ;Lp(Q)) .(5.8)

On one side the gradient of f(t, x− v∆t/2, v) gives∥∥∥∂x(f(t, x− v∆t
2 , v

))∥∥∥
L∞(0,T ;Lp(Q))

= ‖∂xf‖L∞(0,T ;Lp(Q))

and∥∥∥∂v(f(t, x− v∆t
2 , v)

)∥∥∥
L∞(0,T ;Lp(Q))

≤ ∆t
2 ‖∂xf‖L∞(0,T ;Lp(Q)) + ‖∂vf‖L∞(0,T ;Lp(Q)) .

Hence ∥∥∥f(t, x− v∆t
2 , v

)∥∥∥
L∞(0,T ;W 1,p(Q))

≤ C ‖f‖L∞(0,T ;W 1,p(Q)) .

In the same way we get∥∥∥f(t, x− v∆t
2 , v

)∥∥∥
L∞(0,T ;Wm+1,p(Q))

≤ C ‖f‖L∞(0,T ;Wm+1,p(Q)) .

On the other side the gradient of f(t, x, v − Ẽ(t, x)∆t) gives

‖∂x(f(t, x, v − Ẽ(t, x)∆t))‖L∞(0,T ;Lp(Q))

≤ ‖∂xf‖L∞(0,T ;Lp(Q)) + ∆t||∂xẼ||L∞([0,T ]×[0,L]) ‖∂vf‖L∞(0,T ;Lp(Q))

and

‖∂v(f(t, x, v − Ẽ(t, x)∆t))‖L∞(0,T ;Lp(Q)) ≤ ‖∂vf‖L∞(0,T ;Lp(Q)) .



CONVERGENCE OF A SEMI-LAGRANGIAN SCHEME 363

Hence

‖f(t, x, v − Ẽ(t, x)∆t)‖L∞(0,T ;W 1,p(Q)) ≤ (1 + C∆t) ‖f‖L∞(0,T ;W 1,p(Q))

≤ C ‖f‖L∞(0,T ;W 1,p(Q)) .

In the same way, as Ẽ ∈ L∞(0, T ; C m+1
b,perx

(R)), we get

‖f(t, x, v − Ẽ(t, x)∆t)‖L∞(0,T ;Wm+1,p(Q)) ≤ C ‖f‖L∞(0,T ;Wm+1,p(Q)) ,

which completes the proof of (5.4).
πh is an interpolation operator which is characterized by the basis functions {ψk}.

Then πhf can be written as follows:

πhf(t, x, v) =
∑
k

f(t, xk, vk)ψk(x, v) =
∑
k

fk(t)ψk(x, v).

As any ψk ∈ L∞(Q) and has compact support, there exists a constant M such
that ∣∣∣∣∣

∣∣∣∣∣∑
k

|ψk(x, v)|
∣∣∣∣∣
∣∣∣∣∣
L∞(Q)

≤ sup
T∈Th

∣∣∣∣∣
∣∣∣∣∣∑

k

|ψk(x, v)|
∣∣∣∣∣
∣∣∣∣∣
L∞(T )

≤ card(ΣT ) sup
T∈Th

max
(x,v)∈T

|ψk(x, v)|

≤ M,

where ΣT is the set of degrees of freedom on the triangle T .
• L∞ case:

‖πhf‖L∞(Q) ≤ ‖f‖L∞(Q)

∑
k

|ψk(x, v)| ≤ M ‖f‖L∞(Q) .

• L1 case:∫
Q

|πhf(t)|dvdx ≤
∑
k

|fk(t)|
∫
Q

|ψk|dxdv ≤ M
∑
k

|fk(t)|meas (Sk) ,

where Sk is the support of ψk. Let Ak be the geometrical area associated
with the node Nk = (xk,vk), obtained by joining the barycenter of the tri-
angles that have the vertex Nk in common to the middle of the edges of the
triangles; then there exists a constant K > 0 independent of h such that
(1/K)meas(Sk) ≤ meas(Ak) < meas(Sk). Then we obtain

‖πhf(t)‖L1(Q) ≤ CMK
∑
k

|fk(t)|meas (Ak) ≤ C ‖f(t)‖L1(Q)

and

‖πhf‖L∞([0,T ],L1(Q)) ≤ C ‖f‖L∞([0,T ],L1(Q)) .

• Lp case: ∫
Q

|πhf(t)|pdvdx ≤
∫
Q

(∑
k

|fk(t)| |ψk|
)p

dvdx.
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Thanks to the Hölder inequality, we get

∫
Q

|πhf(t)|p ≤
∫
Q

(∑
k

|fk(t)|p|ψk|
)(∑

k

|ψk|
)p/p∗

dvdx,

with p∗ = p/(p− 1). Then we get

‖πhf(t)‖pLp(Q) ≤ Mp/p∗ ∑
k

|fk(t)|p
∫
Q

|ψk|dxdv

≤ KMp/p∗+1
∑
k

|fk(t)|pmeas (Ak)

≤ C ‖f‖pLp(Q)

and finally

‖πhf‖L∞(0,T ;Lp(Q)) ≤ C ‖f‖L∞(0,T ;Lp(Q)).

Hence, as f ∈ L∞(0, T ; C m+1
c,perx(Rx × Rv)), then∥∥∥πhf

(
t, x− v∆t

2 , v
)∥∥∥

L∞(0,T ;Lp(Q))
≤ C

∥∥∥f(t, x− v∆t
2 , v

)∥∥∥
L∞(0,T ;Lp(Q))

≤ C||f ||L∞(0,T ;Lp(Q))

≤ C||f ||L∞(0,T ;Wm+1,p(Q))

and

‖πhf(t, x, v − Ẽ(t, x)∆t)‖L∞(0,T ;Lp(Q)) ≤ C‖f(t, x, v − Ẽ(t, x)∆t)‖L∞(0,T ;Lp(Q))

≤ C||f ||L∞(0,T ;Lp(Q))

≤ C||f ||L∞(0,T ;Wm+1,p(Q)),

which completes the proof of (5.5). Finally, thanks to inequality (3.1), we obtain∥∥∥f(t, x− v∆t
2 , v

)
− πhf

(
t, x− v∆t

2 , v
)∥∥∥

L∞(0,T ;Lp(Q))

≤ Chm+1
∥∥∥f(t, x− v∆t

2 , v
)∥∥∥

L∞(0,T ;Wm+1,p(Q))

≤ Chm+1||f ||L∞(0,T ;Wm+1,p(Q))

and

‖f(t, x, v − Ẽ(t, x)∆t) − πhf(t, x, v − Ẽ(t, x)∆t)‖L∞(0,T ;Lp(Q))

≤ Chm+1||f(t, x, v − Ẽ(t, x)∆t)||L∞(0,T ;Wm+1,p(Q))

≤ Chm+1||f ||L∞(0,T ;Wm+1,p(Q)),

which completes the proof of the proposition.
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The next lemma gives an estimate of the space discretization error.
Lemma 5.5. Assume that f ∈ L∞(0, T ; C m+1

c,perx(Rx × Rv)) and that πh is a
continuous linear interpolation operator from Wm+1,∞(Q) onto Xh; then there exists
a constant C such that

‖T1 ◦ T2 ◦ T1f(tn) − T̃1 ◦ T̃2 ◦ T̃1f(tn)‖L∞(Q) ≤ Chm+1||f ||L∞(0,T ;Wm+1,∞(Q)).

Proof. We begin with the following decomposition:

T1 ◦ T2 ◦ T1f(tn) − T̃1 ◦ T̃2 ◦ T̃1f(tn) = (T1 − T̃1) ◦ T2 ◦ T1f(tn)

+ T̃1 ◦ (T2 − T̃2) ◦ T1f(tn)

+ T̃1 ◦ T̃2 ◦ (T1 − T̃1)f(tn).

(5.9)

Using (5.4), (5.5), and (5.6), the decomposition (5.9) gives for the first term

||(T1 − T̃1) ◦ T2 ◦ T1f(tn)||L∞(Ω) ≤ Chm+1|T2 ◦ T1f(tn)|Wm+1,∞(Q)

≤ Chm+1|T1f(tn)|Wm+1,∞(Q)

≤ Chm+1|f(tn)|Wm+1,∞(Q)

≤ Chm+1||f ||L∞(0,T ;Wm+1,∞(Q)),

for the second term of (5.9)

||T̃1 ◦ (T2 − T̃2) ◦ T1f(tn)||L∞(Q) ≤ C||(T2 − T̃2) ◦ T1f(tn)||L∞(Q)

≤ Chm+1|T1f(tn)|Wm+1,∞(Q)

≤ Chm+1||f ||L∞(0,T ;Wm+1,∞(Q)),

and for the third term of (5.9)

||T̃1 ◦ T̃2 ◦ (T1 − T̃1)f(tn)||L∞(Q) ≤ C||(T1 − T̃1)f(tn)||L∞(Q)

≤ Chm+1||f ||L∞(0,T ;Wm+1,∞(Q)),

which proves the lemma.
We continue with the proof of another lemma that gives an estimate of a coupling

error between the resolution of the Vlasov and the Poisson equations.
Lemma 5.6. Assume that f ∈ L∞(0, T ; C m+1

c,perx(Rx × Rv)) and that πh is a
continuous linear interpolation operator from Wm+1,∞(Q) onto Xh; then there exists
a constant C such that

‖T̃1 ◦ T̃2 ◦ T̃1f(tn) − T̃1 ◦ T̃ �
2 ◦ T̃1f(tn)‖L∞(Q) ≤ C∆t

(
en + hm+1

)
||f ||L∞(0,T ;Wm+1,∞(Q)),

where

en = ‖f(tn) − fh(tn)‖L∞(Q) .

Proof. On the one hand, we have

(T̃2 − T̃ �
2 )g(tn) = πh

(
g(tn, x, v − ∆tẼn+1/2(x)) − g(tn, x, v − ∆tE

n+1/2
h (x))

)
.

On the other hand, we have

|g(tn, x, v− ∆tẼn+1/2(x)) − g(tn, x, v − ∆tE
n+1/2
h (x))|

≤ ∆t|Ẽn+1/2(x) − E
n+1/2
h (x)| ‖∇g(tn)‖L∞(Q) ,



366 NICOLAS BESSE

where Ẽn+1/2(x) and E
n+1/2
h (x) can be written as follows:

Ẽn+1/2(x) =

∫ L

0

K(x, y)

(∫
R

T1f(tn, y, v)dv − 1

)
dy,

E
n+1/2
h (x) =

∫ L

0

K(x, y)

(∫
R

T̃1fh(tn, y, v)dv − 1

)
dy.

Then we can write

E
n+1/2
h (x) − Ẽn+1/2(x) =

∫ L

0

K(x, y)

(∫
R

[
T̃1fh(tn, y, v) − T1f(tn, y, v)

]
dv

)
dy,

=

∫ L

0

K(x, y)

(∫
|v|≤Q(T )

πh

[
fh

(
tn, y − v∆t

2 , v
)
− f

(
tn, y − v∆t

2 , v
)]

dv

)
dy

+

∫ L

0

∫
|v|≤Q(T )

K(x, y)
(
πhf

(
tn, y − v∆t

2 , v
)
− f

(
tn, y − v∆t

2 , v
))

dvdy,

so that we get

‖En+1/2
h − Ẽn+1/2‖L∞([0,L])

≤ LQ(T )||K||L∞

∥∥∥πh

[
fh

(
tn, y − v∆t

2 , v
)
− f

(
tn, y − v∆t

2 , v
)]∥∥∥

L∞(Q)

+ LQ(T )||K||L∞

∥∥∥πhf
(
tn, y − v∆t

2 , v
)
− f

(
tn, y − v∆t

2 , v
)∥∥∥

L∞(Q)
,(5.10)

and using (5.4), (5.5), and (5.6),

‖En+1/2
h − Ẽn+1/2‖L∞([0,L]) ≤ LQ(T )||K||L∞ ||πh||L∞ ‖fh(tn) − f(tn)‖L∞(Q)

+ CLQ(T )||K||L∞hm+1||f(tn)||Wm+1,∞(Q).

(5.11)

Finally, we obtain

‖En+1/2
h − Ẽn+1/2‖L∞([0,L]) ≤ C

(
en + hm+1

)
and, as a consequence,

‖(T̃2 − T̃ �
2 )g(tn)‖L∞(Q) ≤ C∆t

(
en + hm+1

)
‖∇g(tn)‖L∞(Q) .(5.12)

Then, using (5.4) and (5.12),

‖T̃1 ◦ (T̃2 − T̃ �
2 ) ◦ T̃1f(tn)‖L∞(Q) ≤ C‖(T̃2 − T̃2) ◦ T̃1f(tn)‖L∞(Q)

≤ C∆t
(
en + hm+1

)
‖∇(T̃1f(tn))‖L∞(Q).
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Now we estimate the term ‖∇(T̃1f(tn))‖L∞(Q). We can do this in the following way.
Using (3.1), we get

‖∇(T̃1f(tn))‖L∞(Q) ≤
∥∥∥∇(

πhf
(
tn, x− v∆t

2 , v
))∥∥∥

L∞(Q)

≤
∥∥∥∇[

(πhf − f)
(
tn, x− v∆t

2 , v
)]∥∥∥

L∞(Q)

+
∥∥∥∇(

f
(
tn, x− v∆t

2 , v
))∥∥∥

L∞(Q)

≤ Chm||f ||L∞(0,T ;Wm+1,∞(Q)) + ||f ||L∞(0,T ;Wm+1,∞(Q))

≤ C||f ||L∞(0,T ;Wm+1,∞(Q)).

In fact, this estimation is due to the continuity of πh from Wm+1,∞(Q) onto Xh.
Then we finally obtain

‖T̃1 ◦ (T̃2 − T̃ �
2 ) ◦ T̃1f(tn)‖L∞(Q) ≤ C∆t

(
en + hm+1

)
||f ||L∞(0,T ;Wm+1,∞(Q)),

which completes the proof.
We now state the last lemma, which gives information about the stability of the

numerical scheme.
Lemma 5.7. Let πh be the interpolation operator from W 2,∞(Q) onto Xh with

Pm = P1; then we have

‖T̃1 ◦ T̃ �
2 ◦ T̃1(f(tn) − fh(tn))‖L∞(Q) ≤ en.(5.13)

Proof. As πh is a linear interpolation operator, the basis functions satisfy

0 ≤ ψk ≤ 1

and ∑
k

ψk = 1,

and therefore we have

‖πh‖L∞ = sup
f∈L∞

f �=0

‖πhf‖L∞(Q)

‖f‖L∞(Q)

≤ 1.

Indeed we have

|πhg| =

∣∣∣∣∣∑
k

g(xk, vk)ψk(x, v)

∣∣∣∣∣
≤

∑
k

|gk|ψk(x, v)

≤ ‖g‖L∞

∑
k

ψk = ‖g‖L∞ .

As a consequence we obviously obtain

‖T̃1 ◦ T̃ �
2 ◦ T̃1(f(tn) − fh(tn))‖L∞(Q) ≤ ‖T̃ �

2 ◦ T̃1(f(tn) − fh(tn))‖L∞(Q)

≤ ‖T̃1(f(tn) − fh(tn))‖L∞(Q)

≤ ‖f(tn) − fh(tn)‖L∞(Q) ,

which completes the proof.
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Now we can return to the proof of the main theorem.
Proof of the main theorem. We want to evaluate the global error at time tn+1:

en+1 = ||f(tn+1, x, v) − fh(tn+1, x, v)||L∞(Q).

We decompose f(tn+1, x, v) − fh(tn+1, x, v) as

f(tn+1, x, v) − fh(tn+1, x, v) = f(tn+1, x, v) − T1 ◦ T2 ◦ T1f(tn, x, v)

+ T1 ◦ T2 ◦ T1f(tn, x, v) − T̃1 ◦ T̃2 ◦ T̃1f(tn, x, v)

+ T̃1 ◦ T̃2 ◦ T̃1f(tn, x, v) − T̃1 ◦ T̃ �
2 ◦ T̃1f(tn, x, v)

+ T̃1 ◦ T̃ �
2 ◦ T̃1(f(tn, x, v) − fh(tn, x, v)).(5.14)

Finally if we put together Lemmas 5.3, 5.5, 5.6, 5.7, we obtain the following estimation:

en+1 ≤ (1 + C∆t)en + C
(
||f ||C2(0,T ;W 2,∞(Q))

) (
∆t3 + h2 + h2∆t

)
.

A discrete Gronwall inequality enables us to get

en+1 ≤ exp(CT )e0 + C
(
||f ||C2(0,T ;W 2,∞(Q))

)(
∆t2 +

h2

∆t
+ h2

)
.

As e0 is only a fixed interpolation error, we obtain

en ≤ C
(
||f ||C2(0,T ;W 2,∞(Q))

)(
∆t2 +

h2

∆t
+ h2

)
.

In order to prove the convergence of the electric field, we estimate

||E(tn+1/2) − E
n+1/2
h ||L∞([0,L]).

To estimate this term we proceed as in the proof of Lemmas 5.6 and 5.3. Then we
obtain

||Ẽ(tn+1/2) − E
n+1/2
h ||L∞([0,L]) ≤ C

(
||f ||C2(0,T ;W 2,∞(Q))

)(
∆t2 + h2 +

h2

∆t

)
and

||E(tn+1/2) − Ẽ(tn+1/2)||L∞([0,L]) ≤ C
(
||f ||C2(0,T ;W 2,∞(Q))

)
∆t2

so that

||E(tn+1/2) − E
n+1/2
h ||L∞([0,L]) ≤ C

(
||f ||C2(0,T ;W 2,∞(Q))

)(
∆t2 + h2 +

h2

∆t

)
.

5.4. Other results. We can prove the convergence of our numerical scheme un-
der weaker regularity assumptions. Following the proof of existence and uniqueness of
the solutions of the Cauchy problem for the Vlasov–Maxwell system in one dimension
made by Cooper and Klimas [15], if we take f0 such that

f0 ∈ Cb,perx ∩W 1,∞
c (Rx × Rv),
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the Vlasov–Poisson periodic system given by (2.7), (2.8), (2.9), and (2.10) has a unique
solution (f,E) such that

f ∈ Cb

(
0, T ; Cb,perx ∩W 1,∞

c (Rx × Rv)
)
,

∂tf ∈ L∞ (0, T ;L∞
c (Rx × Rv)) ,

where the derivative is taken in the sense of distribution, and

E ∈ C 1
(
0, T ; C 1

b,perx(Rx)
)
.

Now we state the theorem.
Theorem 5.8. Assume that f0 ∈ Cb,perx ∩ W 1,∞

c (Rx × Rv). Let α > 0,
h ∼ ∆t1/ε, with 0 < ε < 1; then (fh, Eh), the numerical solution of the peri-
odic Vlasov–Poisson system, converges towards (f,E), and there exists a constant
C = C(‖f‖Cb(0,T ;W 1,∞(Q)) , ‖∂tf‖L∞(0,T ;L∞(Q))) independent of ∆t and h such that

||f − fh||�∞(0,T ;L∞(Q)) ≤ C
(
∆t + h + h1−ε

)
and

||E − Eh||�∞(0,T ;L∞([0,L])) ≤ C
(
∆t + h + h1−ε

)
.

Proof. In order to prove Theorem 5.8 we have to examine how Lemmas 5.3, 5.5,
5.6, 5.7 and Proposition 5.4 can be adapted to the new regularity assumptions.

We begin with Lemma 5.3. Now we cannot apply Taylor expansion, since the
solution is not regular enough. Thus we have to rewrite all the estimates. First we
have

X(tn+1/2) − (x− v∆t/2) = X(tn+1/2) −
(
X(tn+1) − V (tn+1)∆t

2

)
=

∫ tn+1/2

tn+1

(
V (t) − V (tn+1)

)
dt

=

∫ tn+1/2

tn+1

∫ t

tn+1

E (τ,X(τ)) dτdt

≤ C∆t2 ‖E‖L∞(0,T ;L∞([0,L]))

≤ C∆t2.

(5.15)

Next we note that we have the following decomposition:

f(tn+1/2, y, v) − f
(
tn, y − v∆t

2 , v
)

=

∫ tn+1/2

tn
∂tf(t, y, v)dt +

∫ y

y−v∆t/2

∂xf(tn, x, v)dx.

As f ∈ Cb(0, T ;Wc
1,∞ (Q)) and ∂tf ∈ L∞ (0, T ;L∞

c (Q)), integrating the previous
decomposition, we obtain∫ L

0

∫
Rv

∣∣∣f(tn+1/2, y, v) − f
(
tn, y − v∆t

2 , v
)∣∣∣dydv

≤
∫ L

0

∫
Rv

∫ tn+1/2

tn
|∂tf (t, y, v)| dtdvdy +

∫ L

0

∫
Rv

∫ y

y−v∆t/2

|∂xf (tn, x, v)| dxdvdy,
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and then ∫ L

0

∫
Rv

∣∣∣f(tn+1/2, y, v) − f
(
tn, y − v∆t

2 , v
)∣∣∣dydv

≤ CLQ2(T )∆t
(
‖∂tf‖L∞(0,T,L∞(Q)) + ‖∂xf‖L∞(0,T ;L∞(Q))

)
≤ C∆t,(5.16)

so that, using (2.7),

|E(tn+1/2, x) − Ẽ(tn+1/2, x)| ≤ C∆t.(5.17)

Then we have

V (tn) − Ṽ (tn) =

∫ tn

tn+1

E (t,X(t)) dt + ∆tẼ
(
tn+1/2, x− v∆t

2

)

=

∫ tn

tn+1

(E (t,X(t)) − E(tn+1/2, X(t)))dt

+

∫ tn

tn+1

(E(tn+1/2, X(t)) − E(tn+1/2, X(tn+1/2)))dt

+ ∆t
{
E
(
tn+1/2, X(tn+1) − V (tn+1)∆t

2

)
− E(tn+1/2, X(tn+1/2))

}
+ ∆t

{
Ẽ
(
tn+1/2, X(tn+1) − V (tn+1)∆t

2

)
− E

(
tn+1/2, X(tn+1) − V (tn+1)∆t

2

)}
.

As E ∈ C 1(0, T ; C 1
b,perx

(Rx)), we obtain

sup
{∣∣∣V (tn; tn+1, x, v) − Ṽ (tn; tn+1, x, v)

∣∣∣ | ∀(x, v) ∈ [0, L] × R

}
≤ C∆t2Lip (E(., x)) + CQ(T )∆t2Lip (E(t, .)) + C∆t3Lip (E(t, .)) + C∆t2

≤ C∆t2.

(5.18)

We go on with the estimate of X(tn) − X̃(tn). We have

X(tn) − X̃(tn) =

∫ tn

tn+1

∫ t

tn+1

E (τ,X(τ)) dτdt− ∆t2

2 Ẽ
(
tn+1/2, X(tn+1) − V (tn+1)∆t

2

)
so that

sup
{∣∣∣X(tn) − X̃(tn)

∣∣∣ | ∀(x, v) ∈ [0, L] × R

}
≤ C∆t2

(
‖E‖L∞ + ‖Ẽ‖L∞

)
≤ C∆t2.

(5.19)
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Now we use the estimates (5.18) and (5.19) in order to bound the quantity

T1 ◦ T2 ◦ T1f(tn) − f
(
tn+1, x, v

)
= f(tn, X̃(tn), Ṽ (tn)) − f (tn, X(tn), V (tn))

in the L∞ norm. As we have the continuous embedding W 1,∞ ↪→ C 0,1, then∥∥T1 ◦ T2 ◦ T1f(tn) − f
(
tn+1

)∥∥
L∞(Q)

≤ CLip (f(tn, ., .)) ∆t2,

≤ C sup
t∈[0,T ]

Lip (f(t, ., .)) ∆t2,

≤ C∆t2.(5.20)

Following the proof of Proposition 5.4, if we take f ∈ Cb(0, T ;W 1,∞
c (Q)), E ∈

C 1(0, T ; C 1
b,perx

(R)), and if we take the derivative in the sense of distribution, then,
using (3.1), we still have (with m ∈ {0, 1})

||Tif ||L∞(0,T ;Wm,∞(Q)) ≤ C||f ||L∞(0,T ;Wm,∞(Q)),(5.21)

||T̃if ||L∞(0,T ;L∞(Q)) ≤ C||f ||L∞(0,T ;Wm,∞(Q)),(5.22)

and

‖(Ti − T̃i)f‖L∞(0,T ;L∞(Q)) ≤ Ch||f ||L∞(0,T ;W 1,∞(Q)).(5.23)

As a consequence, Lemma 5.5 supplies the estimate

‖T1 ◦ T2 ◦ T1f(tn) − T̃1 ◦ T̃2 ◦ T̃1f(tn)‖L∞(Q) ≤ Ch.

The estimate of Lemma 5.6 has to be replaced by

‖T̃1 ◦ T̃2 ◦ T̃1f(tn) − T̃1 ◦ T̃ �
2 ◦ T̃1f(tn)‖L∞(Q) ≤ C∆t (en + h) .

In order to justify this inequality we just have to show that Lip(T̃1f(tn)) is bounded.
Indeed we have

Lip(T̃1f(tn)) = Lip
(
πhf

(
tn, x− v∆t

2 , v
))

≤ ‖πh‖L∞Lip (f(tn, ., .)) < +∞.

Finally, we get all the desired a priori estimates by seeing that the stability result
(5.13) still holds. Then the proof of the theorem is the same as that for Theorem 5.1,
and we get

||f − fh||�∞(0,T ;L∞(Q)) ≤ C

(
∆t + h +

h

∆t

)
and

||E − Eh||�∞(0,T ;L∞([0,L])) ≤ C

(
∆t + h +

h

∆t

)
.

Now if we take ∆t ∼ hε with 0 < ε < 1, we get the desired result. In fact the best ε
to choose is 1/2 so that convergence holds with order 1/2.
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Remark 5.9. Under the regularity assumptions f0 ∈ C m+1
c,perx(Rx × Rv), if there

exists an interpolation operator πh that satisfies both a consistency condition such as

‖f − πhf‖L∞(0,T ;Lp(Q)) ≤ Chm+1||f ||L∞(0,T ;Wm+1,p(Q))(5.24)

and a stability condition such as

‖πhf‖L∞(0,T ;Lp(Q)) ≤ (1 + Ch)||f ||L∞(0,T ;Lp(Q)),(5.25)

then our method can easily be applied to prove the convergence of high order schemes
in the Lp norm and to find error estimates such as

||f − fh||�∞(0,T ;Lp(Q)) ≤ C
(
||f ||C2(0,T ;Wm+1,p(Q))

)(
∆t2 + hm+1 +

hm+1

∆t

)
and

||E − Eh||�∞(0,T ;L∞([0,L])) ≤ C
(
||f ||C2(0,T ;Wm+1,p(Q))

)(
∆t2 + hm+1 +

hm+1

∆t

)
.

Unfortunately Lagrange interpolations of high order do not satisfy the stability con-
dition (5.25). Besides, it seems difficult but not impossible to build interpolation
operators πh which satisfy both conditions (5.24) and (5.25).

If we use a Lagrange interpolation operator of high order, the discrete solution
fh(tn) belongs to W 1,p(Q). The numerical scheme consists of a succession of transport
and projection on the finite element space generated by the Lagrange finite element
of high order. The transport operation leaves the norm of the solution unchanged.
Then the scheme is stable if the interpolation operator πh is stable, i.e., ‖πh‖Lp ≤ 1+
ε(h) with limh→0 ε(h) = 0. Unfortunately Lagrange interpolation does not have nice
properties of stability. Let τh,ξ be a translation operator such that τz,ξfh(tn, x, v) =
fh(tn, x− z, v − ξ) = gh(tn, x, v). Therefore gh(tn) ∈ W 1,p(Q), and we have

‖πh ◦ τz,ξfh(tn)‖Lp(Q) = ‖πhgh(tn)‖Lp(Q)

≤ ‖gh(tn)‖Lp(Q) + ‖πhgh(tn) − gh(tn)‖Lp(Q)

≤ ‖gh(tn)‖Lp(Q) + Ch |gh(tn)|W 1,p(Q)

≤ ‖gh(tn)‖Lp(Q) + C,

since |gh(tn)|W 1,p(Q) ∼ O(h−1) and with C independent of h and such that C > 1.
We can also prove the convergence of our numerical scheme with noncompactly

supported initial data. If we take f0 such that

f0 ∈ Cb,perx ∩W 1,∞ ∩W 1,1(Rx × Rv),

0 < f0 ≤ (1 + |v|)−λ, v∇f0 ∈ L∞
x

(
L1
v

)
,

and if we suppose that there exists a constant R > 0 such that

L(f0, R)(ξ) = sup

{
|f0(x, v) − f0(y, w)|
‖(x, v) − (y, w)‖2

∣∣∣∣ x, y ∈ [0, L], v, w ∈ R,

(x, v) �= (y, w), |v − ξ| ≤ R, |w − ξ| ≤ R

}
(1 + |ξ|) ∈ L∞ ∩ L1(Rξ),(5.26)
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where (x, v) ∈ [0, L] × R and ‖(x, v)‖2 =
√
x2 + v2, the periodic Vlasov–Poisson

system given by (2.7), (2.8), (2.9), and (2.10) has a unique solution (f,E) such that

0 < f(t, x, v) ≤ (1 + |v|)−λ,(5.27)

f ∈ Cb

(
0, T ; Cb,perx ∩W 1,∞ ∩W 1,1(Rx × Rv)

)
,

v∇f, ∂tf ∈ L∞ (
0, T ;L∞

x

(
L1
v

))
,

where the derivative is taken in the sense of distribution and

E ∈ C 1
(
0, T ; C 1

b,perx(Rx)
)
.

In addition, there exists a constant C(T ) > 0 such that ∀t ∈ [0, T ],

L(f(t), R + C(T ))(ξ)

= sup

{
|f(t, x, v) − f(t, y, w)|
‖(x, v) − (y, w)‖2

∣∣∣∣ x, y ∈ [0, L], v, w ∈ ×R,

(x, v) �= (y, w), |v − ξ| ≤ R + C(T ), |w − ξ| ≤ R + C(T )

}
(1 + |ξ|)

∈ L∞ ∩ L1(Rξ).

Now we state the theorem.
Theorem 5.10. Assume that f0 ∈ Cb,perx ∩ W 1,∞ ∩ W 1,1(Rx × Rv), 0 ≤ f0 ≤

(1 + |v|)−λ, ∀λ > 1 and that f0 satisfies (5.26). Let α be such that 0 < α < λ, and
suppose that the bound of velocity support R evolves as h−1/α. Then (fh, Eh), the
numerical solution of the periodic Vlasov–Poisson system, converges towards (f,E),
and there exists a positive function µ such that limh→0 µ(h) = 0, and a constant C =
C(‖f‖L∞(0,T ;W 1,∞(Q)), ‖f‖L∞(0,T ;W 1,1(Q)), ‖∂tf‖L∞(0,T ;L∞

x (L1
v)), ‖v∇f‖L∞(0,T ;L∞

x (L1
v)))

independent of ∆t, h such that

||f − fh||�∞(0,T ;L1,∞(Q)) ≤ C
(
∆t + h + (h + µ(h))

1−1/σ
+ hλ/α

)
and

||E − Eh||�∞(0,T ;L∞([0,L])) ≤ C
(
∆t + h + (h + µ(h))1−1/σ + hλ/α

)
,

where ∆t ∼ (h + µ(h))1/σ, with σ > 1.
Before giving the proof of Theorem 5.10, we need to establish the L1 stability of

πh by proving the following two lemmas.
Lemma 5.11. Assume that 0 ≤ f0(x, v) ≤ ζ(x, v) ∼ (1 + |v|)−λ, for λ > 1. Then

there exists a constant C, depending only on T , L, and f0, such that

0 ≤ fh(t, x, v) ≤ Cζh(x, v), t ∈ [0, T ], (x, v) ∈ Q,(5.28)

where

ζh(x, v) =
∑
k

1

(1 + |vk|)λ
ψk(x, v).

There also exists a constant C > 0 such that

||fh(t)||L1(Q) ≤ C, t ∈ [0, T ].(5.29)
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Proof. We begin with the transport in x. Let us notice that there exists a
constant R independent of h such that for every triangle Tm of the triangulation
Th there exists a ball B(am, Rh) of center am and radius Rh which contains Tm.
Let Nk be a vertex of triangle Tm. If we consider transport in x, the origin of the
characteristic, x�

k = xk − vk∆t/2, which ends at Nk, belongs to a triangle T �
m. Let

µ(h) be a positive function such that limh→0 µ(h) = 0. If No, Np, and Nq are the
vertices of the triangle T �

m, we have

|vk − vo| ≤ 2Rh ≤ 2R(h + µ(h)) ≤ 2Rε(h),

|vk − vp| ≤ 2Rh ≤ 2R(h + µ(h)) ≤ 2Rε(h),

and

|vk − vq| ≤ 2Rh ≤ 2R(h + µ(h)) ≤ 2Rε(h),

where ε(h) = h + µ(h). On the other hand, we note that

ζh(xj , vj)

ζh(xk, vk)
=

(1 + |vk|)λ
(1 + |vj |)λ

≤ 1 + C1(λ,R)ε(h), j = {o, p, q}.(5.30)

Now, if we consider the transport in v, the origin of the characteristic v∗k = vk −
Eh(tn+1/2)∆t which ends at Nk belongs to a triangle T ∗

m. If Ni, Ns, and Nl are the
vertices of a triangle T ∗

m, as ‖Eh‖�∞(0,T ;L∞([0,L])) is bounded we have

|vk − vi| ≤ C∆t, |vk − vs| ≤ C∆t, and |vk − vl| ≤ C∆t,

and then we have

ζh(xj , vj)

ζh(xk, vk)
=

(1 + |vk|)λ
(1 + |vj |)λ

≤ 1 + C2(λ,R)∆t, j = {i, s, l}.(5.31)

If we set b1 = 1 + C1(λ,R)ε(h), b2 = 1 + C2(λ,R)∆t, and b = b1b2b1, then we have

fh(0, xk, vk) ≤
1

(1 + |vk|)λ
≤ b0

(1 + |vk|)λ

and consequently

fh(0, x, v) ≤ b0ζh(x, v).

If we assume that

fh(tn, xk, vk) ≤ bnζh(xk, vk)

and consequently

fh(tn, x, v) ≤ bnζh(x, v),
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the numerical scheme gives for the first half advection with the respect to the variable x

fh(tn+1/2, xk, vk) =
∑
l

fh(tn, xl, vl)ψl

(
xk − vk

∆t

2
, vk

)
.

Let T �
m be the triangle which contains the origin of the characteristic coming from

the node Nk. Let No, Np, and Nq be the three vertices of T �
m. Then we can write

fh(tn+1/2, xk, vk)

ζh(xk, vk)
= λo

fn
h,o

ζh(xk, vk)
+ λp

fn
h,p

ζh(xk, vk)
+ λq

fn
h,q

ζh(xk, vk)
,

where

λl = ψl

(
xk − vk

∆t

2
, vk

)
and

fn
h,l = fh(tn, xl, vl).

Using the property (5.30) of ζh and the property

λo + λp + λq = 1,

we obtain

fh(tn+1/2, xk, vk)

ζh(xk, vk)
≤ bnλo

ζh(xo, vo)

ζh(xk, vk)
+ bnλp

ζh(xp, vp)

ζh(xk, vk)
+ bnλq

ζh(xq, vq)

ζh(xk, vk)
≤ b1b

n.

In the same way for the two other advections we finally obtain

fh(tn+1, xk, vk)

ζh(xk, vk)
≤ b(n+1) ∀ Nk ∈ Th.

For a finite time T and ∀n ∈ {0, . . . , T/∆t}, if we consider ε(h) ≤ ∆t, we have
b ≤ 1 + C(C1, C2)∆t, b(n+1) ≤ exp(C(C1, C2)T ), and as in the continuous case there
exists a majorizing function of the discrete distribution

fh(t, x, v) ≤ Cζh(x, v) ∀t ∈ [0, T ], ∀(x, v) ∈ Q.

In order to prove (5.29), we note that∫
Rζh(x,v)dxdv

=
∑
k

1

(1 + |vk|)λ
∫

R

ψk(x, v)dxdv

=
∑
k

meas(Ak)

(1 + |vk|)λ

≤ C

∫
R

1

(1 + |v|)λ < +∞.

Let Ak be the area associated with the node Nk and ψk ∈ P1; then we have

meas(Ak) =

∫
R

ψk(x, v)dxdv =
|suppψk|

3
.
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We introduce χk, the characteristic function defined as follows:

χk(x, v) =

{
1 if (x, v) ∈ Ak,
0 otherwise.

Then we introduce the function gnh(x, v) defined by

gnh(x, v) =
∑
k

gnh(xk, vk)χk(x, v),

with

gnh(xk, vk) = fh(tn, xk, vk).

We note that

||fh(tn)||L1(Q) = ||gnh ||L1(Q).

Moreover, as for the proof of the Lemma 5.11, we can prove that

0 ≤ gnh(x, v) ≤ Cγh(x, v) ∀n ∈ [0, N ], N =

[
T

∆t

]
, (x, v) ∈ Q,

where

γh(x, v) =
∑
k

1

(1 + |vk|)λ
χk(x, v).

We notice that there exists another constant C independent of h such that

0 < γh ≤ C(1 + |v|)−λ.

Now we state the lemma which shows the L1 stability of the interpolation operator
πh.

Lemma 5.12. Let g ∈ Cb ∩ L1(Q) and 0 < g ≤ C(1 + |v|)−λ; then there exists a
positive function µ, where limh→0 µ(h) = 0, such that

||πhg||L1(Q) ≤ ||g||L1(Q) + µ(h).

Proof. We have

||πhg||L1(Q) =
∑
k

gk

∫
R

∫ L

0

ψk(x, v)dxdv =
∑
k

gkmeas(Ak)

=
∑
k

gk

∫
Q

χk(x, v)dxdv =

∫
Q

∑
k

gkχk(x, v)dxdv

= ||gh||L1(Q).

As

gh(x, v) ≤ C(1 + |v|)−λ
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and

lim
h→0

gh = g a.e.,

the dominated convergence theorem asserts that

lim
h→0

∫
Q

|gh − g| dxdv = 0,

and as a consequence there exists a positive function µ with limh→0 µ(h) = 0 such
that ∫

Q

|gh − g| dxdv ≤ µ(h).

Then we deduce that∣∣‖πhg‖L1(Q) − ‖g‖L1(Q)

∣∣ =
∣∣‖gh‖L1(Q) − ‖g‖L1(Q)

∣∣ ≤ ∫
Q

|gh − g| dxdv ≤ µ(h).

Finally we deduce that

||πhg||L1(Q) ≤ ||g||L1(Q) + µ(h).

Now we can return to the proof of Theorem 5.10.
Proof of Theorem 5.10. In order to prove the theorem we have to see how the a

priori estimates (5.16), (5.17), (5.18), (5.19), and (5.20) are modified and obtain the
same kind of a priori estimates in the L1 norm.

As v∇f, ∂tf ∈ L∞(0, T ;L∞
x (L1

v)) the estimate (5.16) becomes∫ L

0

∫
Rv

|f(tn+1/2, y, v) − f (tn, y − v∆t/2, v) |dydv

≤ CL∆t
(
‖∂tf‖L∞(0,T,L∞

x (L1
v)) + ‖v∂xf‖L∞(0,T ;L∞

x (L1
v))

)
≤ C∆t,

so that we still have

|E(tn+1/2, x) − Ẽ(tn+1/2, x)| ≤ C∆t.

The estimate (5.19) still holds, but the estimate (5.18) changes into

|V (tn) − Ṽ (tn)| ≤ C(1 + |v|)∆t2.

Then the estimate (5.20) becomes∥∥T1 ◦ T2 ◦ T1f(tn) − f
(
tn+1

)∥∥
L∞(Q)

≤ sup
v∈R

{L(f(tn), C(T ))(v)}∆t2

≤ C∆t2,
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and in the L1 norm we have∥∥T1 ◦ T2 ◦ T1f(tn) − f
(
tn+1

)∥∥
L1(Q)

≤
∫ L

0

∫
R

∣∣∣f (tn, X̃(tn; tn+1, x, v), Ṽ (tn; tn+1, x, v)
)

−f
(
tn, X(tn; tn+1, x, v), V (tn; tn+1, x, v)

)∣∣∣dvdx
≤

∫ L

0

∫
sup

{
‖(χ, ξ) − (y, w)‖−1

2 · |f(tn, χ, ξ) − f(tn, y, w)|
∣∣∣

(χ, ξ), (y, w) ∈ [0, L] × R, (χ, ξ) �= (y, w), |ξ − v|, |w − v| ≤ C(T )
}

×
∥∥(X̃(tn; tn+1, x, v), Ṽ (tn; tn+1, x, v)

)
−

(
X(tn; tn+1, x, v), V (tn; tn+1, x, v)

)∥∥
2
dvdx

≤ ∆t2
∫ L

0

∫
R

L(f(tn), C(T ))(v)dvdx

≤ C∆t2,

where

sup
{∣∣V (tn; tn+1, x, v) − v

∣∣ | x ∈ [0, L], v ∈ R
}
≤

∫ tn+1

tn
‖E(τ, .)‖L∞ dt

≤ T ‖E‖L∞(0,T ;L∞) ≤ C(T ) < +∞.

Then we conclude that the estimate of Lemma 5.3 has to be replaced by∥∥T1 ◦ T2 ◦ T1f(tn) − f
(
tn+1

)∥∥
L1,∞(Q)

≤ C∆t2.

Following the proof of Proposition 5.4, if we take f ∈ Cb(0, T ;W 1,∞ ∩W 1,1(Q)) and
E ∈ C 1(0, T ; C 1

b,perx
(R)), then using (3.1) and taking the derivative in the sense of

distribution, we still have (with m ∈ {0, 1}, p ∈ {1,∞})

||Tif ||L∞(0,T ;Wm,p(Q)) ≤ C||f ||L∞(0,T ;Wm,p(Q)),

||T̃if ||L∞(0,T ;Lp(Q)) ≤ C||f ||L∞(0,T ;Wm,p(Q)),

and

‖(Ti − T̃i)f‖L∞(0,T ;Lp(Q)) ≤ Ch||f ||L∞(0,T ;W 1,p(Q)).

As a consequence, Lemma 5.5 supplies the estimate

‖T1 ◦ T2 ◦ T1f(tn) − T̃1 ◦ T̃2 ◦ T̃1f(tn)‖L1,∞(Q) ≤ Ch.



CONVERGENCE OF A SEMI-LAGRANGIAN SCHEME 379

The estimate of Lemma 5.6 has to be replaced by

(5.32)

‖T̃1 ◦ T̃2 ◦ T̃1f(tn) − T̃1 ◦ T̃ �
2 ◦ T̃1f(tn)‖L1,∞(Q) ≤ C∆t

(
en +

1

(1 + R)λ
+ h

)
,

where

en = ‖f(tn) − fh(tn)‖L1,∞(Q) .

The proof of Lemma 5.6 holds, except for the estimate of E
n+1/2
h (x)− Ẽn+1/2(x) that

we slightly modify as follows. We rewrite

E
n+1/2
h (x) − Ẽn+1/2(x)

=

∫ L

0

K(x, y)

(∫
R

[
T̃1fh(tn, y, v) − T1f(tn, y, v)

]
dv

)
dy

=

∫ L

0

K(x, y)

(∫
|v|≤R

πh

[
fh

(
tn, y − v∆t

2 , v
)
− f

(
tn, y − v∆t

2 , v
)]

dv

)
dy

+

∫ L

0

∫
|v|>R

K(x, y)f
(
tn, y − v∆t

2 , v
)
dvdy

+

∫ L

0

∫
|v|≤R

K(x, y)
(
πhf

(
tn, y − v∆t

2 , v
)
− f

(
tn, y − v∆t

2 , v
))

dvdy,

so that we get

‖En+1/2
h − Ẽn+1/2‖L∞([0,L]) ≤ ||K||L∞ ||πh||L∞ ‖fh(tn) − f(tn)‖L1,∞(Q)

+ ||K||L∞ ||f(tn)||L1(Q\Ω)

+ C||K||L∞h||f(tn)||W 1,1(Q).(5.33)

Thanks to assumption (5.27), for the second term of (5.33) we obtain∥∥∥En+1/2
h − Ẽn+1/2

∥∥∥
L∞([0,L])

≤ C

(
en +

1

(1 + R)λ
+ h

)
.

In order to finish justifying the inequality (5.32), we now just have to show that

L(T̃1f(tn, C(T )))(ξ) belongs to L∞ ∩ L1. Indeed we have

L(T̃1f(tn, C(T )))(ξ) = L
(
πhf

(
tn, x− v∆t

2 , v
)
, C(T )

)
(ξ)

≤ ‖πh‖L∞L (f(tn), C(T )) (ξ) ∈ L∞ ∩ L1.

Finally, thanks to Lemma 5.12, we get the L1,∞ stability of the interpolation operator
πh; that is to say, there exists a constant C such that

||πhf ||L1,∞ ≤ ||f ||L1,∞ + µ(h) ∀f ∈ Cb

(
0, T ; Cb,perx ∩ L1(Rx × Rv)

)
.

Then it is obvious that the estimate of Lemma 5.7 becomes

‖T̃1 ◦ T̃ �
2 ◦ T̃1(f(tn) − fh(tn))‖L1,∞(Q) ≤ en + 3µ(h).
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As in the proof of the main theorem, a discrete Gronwall inequality enables us to get

en+1 ≤ exp(CT )e0 + C

(
∆t + h +

h + µ(h)

∆t
+

1

(1 + R)λ

)
.

If we suppose that R = 1
h1/α , α > 0, and since e0 is only a fixed interpolation error,

we obtain

en+1 ≤ C

(
∆t + h +

h + µ(h)

∆t
+ hλ/α

)
.

Then the end of the proof is the same as the proof of the main Theorem 5.1, and we
get

||f − fh||�∞(0,T ;L1,∞(Q)) ≤ C

(
∆t + h +

h + µ(h)

∆t
+ hλ/α

)
and

||E − Eh||�∞(0,T ;L∞([0,L])) ≤ C

(
∆t + h +

h + µ(h)

∆t
+ hλ/α

)
.

If we choose ∆t ∼ (h + µ(h))1/σ, σ > 1, we get the estimates of Theorem 5.1.
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