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Achieving plasmas with good stability and confinement properties is a key research
goal for magnetic fusion devices. The underlying equations are the Vlasov—Poisson
and Vlasov—-Maxwell (VPM) equations in three space variables, three velocity vari-
ables, and one time variable. Even in those somewhat academic cases where global
equilibrium solutions are known, studying their stability requires the analysis of the
spectral properties of the linearized operator, a daunting task. We have identified a
model, for which not only equilibrium solutions can be constructed, but many of their
stability properties are amenable to rigorous analysis. It uses a class of solution to the
VPM equations (or to their gyrokinetic approximations) known as waterbag solutions
which, in particular, are piecewise constant in phase-space. It also uses, not only the
gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but
also an asymptotic approximation regarding the magnetic-field-induced anisotropy:
the spatial variation along the field lines is taken much slower than across them.
Together, these assumptions result in a drastic reduction in the dimensionality of the
linearized problem, which becomes a set of two nested one-dimensional problems:
an integral equation in the poloidal variable, followed by a one-dimensional complex
Schrodinger equation in the radial variable. We show here that the operator asso-
ciated to the poloidal variable is meromorphic in the eigenparameter, the pulsation
frequency. We also prove that, for all but a countable set of real pulsation frequencies,
the operator is compact and thus behaves mostly as a finite-dimensional one. The
numerical algorithms based on such ideas have been implemented in a companion
paper [D. Coulette and N. Besse, “Numerical resolution of the global eigenvalue
problem for gyrokinetic-waterbag model in toroidal geometry” (submitted)] and
were found to be surprisingly close to those for the original gyrokinetic-Vlasov
equations. The purpose of the present paper is to make these new ideas accessible
to two readerships: applied mathematicians and plasma physicists. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4960742]

. INTRODUCTION
A. Motivations and key issues

It is well known that plasmas confined by magnetic fields are often unstable. Indeed, the
presence of density, temperature, velocity, and pressure gradients in the transverse direction of
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the magnetic confinement field constitutes free-energy sources, allowing small perturbations of
the equilibrium state to grow exponentially, that is, the development of instabilities. This, in turn,
leads to an important enlargement in the range of scales (particularly towards high wavenumber)
present in the wave spectrum and to a significant increase in their amplitudes. In this wave-spectrum
configuration, particles interacting with the waves have turbulent or chaotic dynamics. The study of
such instabilities is important, in particular because they are the main cause of turbulent transport of
heat and momentum.

Moreover, the thermal confinement of a magnetized fusion plasma is essentially determined
by the turbulent heat conduction across the equilibrium magnetic field (in the transverse direction
of the magnetic confinement field). Since the main energy loss in a controlled fusion device is of
conductive nature, the energy confinement time has the same order of magnitude as the diffusion
time a®/ yr, where yr is the thermal diffusivity and a is the transverse plasma size.

Consequently, the development of microscopic instabilities, through the generated microtur-
bulence, can cause a dramatic reduction in the energy confinement time. The microturbulence
stems from various instabilities (electrostatic, electromagnetic, fluid, ...); furthermore, it may or
not involve passing particle trajectories (open trajectories) or trapped ones (closed trajectories). The
problem of accurately describing the status of all these possibilities for a given plasma is not yet
completely solved. So far, many theoretical linear studies have been done on various microinsta-
bilities to estimate their nonlinear saturation levels, the corresponding spectra, and the resulting
transport across the equilibrium magnetic field.

Among all the microinstabilities, usually mentioned in investigating the stability of a magnet-
ically confined plasma, those due to “flute-like” modes are particularly important when explaining
anomalous energy transport in tokamak devices. The main property of these modes, justifying their
name, is that k/k, < 1. Ion temperature gradient (ITG) modes are an example of such modes.

As far as turbulent diffusion is concerned, it is commonly observed that fluid simulations
overestimate the turbulent diffusivity y by roughly a factor two over the more accurate kinetic
simulations.?’ Therefore, deciding which description to use may significantly impact the insta-
bility threshold and the growth rates and thus the predicted turbulent transport. The reason for this
discrepancy is poorly understood, but wave-particle resonant processes (such as Landau damping)
do certainly play an important part. Semi-empirical statistical approximations, known as closures,
have been tried for this, but with little success so far (see, e.g., Ref. 92 and references therein).

The natural framework for studying turbulence and diffusion in the core of fusion plasmas is
the six-dimensional kinetic collisionless models, such as the Vlasov—Poisson and Vlasov—Maxwell
systems. Nevertheless, the presence of a very strong confining external magnetic field introduces a
major simplification: to leading order, one obtains a helical cyclotronic motion (also called gyro-
motion) of the ions around the magnetic field lines. The radius of this helix is of order of the ion
Larmor radius p;, while the time frequency is of order of the ion cyclotron frequency ;. Since
the problem possesses an approximate symmetry (the ion gyromotion), a perturbation analysis can
be applied to create an ignorable coordinate ¢ (the gyro-angle, which parametrizes the ion helical
motion) and thereby one has transformed the approximate symmetry (ion cyclotron motion) into an
exact one (ion helical motion). Noether’s theorem then provides a corresponding invariant, the adia-
batic invariant y (the magnetic moment), which together with the gyro-angle ¢ constitutes a pair of
conjugate variables. The gyrokinetic equation, parametrized by the magnetic moment g, is obtained
by averaging the Vlasov—Poisson or Vlasov—Maxwell along the gyro-angle {. The six-dimensional
Vlasov equation has thus been reduced to a four-dimensional gyrokinetic equation, parametrized
by the one-dimensional adiabatic invariant u, where time frequencies larger than the ion cyclotron
frequency €; and wavelengths smaller than the ion Larmor radius p; have dropped out.3%30-38.17.16

It is important that gyrokinetic simulations measure the discrepancy between the local distribu-
tion function and the Maxwellian distribution, used by most fluid closures. Note that, although more
accurate, the gyrokinetic description of turbulent transport is much more demanding in computer
resources than fluid simulations. This motivates us to revisit an alternative approach, based on the
waterbag-like weak solution of kinetic equations.
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The aim of this paper is to develop the linearized theory of collisionless kinetic flute-like waves,
such as ionic instabilities (ITG modes), using an exact geometric reduction of the gyrokinetic-
Vlasov equations. This reduction makes use of the “waterbag invariants,” expressing, on the one
hand, the conservation of the distribution function along phase-space characteristics and, on the
other hand, the conservation of phase-space volume (Liouville’s theorem). The waterbag model,
which will be discussed in Secs. II-V, can be seen as a special class of weak solutions of the col-
lisionless kinetic equations. It also constitutes a bridge between fluid and kinetic descriptions of a
collisionless plasma, allowing to preserve the kinetic aspects of the problem (such as Landau damp-
ing and resonant wave-particle interactions), while possessing much lower complexity, namely that
of a multi-fluid model. We believe that gyrokinetic-waterbag (or, simply, gyrowaterbag) models are
very promising, insofar as they are amenable both to much analytical theory (thanks to their lower
dimension) and to efficient numerical simulation.%>7:%-8:10.2

B. Presentation and explanation of the results

The main result is the design of an algorithm to construct eigenmode solutions for the line-
arized gyrokinetic-waterbag operator, here called the gyrowaterbag integro-differential operator
(see Sec. IIT A). This construction relies on the asymptotic analysis of the eigenvalue problem
(see Sec. IV) and the spectral analysis of integro-differential operators (see Sec. V) arising from
the asymptotic analysis. We should note that we have been influenced by pioneering work of
Refs. 22, 73, 72, 44, 21, 99, 90, 39, 28, and 70. Such work has provided us with complementary
formalisms for the study in tokamaks, on the one hand, of two dimensional ideal magnetohydro-
dynamic modes and, on the other hand, of kinetic modes, the latter being based on a linearization
of the Vlasov—Maxwell equations, followed by a gyrokinetic approximation (whereas, we use the
gyrokinetic approximation first).

As usual in collisionless collective interactions, the particles described in the waterbag distribu-
tion function are coupled nonlinearly and self-consistently to the field — here the electrical potential
¢ — that they produce. In order to have a scalar problem we choose the electrical potential as the
main unknown to write the eigenvalue problem in a closed form.

For describing microinstabilities and low-frequency waves in a toroidal plasma confinement
system whose phase is approximately constant along a magnetic field line, but whose transverse
vector is large, i.e., for k;/k, < 1, we usually use the “ballooning formalism” first introduced
in Ref. 22 to describe ideal magnetohydrodynamic ballooning instabilities driven by pressure gradi-
ents. For a detailed description and use of the ballooning formalism, see Sec. III C 2. Here we just
extract what is necessary for an overview of our results.

Using the ballooning transform (see Sec. III C 2), the electrical potential fluctuation ¢ = ¢(z,r)
with r € R3 reads

oty = Y > exp(—iwn)gun(0 + 21L; g,0k0r) exp (in ¢ — (6 + 21t — ko 7)]) Ar(g), (1)
(n,0)e7?2 weFn

where n is the toroidal wavenumber, g stands for a radial variable, ¢ and 6 denote respectively the
toroidal and poloidal angle (see Sec. II C for the description of the toroidal geometry). The constant
angle 00,7 is called the ballooning angle, and the set &, constitutes the point spectrum of our
linear operator. The eikonal term n [(p —q(0 +2nl - 9k0,T)] in the decomposition (1) represents the
fast variation of the solution in the radial variable ¢ and poloidal angle 6. The constant ballooning
angle 0o, 1 centers the solution poloidally. The poloidal envelope ¢.,.(6; g,6k0.1), Wwhich depends
parametrically on g and 6y 1, gives the slow variation of the solution in the poloidal angle 8, while
the radial envelope A(g) determines the slow variation of the solution in the radial direction.

To obtain ¢, Oro.1, A1, and F,, we roughly proceed as follows. For high toroidal wavenum-
bers n (flute-like modes), that is for k;/k; < 1, we use a WKB-type analysis in a field-aligned coor-
dinate system, to demonstrate that one can construct eigenmode solutions of the two-dimensional
gyrowaterbag integro-differential operator. The corresponding equation in the (r,)-poloidal plane
turns out not be a two-dimensional partial differential equation; instead, it reduces to two nested
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equations: a one-dimensional Fredholm-type integral equation and a one-dimensional non-self-
adjoint Schrodinger equation (with complex potential).

Let us indicate some key ideas leading to such equations. First, by a suitable choice of the
small parameter expressing the strong transverse/longitudinal anisotropy, we are able to decouple
the radial and poloidal differential operators up to and including the second order.

To zeroth order, we obtain the slowly varying poloidal eigenmode envelope ¢,,,(0) = ¢.,n(0; g,
0x0) (see Sec. IV B and the Proposition 2), which satisfies the integral equation

bunl0) = [ dn (0,130 00000, @
where the kernel K(6,7; wo,q,0xo) depends parametrically and nonlinearly on the local eigenfre-
quency w, radial variable g and ballooning angle 6;(. Let us point out that solving (2) amounts
to solving for the mode geometry along the magnetic field lines locally in the radial variable.
After solving (2), for each value of the couple of parameters (g,68¢), we obtain the local eigen-
frequency woy = wo(q,0ko) that depends on the radial variable ¢ and on the ballooning angle 6.
The zeroth-order solution contains also an arbitrary ballooning function (q) which is determined
from the first-order problem and found to be a constant that can be chosen to maximize the radial
extension of the eigenmode. The study of the first-order problem also shows that the first-order
correction to the eigenfrequency vanishes. Finally, from the second-order problem one obtains
a linear Schrodinger equation for the determination of the radial eigenmode profile A; and the
second-order global complex eigenfrequency we & ,,.

Some of the key results regarding the compactness of the integral operator in (2) are, of course,
obtained by the detailed study of this operator. This requires, on the one hand, the use of standard
results about compactness of weakly singular operators and integrability properties of the kernels
involved in (2), and, on the other hand, a careful examination of the analytic continuation in com-
plex eigenfrequency in connection with the boundary conditions used to integrate the zeroth-order
equation (for statements of the theorems and detailed proofs, see Sec. V B).

Finally, let us note that our asymptotic approach allows us to prove the construction of normal
modes whose radial extension is of order n™7a with o > 1/2 (a is the length scale of the small
radius of the torus). Note that in the plasma physics literature, this exponent is frequently found to
be exactly one half, rather than strictly greater to one half.”®’321:3 It would be of interest to find if
this slight discrepancy is or not an artefact of using the waterbag model.

C. Advantages and drawbacks of the asymptotic approach

The asymptotic approach has one obvious advantage: solving one-dimensional integral equa-
tions has much lower complexity than tackling a two-dimensional partial differential equation prob-
lem to determine the whole spectrum, and furthermore is easily amenable to high parallelization.
Also, of course, the underlying physics and mathematics emerge more clearly and are likely to
lead to further theoretical work. The development of numerical schemes for solving the nested
one-dimensional Fredholm-type equation is beyond the scope of the present paper. Such computa-
tions are presented in a companion paper for the quasilinear gyrowaterbag initial-value problem,?*
where it is shown that the asymptotic reduction to nested one-dimensional problems is very faithful,
even when the toroidal wavenumber is only moderately large. Moreover, standard numerical results,
obtained with full gyrokinetic-Vlasov codes without waterbag modeling,> show also fair agreement
with our results.?*

At the moment, there is no rigorous asymptotic theory for the high-toroidal-wavenumber
expansion. Actually writing the equations beyond the second order is quite a challenge, but this
is only a mathematical issue: beyond second order one loses the decoupling into nested one-
dimensional problems and thus one ceases to gain in numerical complexity over the original
problem. Still, if it turns out that one needs to determine modes with radial extension comparable
to the small radius of the torus, then one cannot use our asymptotic theory and solution of the
two-dimensional gyrokinetic-waterbag model becomes unavoidable.
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D. Organisation of the paper

In Secs. Il and IT A, we recall the gyrokinetic framework and the gyrokinetic-Vlasov equation.
In Sec. II B, we explain the waterbag reduction concept, beginning with a simple one-dimensional
Vlasov model and then apply the waterbag reduction concept to the gyrokinetic-Vlasov equation
to obtain the gyrokinetic-waterbag model. In Secs. II C and II D, we describe the magnetic field
line geometry and the different scales of the problem. In Secs. III A, III B, and III C, we intro-
duce the linearization of the gyrowaterbag model, explain how to analytically solve for the steady
equilibrium state, and how to use field-aligned coordinates and the ballooning-eikonal represen-
tation to recast the system for the perturbations in a form suitable for its subsequent asymptotic
analysis. In Secs. IV and IV F, we perform the asymptotic analysis of the linearized gyrowaterbag
equation and describe an efficient algorithm for constructing eigenmode solutions. In Sec. V, we
perform the spectral analysis of the linear operators that arise from the eigenvalue problem; more
precisely the one-dimensional non-selfadjoint Schrédinger-type operator and the one-dimensional
nested Fredholm-type integral operator with a nonlinear dependency on the eigenparameter. In Ap-
pendix A we give a glossary of the main notation of the paper. In Appendix B we present a rigorous
derivation of the gyrokinetic-waterbag equations. In Appendix C we present the linearization of
the gyrokinetic-waterbag equations in detail. This uses some approximations related to the toroidal
geometry, given in Appendix D.

The length of the present paper, to some extent, reflects our desire to make the material acces-
sible to both the community of applied mathematicians (not necessarily involved in plasmas) and to
that of theoretical and numerical plasma physicists.

Il. THE GYROKINETIC FRAMEWORK
A. The gyrokinetic-vlasov equation

Predicting turbulent transport in collisionless fusion plasmas requires solving the gyrokinetic-
Vlasov equation for all species coupled to the Darwin or magnetostatic equations (low-frequency
approximations of Maxwell equations in the asymptotic limit of infinite speed of light!"). This gy-
rokinetic approach has been widely used in recent years to study low-frequency micro-instabilities
in a magnetically confined plasma, which are known to exhibit a wide range of spatial and temporal
scales. Within the gyrokinetic Hamiltonian formalism,-%-5%17:16 the Vlasov equation expresses
the fact that the ion gyrocenter distribution function f = f(z,r,v), i) is constant along gyrocenter
characteristic curves in gyrocenter phase-space (z,r,v), 1) € 10,77 X R3 xR x RY,

th = atf + Fl‘ . Vl‘f + Fvuav”f = 09 (3)
where the force vector-field F = (Fr,F,,H) reads

b 1 B 1 B*
Fr= — XVeH + ——0, H, F, =-—
r qlBl*l r n; Bﬁ [ I n; Bﬁ

-VeH,

with the definitions

I . mv)| . _
7—(=§m,-v”+uB+qij;,¢, B =B+TVXb, B”:B'b.
In the previous equations B = B(z,r) denotes the magnetic field with B its Euclidean norm, while
b := B/B stands for the unit vector tangent to the magnetic field line. The magnetic moment
u = m;v?/(2B) is the first adiabatic invariant of the ion gyrocenter; m; and g; := Z;e are respec-
tively the mass and charge of ions with e > 0 being the electron Coulomb charge. Finally, the
integral operator J,, stands for the gyroaverage operator defined by

2r
Tuf =5 [ deste+ plo. @
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where ¢ is the gyroangle. The gyroradius vector p is given by

=2 a) = Za
P& =+ 0,80 = 54O,

where 4({) = Xcos ¢ — ¥sin ¢ is defined in terms of the fixed local unit vectors (X,¥,b = X X §). The
gyrogauge invariance involves an arbitrary rotation of the perpendicular unit vectors X and § around
the parallel unit vector b. Using Fourier transforms the gyroaverage operator reads

. 1 2
Juf(r) = /R3 dk f(k) exp(ik - r)ﬁ /0 d¢ exp(ik - p)

2n
= / dk f (k) exp(ik - r)2i / d exp (ikig cos({ + 7))
R3 T Jo Ql

12

- / dkf(k)exp(ikor)Jo(k;)Ul),
R3

where k2 := k}% + k; and tan(y) := kg/ks. As usual, Q; := ¢;B/m; is the ion cyclotron frequency and
Jo is the Bessel function of the first kind of zeroth order.

The gyrokinetic-Vlasov equation (3), which describes the dynamics of ions gyrocenter, is
coupled to an adiabatic electron response via the quasi-neutrality condition

-V, (;}g w) + T gy = 20 / doy / T f CE 0 0) = o, (5)
i i0 qi Jr R*
which determines self-consistently the electrical potential ¢ from ion gyrocenter distribution func-
tion f. In quasi-neutrality equation (5) we set 7 = T;o/T.0 and A € {0,1}; the quantity (¢); denotes
the average of the electrical potential ¢ over a magnetic field line (or surface for irrational magnetic
flux surface).

Since the magnetic moment y is not an independent variable but a parameter or a label related
to an (adiabatic) invariant, we can consider the plasma as a superposition of a (possibly uncount-
able) collection of bunches of particles having the same initial magnetic moment u. This standard
approach is equivalent, mathematically, to considering solutions of the Vlasov equation (3), written
as

Flerop ) = /M 6T, 0)8, ()m(dv).

Here 6, (u) is the Dirac mass, v is a parameter belonging to some probability space M (presently,
M = R*), m is a probability measure on that space and f, are smooth functions, which still satisfy
the Vlasov equation (3) with i = v. A particular useful instance of this, which is quite central in our
approach, happens when p is a discrete variable, taking finitely many or enumerably many values,
labelled by an index ¢, so that m(dv) = Y, w6(v — us), where w, are positive constants. As a
consequence the distribution function f can be recast as

FOT 0,0 = Y @ fiu t1,0)8(1 = o), (©6)
t

where the function f, (t,r,v)) satisfies the Vlasov equation (3) (with y = uy), for all values of the
index ¢.

Remark 1. Let us note that the gyrokinetic-Vlasov equation (3) satisfies the Liouville theorem

d .
— / Bﬁdrdv” =0 = 6,(Bﬁ) + V- (BﬁFf) + 6U||(BﬁFv”) =0,
dt Q1)

where Q(t) is the image of any bounded phase-space volume element €(0) from the Lagrangian flow
induced by the force field ¥. The Liouville theorem allows to recover the conservative form of the
Vlasov equation (3), i.e.,

OB )+ Ve (BIFef) + 8y (BjFo,f) = 0. )
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The Liouville theorem is also the key ingredient to obtain the conservation laws associated to
the gyrokinetic system (3) and (5), such as the conservation of mass, of energy, of the Boltzmann
entropy, of the Casimir functionals O(f) (with ® : R* — R, smooth functions), and of the LP-norms

(1 <p<oo)of f.

B. The gyrokinetic-waterbag model

In this section we present the derivation of the gyrowaterbag model by using the waterbag
reduction concept that we apply first to a simple one-dimensional (1D) Vlasov equation. This high-
lights the concept without burdening the reader with the full complexity of the gyrokinetic-Vlasov
multi-dimensional equation.

1. The waterbag reduction concept in 1D

Let us consider a 1D periodic (in x-space) collisionless plasma (with a 2D phase-space (x,v))
described by the Vlasov equation

O f +vosf +Fo,f =0, ®)

with f = f(t,x,v). The force vector-field F = F(¢,x,v) is taken divergence-free: V, , - F = 0, and
does not need to be specified here. At the initial time, the situation is as depicted in the left panel
of Fig. 1. Introducing the bag heights A;, A,, and A3z, as shown in the right panel, the initial
distribution function reads (with N = 3)

N
FOx,0) = 3 A; (@] (0,%) = v) = T(07(0,x) - ). ©)
j=1
Here U; and vj‘ denote contours or curves in phase-space (with j = 1,...,N) and 7T is the Heaviside

unit step function.
The Liouville theorem expresses phase-space measure conservation, namely

4 dvdx = 0.

dt Q)
Here Q(r) is the image of any bounded phase-space volume element (0) from the Lagrangian
flow induced by the force field F. This requires v]f’ and v} to remain smooth and not to cross
(single-valuedness is not mandatory); as a consequence, the area between the contours u;.r and vy is
conserved and equal to a fixed initial constant. Moreover, since the advective form of the Vlasov
equation (8) expresses the constancy distribution function along the characteristic curves, the bag
heights A; are invariants (constant) and the structure of the waterbag distribution function (9) is

vy f=A2+ A3

FIG. 1. The waterbag reduction concept: phase-space plot for a three-bag waterbag model (left panel) and corresponding
waterbag distribution function (right panel); from a continuous distribution function f (right panel), we can obtain the
waterbag distribution function (its velocity profile, right panel) with three bags by using a Lebesgue subdivision; in the
right panel we observe the waterbag invariants (colored horizontal slices) and Liouville invariants (hatched vertical slices).
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also preserved in time so that we obtain

N
Flx0) = > A (@] Ex) = v) = T; (%) = v). (10)
j=1

Therefore the problem is entirely described by the constants A; and the functions v;" and v~ for
the evolution equations are obtained as follows: observing that a particle on the contour vf (or vj’)
remains on this contour, the equations for v; and vj‘ are

Dv*(t,x) = 8,0*(t,x) + (v=0,0*) (t,x) = F(t,x,0%). (¢8))

This equation can also be obtained directly by substituting the distribution function (10) into the
Vlasov equation (8), in the sense of distribution theory.

Since a hydrodynamic description with several fluids, labelled by the index j, involves nj, u;,
and p; (respectively, density, average velocity, and pressure of the fluid j) we can predict the possi-
bility of casting the waterbag model into the hydrodynamic frame with, in addition, an automati-
cally provided equation of state. Indeed, let us define for each bag or fluid j, the density n;, average
velocity u;, and pressure p; such as n; = ﬂj(v; - vj‘), u; = (v;.’ + vj‘)/2, and p; = n?/(ll?{jz.). By
adding and subtracting contour equations (11), for each bag or fluid j we recover the conserva-
tive form of the continuity (12) and Euler (13) equations (isentropic gas dynamics equations with
v = 3), namely

(9,nj + 6x(njuj) =0, (12)
O0y(nju;) + 0y (nju§+pj) = n;F. (13)

The geometric interpretation of the continuity and Euler equations (12) and (13) is that the shape
(defined by the boundaries v;.“ and v;’) of the bag j deforms, while its volume

/njdx

is conserved in time. This is what we call the waterbag invariant. Obviously, we observe that we
have reduced the kinetic Vlasov equation (8) to a multi-fluid hydrodynamic system (12) and (13).
This is what we call the waterbag reduction concept, which is an exact reduction (we pass from a
N-dimensional problem to a (N — 1)-dimensional problem; here N = 2) based on Liouville invari-
ants. Finally, another right and short way to see the waterbag reduction concept is just to consider a
foliation of the phase-space by level lines, and solve the dynamics of the level lines.

The idea of using the many fluid structures to approximate collisionless kinetic equations seems
to date from the sixties. In order to work with low-dimensional models for performing accurate
numerical simulations with a tractable amount of data, physicists introduced first the waterbag
model in plasma physics?’** and astrophysics.®” Next mathematicians use the representation of
many fluid structures (using Dirac and Heaviside distribution functions) to study rigorously the
quasineutral limit of the Vlasov-Poisson equation®-® or to derive formal relations between the
Vlasov equation and the semi-classical limit of the nonlinear Schrodinger equation.!”® In these
works the idea is to use the nice properties of some fluid models such as hyperbolicity or con-
vexity. The reciprocal idea to use a kinetic formulation of fluid equations to get a mathematical
breakthrough in the well-posedness of nonlinear systems of conservation laws and to design new
accurate numerical schemes dates from the eighties with a series of works,!?1343747581.82 [y these
works the waterbag or Heaviside function plays a crucial role. The idea is to take advantage of the
linear structure of the kinetic equation (the so-called free-streaming equation) which is obtained
from a lifting of the nonlinear conservation laws by using an extra variable, i.e., by increasing the
dimension of the space.

2. The gyrokinetic-waterbag equations

Let us now assume that we deal with the discrete decomposition (6), where the number of
values of the parameter y is finite, say M. Now, for every magnetic moment y, we shall consider
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two three-dimensional foliations, denoted {U;b(t,r)}b, of the four-dimensional phase-space (r,v)),
which may be viewed as families of three-dimensional smooth functions {v;'b(t,r)}b, labelled by
the one-dimensional index b, belonging to the set [1,...,N]. For every adiabatic invariant u, we
specify 2N non-closed single-valued smooth contours {v;'b(t,r)}b < of the (r,v))-phase-space or-
dered such that ... <v ", ., <v , <o <0<--- < vh, < U;b+l < ---, and some strictly positive
real numbers { A, }»<n that we call bag heights. In other words, for a fixed value of the parameter
M, the “plus” and “minus” branches v; ,, are monotonic with respect to the variable index b. For
every value of the parameter u, we then construct the distribution function f,(z,r,v)) such that

N
fﬂ(l‘,r,l)u) = Z ﬂ”b <T (v;b(t,r) - U||) -7 (v;b(t,r) - U”)) . (14)
b=1

As long as the contours are smooth, single-valued, and do not cross, the function (14) is an exact
weak solution of the gyrokinetic-Vlasov equation (3) in the sense of distribution theory, if and only
if the following gyrowaterbag equations in advective form are satisfied:

* + + l + * + + l * +
B”(v;b)atul;b + (Zb xVo+v,B (u/;b)) Vo, + EB (U,Ib) VO =0, VY(u,b).
After some algebra, the previous advective form of the gyrowaterbag equations can be written in
conservative form as
9 (1 Yo + 1 + +
7 \2 [B +B (v;lb)] “bu, | +V- o (in + mivl;bb) XVH(@,,) | =0, Y(ub), (15)
with the definitions

B=VxA, Bv;,)=B+(m/q);Vxb, Bjw:)=B:)-b,
+ +2
H(vup) =mivg,/2+ D, ©=qJu¢+ uB.

The quasi-neutrality coupling (5) can be rewritten as

M N
nio eTn;( _ Qi + -
-V, - ( Bgiw) T A =2 ; ; Ao TV = V) = M0 (16)
Remark 2. Since the force vector-field F = (Fr,F,,H) is not divergence-free (Vy, -F #0), we
have

i dl’dU“ #0,

dt Q1)
and thus the Liouville theorem is not satisfied in the variables (xr,v). Therefore, we should not a
priori use the variables (r,v)) and the waterbag distribution function (14) to apply the waterbag
reduction concept, which leads to Equations (15). Introducing the Jacobian

J(I‘,UH) = Bﬁ(l‘,l)”) =B-b+ (I’I’li/qi)l)ub -V xb,
we observe that the Liouville theorem for the gyrokinetic-Vlasov equation (3) reads

d
— J(I‘, v”)drde =0. (17)
dt Q)
The appearance of the Jacobian J in (17) expresses that the variables (r,v)) are not canonical.
Nevertheless, we can introduce the new “velocity” variable &, which is defined as the primitive of

J with respect to vy, i.e.,

Y|
§H=/ dvyJ(r,v)).

The variables (r, &) are now well suited to applying rigorously the waterbag reduction concept (by
introducing the contours g; ,(t.1) in the (r,&))-phase-space). Indeed, we have the Liouville theorem
d

— drdé) = 0.
dt Q1) I
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In Appendix B, we use the variables (r,&)) to rewrite the gyrokinetic-Vlasov equation. Then apply-
ing rigorously the waterbag reduction concept, we show that we finally recover the gyrowaterbag
Equation (15), which is definitely correct even if it is not rigorously derived by using the waterbag
distribution function (14) in the variables (r,v)). This result is not surprising since, whatever the
variables we used (canonical or not) if there exists intrinsically a Liouville theorem, the latter can
be expressed in such variables. Another way to understand the Liouville theorem (17) is that it is
equivalent to the following conservation law satisfied by the Jacobian J:

0 J +V-(JFy) + 8,,“(JF,,H) =0.

This conservation law can be easily recovered by taking f =1 in the conservative form of the
gyrokinetic-Vlasov equation (7).

Before proceeding, we need to specify the magnetic field line geometry that we consider, and
describe the spatial and temporal scales of our system. Let us note that the equations written above
are valid for any suitable magnetic field-line geometry. We next restrict the problem to a magnetic
field having special symmetry and geometric properties described below.

C. The magnetic field line geometry and the toroidal coordinate system

In the toroidal coordinate system of Fig. 2, ¢ denotes the toroidal angle, 6 the poloidal angle, r
the minor radius of a magnetic flux surface, a the minor radius of the torus, and R, the major radius
of the magnetic axis with 8 = 0 at the outside of the torus.

The expression for the magnetic field, corresponding to the assumption of concentric circular
cross-section magnetic flux surface, is given in the orthonormal toroidal basis (e,,eq,e,) by

B= (B()eL/J + Bg(r)eg)//l(G), (18)

where 1(0) := 1 + €, cos 6, and with €, := r/Ry < 1, the inverse of the so-called aspect ratio. We
then define the vector field R = RyA(6)(cos e, — sin fey) (see Fig. 2), and R = |R| = Ry + r cos 6,
where | - | denotes the Euclidean norm. The poloidal component of the magnetic field Bg(r) is given
by By(r) = rBy/(qR), where the so-called safety factor ¢ = g(r) is given and of order unity. Fig. 3
illustrates the geometry of a magnetic field line on a rational magnetic flux surface ry (i.e., the safety
factor g(ro) takes a rational value at the particular radius r).

Let us define b = B/B, the unit vector tangent to the magnetic field line with B = |B|. We
then get By/B, = bg/b, = r/(qR), with b, = (1 + r*/(gR)*)™/?> =1+ O(€2) ~ 1 and B = By/A(6)
V1+7%/(gR)* = Bo/ A(6) + O(€;) = Bo/A(8) = BoRo/R.

Finally, let us recall useful expressions of the gradient, divergence, and rotational differential
operators in the orthonormal toroidal basis (e,, e, e,),

V=60 +er '9g+e,R '3, V-A=(R) I (rRA") + (rR)'9s(RA%) + R™'0,(A%),

VXA = e (Rr) " {0s(RA?) — 3,(rA%)} + egR™ {0,(A") — 0,(Ra?)} + e,r ' {0,(rA%) — 9yA"},

where (A", A?, A®) are the components of the vector A in the orthonormal toroidal basis (er,eqp,€,).
Moreover, it is useful to get the expressions of the parallel and perpendicular components of the

: \ poloidal direction

toroidal direction

FIG. 2. Toroidal geometry.
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c&

FIG. 3. Geometry of a magnetic field line (yellow) on a rational magnetic flux surface ro (purple).

gradient operator in the toroidal coordinate system. Since by/b, = r/(gR), we get

b 1
3 =b-V=—“’(a +—6),
I R \7® q 0 - i
bob )
Vl=(I—b®b)V=—bx(be):e,0r+eg(— ;¢a¢+7“’ag>+e¢<793¢— "r“’ag),

where ® denotes the tensor product.
Let us note that the geometry of our assumed magnetic field implies, after a simple calculation,
the estimate

[b.Vxb| ~1/R, (19)
which will be useful later on.

Remark 3. The most important magnetic confinement devices currently being developed and
under construction are of axisymmetric toroidal shape, i.e., invariant under ¢-angle rotation around
the Z-axis, see Fig. 2. In this paper we restrict ourselves to axisymmetric toroidal geometry with
concentric circular cross-section nested magnetic flux surfaces. Nevertheless, the analysis can be
extended to more general shapes of axisymmetric nested toroidal magnetic flux surfaces. In that
case, instead of classical toroidal coordinates we need to consider orthogonal magnetic flux coor-
dinates and to define a local safety factor q with angle-like dependence.’® Even if the algebra is a
little more cumbersome, the method developed hereafter remains valid and can be straightforwardly
applied.

D. Definition of scales and their ordering

In this section we define the different scales involved in our problem and dimensionless param-
eters, which fix the ratio between the different scales. The longitudinal scale L and the transverse
scale L, are defined by

Ly=0(qRy), L. =0 (3) so that k;=O (L) . k=0 (f)
n qRo a
where n is the toroidal mode number, and where a and Ry are, respectively, the minor and the major
radius of the axisymmetric torus (see Fig. 2). We next suppose that the longitudinal (respectively,
transverse) velocity scale o (respectively, 0,) is of order of the ion thermal velocity v, ;. We set
@ = kb = kyvsp,i, the magnitude order of eigenfrequency of the waves, while p; = v,y ;/€Q; (with
Q; = q;B/m;) is the ion Larmor radius. We then define

_ﬂ 1 Pi

1 r r a 7
*

— =—, €y, =—, €, =kip;, p=—.

k. a a

€ = — €, = — = — = — €,, =
n» a RO R R()’ w Qi’

Assuming the ordering € < €, < 1, we then get

€k

€v,=0(e), & =0(q 'ees), p*=O0(erev)) s Oe). kypi = 0(q ' e€sel) < O(q™ €€o).

For microinstabilities such as the ion-temperature-gradient (ITG) instability, the physical values
are typically €, 2 107! (e.g., €, ~ 1/4), € ~ 1072, and €, ~ 1073, which lead to € ~ 103 and
k”pi ~ 1073,
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lil. DERIVATION OF THE EIGENVALUE PROBLEM
FOR THE GYROKINETIC-WATERBAG MODEL

With the eventual goal of determining the eigenelements of the linearized gyrowaterbag model,
in this section, we solve the equilibrium problem and derive a two-dimensional linear integro-
differential operator in a suitable form. We shall be able to reduce it into a sequence of one-
dimensional integral equations by exploiting the anisotropy between parallel and transverse
directions.

A. Linearization of the gyrowaterbag model

With the aim of studying the spectral properties of the operator stemming from the linearization
of the gyrowaterbag model (15) and (16), we decompose the solution into a steady equilibrium
state and an unsteady small perturbation. More precisely, since we assume axisymmetric magnetic
flux surfaces, the steady equilibrium state remains also invariant by any rotation of the toroidal
angle ¢ around the symmetry axis Z of the torus. Therefore we are allowed to make the following
decomposition:

¢(t.r) = go(r,0) + ¢1(t,x), with ¢ <1,
V(61 = ay, (r,0) + wi(tr)  with  Jwi, | < 1.

Here, the unknowns (Clzb,(ﬁo) define the steady equilibrium state while the unknowns (wib,m)
specify the unsteady small perturbation. Using the previous decomposition and some approxima-
tions related to the magnetic field geometry (see Appendix D), at zeroth order with respect to the
perturbation, we obtain the following system (for more details, see Appendix C):

i2
aih6|aflb+( bXV%¢0+(;+ Q”b)bxk)'vla,i‘h
a:, )
+ (b + QLb X K) : (%VB + %Vj,,tﬁo =0, (20

_VJ_

(BQ Vﬂf’o)

27TQi _
- Ago) = == > AwTal, - ap) = no, (1)
i b
where k := b - Vb is the local radius-of-curvature vector of the magnetic field line. To first order —
here, there is no need to expand beyond first order — we get the system

2 +

1 a,
o, +a, 6||w”b+( be$,¢0+(ﬁ+QLb)bxx)-Vleb+w (a”a b+2 (bXK) Viay,
qi i
+

b i )
+ bxvg;,¢1 Viak, + 3”3;,¢1+ Vlf/;m (b>xx)-52 % + LV, G- ) L2 =

l

(22)

_VL (;l;;) Vl(ﬁ]) ETnLO(¢1 /l<¢1>”) - 27T—l Z ﬂﬂb‘Zl(wyb w;b) (23)

B. The analytic representation of the steady equilibrium state

Here we aim at solving analytically the zeroth-order system (20) and (21), defining the steady
equilibrium state. Before stating the proposition, which gives the analytic integration of equilibrium
contours, we must introduce some notation and definitions.
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Let [Fmin,"max] be the radial domain and a;’l b(r) € (Gil)([rmm,rmax]) be the given non-negative
functions. We define the functions A,p : [Fmin,7max] 3 ¥ — R* as

2uBy 1

App(r) = ————=,
miazzb(r) Ro

with By the maximum of the Euclidean norm of the magnetic field and R, the major radius of the
torus (see Sec. II C). Since we will see below that a contour aib(r,ﬂ) can be decomposed into
disjoint open or closed contours with disjoint radial compact supports, for a fixed couple (u, b) we
can define the following partition of the radial domain:

[7min>Fmax] = Aoub U Acub,  Aoub N Acup = 0.
Here
Aoup = {r € [FminsFmax]  S.t. App(r) < 1/2,},
Acup = {r € [FminsFmax] st Aup(r) > 1/2,}.
Therefore, we define two sets
O ={(ub), st Aup(r)<1/2}, (24)
C={(ub), st Aup(r)>1/2}, (25)

which correspond respectively to open and closed contours. We denote by 6 = O U C the set of all
contours. Let us fix a couple (i, b). We observe that the open contour (u, b), i.e., belonging to the set
O defined by (24), has radial support Ag,, while the closed contour (y, b), i.e., belonging to the set
C defined by (25), has radial support Acp.

Using the definition of scales and of the ordering of Sec. II D, and dimensionalizing (20),
we observe that the third term of (20) is of order p* = O(e), while the others are of order one.
Therefore, we can neglect the third term of (20), because it will be consistent with the forthcoming
asymptotic analysis of order €”, with 0 < v < 1. Neglecting that term, (20) becomes

+ + 1 + alt‘b H qi
a#,,a”a#,, + (Eb X Vjﬂzz)o) . Vla,,;, + (b + Eb X K) . (EVB + E_Vju‘ﬁo) =0. (26)

Within this framework, we have the following.

Proposition 1. We assume that the functions ai ,(1,0) are symmetric so that az o(1,0) = xa,,
(r,0) = i—a;b(r), with a;b € %;([rmm, rmax]) non-negative. Then (21) and (26), which govern the
shape of equilibrium contours a;-: ,» admit the following unique solution:

a2,(r.6) = £a%, (I 1+ Au(r)(cos 6 — 1),

with 0 €| —m,n[ if (u,b) € O or 0 €] —O0rup, 0l if (u,b) € C. Here the limit angle Op,p is
defined by

0L,ub(r) =

b}

1
arccos (1 —
( Apun(r ))

and corresponds to the angle where the positive branch a’, and negative branch a,, of closed
i u u
contours are meeting.

Proof. At the boundary of the poloidal domain (here a poloidal ring), we take the usual homo-
geneous Dirichlet conditions for ¢o. Moreover, we assume that

27TQi _
> AT, - ay),

"

nio =

and that the given density n;¢ and temperature T;o have the desired regularity. We then get ¢y = 0,
because the elliptic operator on the right hand side of (21) is invertible. Using ¢ = 0 into (26),
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and the approximation (D3) of the magnetic field line curvature (see Appendix D), Equation (20)
becomes

42
G, =0, with 7, = H 4 A2 @7)
Equation (27) can be easily integrated to obtain
1/2
@, (r,0) = @, (r00,)| 1 + 2B (r-Boy) - B(r,6) 28)

2
mia, (7, 0oub)

From the assumptions of Sec. II C, we can easily see that B = By(1 —r/Rycos 6) + O(e2), and
thus, with the choice 6y,;, = 0 for all (u, b) (other reference points could be chosen), Equation (28)
becomes

2uBy 1

a,(r,0)=a’, (r,0) /1 + A%, (r)(cos§ —1), with A’ (r)= ———— —.
55(r.0) = @y (r0)\[1+ A%, () ) =) a0 R

(29)
If the argument of the square root of (29) is positive, i.e., for AZ , < 1/2, then the corresponding
contour is open in the sense that it is single-valued. But now, if Az » = 1/2, then there exists a limit
angle 9;:” (), given by

07 ,.,(r) =  arccos (1 - A“—'i(r)) , (30)
1%

such that the argument of the square root of (29) and the contour itself vanishes. Assuming now

that aib(r, 0) are symmetric, so that a;b(r, 0) = +a,p(r,0) = ia;b(r), with aZb(r) > 0, then the

contours ai (1, 0) for which A, > 1/2 can be connected to each other and thus form a multi-valued

(double-valued) closed contour. ]

Remark 4. In a field-aligned coordinates description (see Sec. III C 1), the contours must be
extended in the variable 6 over the whole real line by periodicity. Extension of open contours is
done by periodicity of period 2n. For closed contours and each couple (u,b) € C, we extend the
contour ayp by continuity to zero in the variable 0 on the set | — w,m]\10 and next extend
it to the whole real 6-line by periodicity of a period 2.

- +
L,ub’HLyb[

Remark 5. Let us note that the case where A, = 1/2 s a transition point between two contour
topologies (closed and open) and can be considered both closed and open. This transition point
seems to lead to a loss of integrability in the equation of the perturbation, since it is an algebraic
singularity of order minus one (see Sec. V B 1). Hence we suppress this pathological case in the
definition of the equilibrium contours. This is not surprising, since the nature of this transition point
is the same as the X-point in an autonomous one-dimensional Hamiltonian system, where the role
of the separatrix is played here by the contour for which A, = 1/2.

Remark 6. Let us note that Hlfb can be interpreted as the unperturbed equilibrium Hamilto-
nian, associated to the steady equilibrium contours a;,. Therefore, (27) can be interpreted as a
conservation law, which expresses the conservation of the unperturbed equilibrium Hamiltonian on
magnetic flux surfaces (here, axisymmetric nested tori with circular cross-section). Equation (20)
can be seen as a first-order transport equation of the form

Fy (r,@,ath) Ooa,, + Fy (r,@,alfb) Oy, =S (r,@,aih) , (31)

with the given initial conditions r(tg) = ro, 0(tg) = 6o, and a;—:b(r(to),é(to)) = aib(ro, 6p). Equation
(31) can be solved by the characteristic curves method (i.e., {d;r = F,; d,0 = Fy; d,a;b = S}), as
long as the characteristics are regular enough and do not cross.
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Remark 7. By neglecting terms of order p* in the first-order Equation (20) and choosing sym-
metric radial profiles for aﬁ ,(1,0) (ie., az H(1,0) = iaz »(1)), we obtain symmetric closed contours,
i.e., a symmetry between the positive and negative branches of a closed contour. Therefore the
projection on the poloidal plane of the level lines (in absolute value) of the positive and negative
branch of a closed contour, coincide. On the contrary, when we solve the initial value problem (20)
or (31), the level lines (in absolute value) of the negative and positive branch of a closed contour
will no more be symmetric. Consequently, projections on the poloidal plane will not coincide and
thus poloidal projections of level lines will form some kind of banana-shaped orbits with non-zero
width. The symmetric case corresponds to banana orbits with zero banana width.

C. System for the perturbation

We will define a well-suited system for the perturbation (22) and (23) that will facilitate the
asymptotic analysis in Sec. III C 3, by using a field-aligned coordinate system and the ballooning-
eikonal representation presented respectively in Secs. III C 1 and IIT C 2.

1. Field-aligned coordinate system

Assuming that the given radial function ¢ : [Fyin, max] — R* is such that ¢’ > 0 (see
Sec. II C), the coordinate system aligned with the magnetic field lines reads

= r_r07 ar = 6x_q,776m
=0, which implies g = 0 — q0q,
a = ¢—q(r)o, Op = Oq.

Here the constant radius r( is a reference rational magnetic flux surface, and (r,0, ¢) is the toroidal
coordinate system (see Sec. II C for more details). Using the previous field-aligned coordinate
system, the parallel and perpendicular gradient operators read in the orthonormal toroidal basis
(erve(ﬁ e(p)

b

©
O = —20n,
q

Vi=ce, (—q'ﬂaa + ax) + €9 (gllaa + 91287]) + €, (9216(1 + 922677) s

with the matrix coefficients gi; = —g12q, 821 = —8220, §12 = bi/r, @22 = —bgb,/r, and the safety-
factor-like g = (r2 + ¢°R?)/(gR?). Since ¢’ > 0 (¢ > 0), we can use as radial variable, either r, g or x
whose domains of definition are respectively given by [Fmin, "max]> [Xmins Xmax]> @0d [¢min> Gmax], With
Xmin = "min — 70> Xmax = "max — 70> gmin = q(rmin)’ and qmax = 61(rmax)-

2. Ballooning transformation and eikonal representation

Description of the ballooning transformation. In this section we briefly present the balloon-
ing transformation, which is commonly used in toroidally confined plasmas to represent a field
perturbation in an axisymmetric system.>*61:6023.78 The first step of this method is to transform
the f-periodic space into an unbounded ‘“covering space” in the variable i, which has the sense
of a coordinate along the magnetic field lines. The second step takes advantage of the anisot-
ropy between the n-parallel and the a-transverse directions to use eikonal analysis. Since we
have assumed axisymmetric equilibrium magnetic flux surfaces, toroidal Fourier modes in the
@-variable with wavenumber n € Z are still eigenmodes in the toroidal ¢-direction, while this is
no more the case for the poloidal Fourier modes in the #-variable with wavenumber m € Z. In
other words the eigenmode envelope in the (r,6)-variables satisfies a truly two-dimensional quasi-
linear integro-differential equation in the (r,8)-variables, with nonlinear (resp. convolution) terms
in the variable 6 (resp. m). Let us consider an arbitrary perturbation ¢(¢,r). The periodicity of the
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perturbation in the toroidal (6, ¢)-variables allows us to use a Fourier decomposition

¢ =(t.1) = > (1,7, 0)expling) = D > Dp(t,r) expli(ng — mo)),

nez meZnez

where

1 2 2
D,,.(t,r) = W /0 dG/O do ¢(t,r) exp(i(mé — ny)).

In the field-aligned variables r = (x,n,@), since ¢ = ¢(t,7,6,0) = §(t,x,n,a) = §(t,x,n,¢0 — gb),
the 27-periodicity of ¢ in ¢ implies the 27-periodicity of ¢ in @. Therefore in the field-aligned
variables we can use a Fourier decomposition along the a-variable, i.e.,

¢ = ¢(t.1) = )" Dy(t,x,m) explina),

nez

where the nth Fourier mode @, in ¢-variable is linked to the nth Fourier mode CT)n in the a-variable
by D,(t,x,0) = Ou(t,r,0) exp(ing®). But the n-th Fourier mode ®,(t,x,1) is generally not periodic
in 1 since its periodicity depends on rationality of the safety factor g.

The inverse Laplace transform and the residue theorem allow us to obtain the following spectral
decomposition:

per)= > D" exp(=iwt)Duu(r,0) expling), (32)

neZweSpn

where &, is the spectrum that we still have to determine. Let us note that we have E)wn(x 0) =

D@, (r,0) exp(ingd). We now assume that for every w € C and n € Z, there exists a function
d)um € L*([Fmins 'max)s R,,), such that @, = CI)M * Aoy, Where Ay, is the 27-periodic Dirac comb in
the 6-variable. Therefore, using Poisson’s sum formula, we get

. 1 ~ .
q)a)n(r’ 6) = Z exp(_lme)g / dT] (Du)n(r’ 77) exp(lmﬂ),
R

mez

which by identification leads to

1 _
Donnlr) = 5- /R dn B () exp(imn). (33)

Since in an axisymmetric toroidal confinement system, micro-instabilities (flute-like perturbations)
develop small perpendicular scales comparatively to parallel ones, the natural technique for such
problem with disparate length scales is the eikonal or WKB decomposition. Therefore, with n > 1,
we use the following eikonal form:

Dn(r1) = Guon(; 4,0(9)) exp(inS (1,4, 0())- (34)
Here, the eikonal S is given by

S1.q.0:()) = —an + / dq6(9), 35)

where 6, denotes a normalized radial wavenumber conjugate to the radial variable g.

Substituting the eikonal (35) into the Fourier mode (33), we observe two dual relationships.
First, the variable 7, which determines the global mode azimuthal structure (slow poloidal varia-
tion), is dual to the variable nqg — m ~ x/d,,,, which provides the local radial structure (rapid radial
variation). (Previously we have used the definitions x = r — rp,,, and d,,, = 1/(nq’(r,u)), where
d.n corresponds to the distance between neighboring rational magnetic flux surfaces and where
the rational magnetic flux surface r,,, associated to the mode (m,n) is defined by ng(r,,,) = m.)
Second, the variable 6y, dual to ng, provides the global radial structure (slow radial variation).
The global azimuthal structure is given by the envelope aw,,(r]; q,6x(q)), which depends parametri-
cally on (w,n,q,6y), and is such that 0,7&);,,, =~ 9,8 = O(1). We shall return to the definition of the
different space scales involved in our problem in Sec. I'V.
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Because of the safety factor ¢, in a sheared system (i.e., with ¢ non-constant with respect to the
radius r) flute-like perturbations (i.e., k| < k) can occur only near rational magnetic flux surfaces,
which are isolated and defined by m = ng.®° It is easy to prove that on toroidal magnetic flux
surfaces, pure flute perturbations (i.e., kK = 0) can only occur on rational magnetic flux surfaces.
Indeed, to have different values of the perturbation in the transverse direction to the magnetic field
on a given magnetic flux surface there must exist distinguishable field lines and irrational magnetic
flux surfaces are densely covered by a single field line. Therefore, for flute-like disturbances such as
the ITG instability, the poloidal number m and toroidal number n are not really independent. As a
consequence, the spectrum &, associated to such eigenmodes depends only on the toroidal number
n. Therefore, using (34), and Poisson’s sum formula we get

sen= Y, et-ionexp(-imd)s [ anesptin, e (in(a+ [ dgo))

(n,m)eZ? weS

= Z Z exp(—iw!)wn(8 + 21L; q,61) exp (in (a - 2nlq + / dq Hk)) . 36)
(n,0)eZ? weS y

Expansion (36) can either be written in the toroidal variables r = (r,0, ) (i.e., ¢ = ¢(t,7,8,¢)) orin the
field-aligned variables r = (x,7,a@) (i.e., ¢ = ¢(t,x,17,)) of Sec. IIl C 1. Expansion (36), which can
been viewed as a generalized transform analogous to the Fourier or Laplace transformes, is called the
ballooning transformation. It was introduced by tokamak physicists to get a pseudo-spectral decom-
position of the flute-like modes, strongly localized poloidally but not radially, and which can be seen
as coupled set of modes with different helicities and nearly equal amplitude.

Remark 8. There exist different versions — with different names — of the ballooning transfor-
mation, whose mathematical definition is not always fully specified. The mathematical treatment
of short-wavelength toroidal eigenmodes using ballooning transformation is similar to the Bloch
analysis of lattices in solid state physics.”>">"" An attempt for laying the mathematical foundations
of the ballooning transformation, where questions of existence, uniqueness, and inversion of such
transform are discussed and somehow cleared up, can be found in Refs. 59, 61, 60, 23, and 78.

Remark 9. Let us note that the inhomogeneous normalized radial wavenumber 0. can also be
interpreted as a differential operator, which we denote by ®y. Indeed, let us define the complex
amplitude A(q) by

q x

A(g) = exp (in / dq 9k(6])) A(qo) or A(x) =exp (in / dx q’(i)Gk(i)) A(xo).
q0 X0

The differential operators Oy and T, are defined respectively by

n

. . q
O = _laq = _L/ax and T, = exp (m/ dc]®k) .
nq 90

Assuming now that A € 6*°([¢min, gmaxl), We get

q (]
T4A(qo) = exp (i” / dq ®k) A(qo) = Z {,l,(ﬂl - q0)'85A(q0) = Alq).
a0 =0 “

Therefore, the operator T, can be interpreted as a translation operator, which gives the state A(q) at
q, when acting on the reference state A(qo) at q = qo. Thus, we can indifferently write

q q
@) =exp (i [ dq0u@) atan = exp (in [ agr ) aca
90 90
The action of the operator @y on the complex amplitude A is thus given by

OLA = 6,A = Ay,
(©)%A = AOL6; + 0,0, A = A (9,{ - %aqek) ,

£ —1)
2in

A=A (0,{ + 05720,60, + O(nz)) )
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The inhomogeneous normalized radial wavenumber should be considered as a function 6;(q)
(respectively, a differential operator ©y) when it is placed at the right (respectively, left) of the
complex amplitude A.

Use of the ballooning transformation. Here we describe the action of a linear integro-differential
operator and the gyroaverage operator in the ballooning representation. Let us start with the gyroav-
erage operator. From the definition (4) of the gyroaverage operator .},, we obtain

1 [ _
(Gt = 3= [ de 00070009100,
with!®0

r‘(g’)zr—;—ising’, 0_({)=0—;2—Li%cos§, gﬁ({):go—%i#cos(.

Therefore, using the ballooning expansion (36), we get

(Fup)t.r.0.0) = > > exp(-iwn)

(n,0)eZ?wedy
1
2 0

= Z Z exp(—iwt) exp (in{ga —q(r)(0+2nl) + /dq(r) Qk(x)}) 3M(9+27r€)$wn(9 +2n1l; x, 01 (%)),

(n,0)e72 weSy,

2r
di exp (in {95 —q(F) (@ +2nl) + / dq(F) Qk(i)}) Geon(0 + 278, %,0,(X))

(37

with X({) = x — & sin £, and where

. 1 2n
Ju(0 + 278)pon (1 x,011) = o / d¢ exp (i;q (r - % sin g“) EI_L cos {)
0 i i

exp (in / dx {q'(r = (0,/) sin O (x — (0,/ Q) sin ) - q'<r>ek<x>})

exp (in [—Qlj;;z cosl — (0 +2n0){q(r — (v /Q;)sinl) — q(r)}])

v

@m (77— Sg—jrcos{; X = %sin{,@k (x— %sing’)).

Let us now describe the action of a certain types of linear integro-differential operators £, on a
perturbed quantity ¢. Here, we assume that the linear integro-differential operator takes the form

L= FuLyun(x,0,0,,04,07,.95) T
ub

where L, stands for a linear differential operator in which the dependence on the variables (x,6) is
governed by the unperturbed (equilibrium) solution, which is periodic in #-variable. Using (37), we
then obtain

Lo= ) TuLup(x.0.000000 GNTy Y, Y e lnea0nnO]da00g,,, 9+ 2xt: x.6,)
pb (n,1)eZ?weSn

= > FuLup(x.0,0,,05,0F ,0}")
ub
X Z Z emiwi inlo=q(0+270)+ [ dg 9")3,,(9 + 270 beon (0 + 27€; x,01)
(n,)eZ?weS,
_ Z% Z Z e—ia)tein(ap—q(9+27rf)+f dq 0y)
ub (n,1)eZ? we
Lubp (x,@,—iw,(in)j,(ax —ing’[6 + 27t — 6, ])P,(0y — inq)m) IO+ 2700)beon(6 + 216, x,60;)
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_ Z Z e—iwtein(go—q(9+2rr€)+f dq 0y) Z 30+ 270)

(n,)e22weSy, ub
Lup (x,9,—iw,(in)j,(6x —1ing'(0 + 2t — 6;))P, (9 — inq)m) 3u(0 + 270 peon (0 + 213 x,6;)
=0.

After making the change of variables n = 6 + 2n{ (8,, = dy) and using the periodicity (of the steady
equilibrium state) in the 6-variable, we get

Z Z e—iwt+in(a+f dq 6y) Z

(n,1)eZ?2 weFpn ub
SuLub (x,n,—iw,(in)j,((?x —ing'(n — 61))?, (0, — inq)’”) Sﬂ@m(n; x,0,) =0. (38)

Since the integrand in (38) does not depend on ¢, we get the integro-differential equation
SuLyuw (X1, =1, (i), (0 — ing'(n = 0))", (8, = ing)™) SuPaon (1 X, 0x) = 0,

where we ¥, is the eigenfrequency and (an is the eigenmode.

3. The well-suited system for the perturbation

We are now ready to reformulate the equations for the perturbations (22) and (23) as a
well-suited system, by using the field-aligned coordinates of Sec. III C 1 and the ballooning-eikonal
representation of Sec. III C 2. We emphasize that this section is only devoted to rewriting an
equivalent system for (22) and (23) and not to performing its asymptotic analysis, even if we already
take into account the anisotropy of the problem through the ballooning-eikonal representation in the
field-aligned coordinate system.

Substituting the ballooning representation (36) —see Sec. III C 2 for its use — into the system
(22) and (23), choosing the field-aligned coordinate system of Sec. III C 1 and using ¢y = 0, af-
ter some algebra, we obtain for every contour (u,b) € 6 the two-dimensional integro-differential
equations

Libwy;(‘”?x’n’n - Gk’a)ﬁaﬂ)wihwn + Mibwn(w,xﬂl,fl - ek,aX7877)3[l¢lwn = 0 (39)

In (39) the linear differential operators £*, and Mi beon AT€ defined by

ubwn
+ . G\ by ( ) cos
ubwn = {—m) + ln(qﬂ + QL) % (q (n — Ox) sinn + — TI)
13 15
b aib b . cos
+ q—;&]aih - 2%% (smn@xaib - T”a,,ai,,)
1

H aib by cosn + by H a/i:b by .
D [T il —at, = - 4+ =)= s 40
{(l]i + o ) R+ a"bqR Oy 0 + o | R sinn ¢ 0 40)

+ . 1 N , N g Gn 1 ( . cosn
ubon = 11Dy {E (qﬁxa,,b -q'(n- Hk)t?na,,b) T R (q (n — 6k)sinn + qT)

+ +
gi by by qi %ub by cosn by qi %ub by .
+ { —0xay, — JZEE . o, + E@,laflb - ZZH;E sinng ¢ 0y, (41)
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while the linear integral operator J, (see paragraph “Use of the ballooning transform” of
Sec. III C 2) is defined by

~ (NT 1 o .n vy . Uy
3u(1)wn(m; x,601) = ), di exp iq|r-o sin ¢ o cos ¢

exp (in / dx 1q/(r = (0./) sin OF(x — (0,/)sin &) — q'<r>ek<x>})

15

exp (in [—QU;;Z cos £ —n'{q(r — (v./Q;)sin{) - ‘I(V)}])

awn (17 - g;—jrcosg’; X — %l sin £, 0 (x - % sin{)) . 42)
As it is commonly done for the quasi-neutrality equation (5), the transverse direction to the mag-
netic field (i.e., b*) in the differential term of Equation (23) is approximated by the transverse
direction to e, i.e., the poloidal cross-section of the torus, which belongs to esj. Using this approxi-
mation, the field-aligned coordinates and the ballooning-eikonal representation (see Sec. III C 1 and
Sec. ITI C 2) Equation (23) becomes

Q; - -
an(w,xﬂlﬂl - ek,eli,ax’aﬂ)¢lwn = 271'— Z ﬂ}lb(\sﬂw;bwn - ;Sﬂw”bwn)’ (43)
b oubee
where
Qun = 1= 0 R . 1 ing/ty - 01) 20 o, - L, RIUO 5, 4 €TI0 N0 i 257 — 01
wn rR * Q,’B * ain k QiB * rzR g QiB 7 kBT,j() QiB }"2 a1 k

. [q nio , 1 nio q nio nio . , '
L0y - 00— 05 [rR + g, ([RL)+ 22 —00)-q'0)|t. (44
m(rZQiB a1 =0 g x(’ QiB) R ’7( QiB) A k))} (@4

+

bwn® which is defined as

Introducing for all (i, b) € 6, the perturbed Hamiltonian /

+ _ o+ % qdi ~
hubwn - a,ubw,ubwn + ;J,u¢lwn’
i

the system for the perturbation (39)-(43) is recast as

Kt 3
+ ubwn + ~ qdi .+ \5/1¢1wn
u — |+ M A wn — 4L, — =0, 45
Lﬂbwn( al-_:b ) ubwn SH¢1 m; ‘[’ﬂbwn( aib ) ( )
Qi 1 1 ~ Q[ ~ h+bwn h_bwn
an + 271'— Z ﬂbey( P T) \pt ¢1wn = 271'— Z ﬂybsu( #_,_ - ﬂf .
i ube@ Qb b 4i ube€ b b
(46)

IV. ASYMPTOTIC ANALYSIS

In this section we perform an asymptotic analysis of the system (45) and (46), by taking
advantage of the anisotropy between the parallel and the transverse directions. This, in turn, leads
to a reduction of the two-dimensional integro-differential equations (45) and (46) into a sequence
of one-dimensional integral equations coupled to a one-dimensional non-self-adjoint Schrédinger
equation. In Sec. IV A, using the definition of scales and of the ordering of Sec. II D, we perform
the asymptotic expansions in the small parameter €” (y €]0, 1]). This requires expansions in power
of €” of not only the electric potential but also the linearized integro-differential operator and the
eigenvalues. We next recast the zeroth-order problem, arising from the asymptotic analysis, into a
sequence of one-dimensional integral equations using Proposition 2 of Sec. IV B. In Sec. IV C,
we solve the first-order problem through Propositions 3-5. This leads to the determination of the
ballooning angle. In Sec. IV D, we then rewrite the second-order problem as a one-dimensional
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Schrodinger equation using Proposition 6. In Sec. IV F, we give an algorithm, based on the asymp-
totic analysis, to solve the eigenvalue problem for the two-dimensional integro-differential gyrowa-
terbag operator. In order to simplify calculations, at first, we consider the particular case where
there is no gyroaverage operator, i.e., we set 3, = 1 in (45) and (46). In Sec. IV E we establish
Proposition 7 which allows us to handle the general case of (45) and (46).

A. Asymptotic expansion

We now assume that we have two scales of variation in the poloidal direction, one fast and
the other slow; and three scales of variation in the radial direction, one fast, a second slow, and
a third intermediate length scale. The fast poloidal scale of length order 1/(ng) is represented by
the term “ngn” in the eikonal of the ballooning representation (see Sec. III C 2), while the slow
poloidal scale of length order 1 is associated to the n-variation of the envelope $1w,,. Since we
assume 6 = O(1), the fast radial scale, of length order d = 1/(ng’) and which can be interpreted as
the typical distance between two rational magnetic flux surfaces, is taken into account in the eikonal
term (35) of the ballooning representation (see Sec. III C 2). The slow radial scale, of length order
a and which is the scale of variation of the density n;o and the temperature T, is associated to
the x-variation of the envelope (2; lwn- The eigenmode envelope radial scales which are amenable to
our asymptotic expansion are scales intermediate between the two aforementioned ones. For this
we assume a radial variation on a length scale of order n™7a with 0 < o < 1. In order to take into
account this scale of variation, which gives the radial extension of the searched eigenmodes, we
perform the following asymptotic expansion of 6y:

Or(x) = Oro(x) + Or1(x) + Ora(x) + - - -, (47)
where forall l € N
0 =O0(”),  and  80/0 = 6\)/6k = O™ Ja”), (48)

with y = 1 — 0. Let us note that the high-order terms of the expansion (47) also contain the slow
radial scale of length order a.

Remark 10. Let us notice that according to Ref. 77, it is equivalent to use the eikonal asymp-
totic expansion (47) and (48) or the two-scale asymptotic expansion of the envelope $1wn(x, y),
where the second radial variable y = €7 x should reproduce the intermediate scale of variation of
length order n=7 a of the searched eigenmodes.

To clarify the idea, we shall consider v = 1/2, 1/3,.... We then have the asymptotic expan-
sions in powers of the small parameter €” for the other quantities (hereafter we include the relevant
powers of €” in the definition of the expansion terms)

Dron = Prown + Priwn + Pr2wn + -+ 49)
+ _ + +
wﬂbwn - wOﬂbwn + wlybwn + prbwn T (50)
+ _ + +
hﬂbwn - hOybwn + hlybwn + thba)n T (51)
W=wy+w+wy+---. (52)

Now we have to obtain an asymptotic expansion of the differential operators LZ bon’ Mz b ANA Q.
For this purpose, we dimensionalize them by using the length and time scales defined in Sec. II D. We
then introduce dimensional variables, dimensional unknowns, and known quantities to make appear
only the dimensional small parameters defined in Sec. I D. This straightforward but cumbersome and
lengthy stage is omitted and we give directly the result. After gathering all the terms of same order by

using the scale ordering of Sec. II D (particularly €, ~ 1 and €, ~ €€,), we obtain for the operators

Lo Mipon» a0d Qup the following asymptotic expansions in powers of €7
+ _ Pt + +
‘L,ubwn - ‘EO,ubwn + ‘El,ubwn + LZubwn T (53)
+ _ + + +
M,ubwn - MOybwn + Ml,ubwn + MZ/wan T (54)

an = QOwn + Qlwn + Qan +..., (55)
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where the second-order terms are of order e™*1-2Y) The operators involved in (53)-(55) are defined
by

b , . cos
) % (61 (1 — Oxo) siny +q—n)
p

M ﬂb
,0r0) = —lwo +in| — +
Loﬂbwn(wo ko) = —iwg + in (ql Q,

+

b
(6 ak, + a0, - 2= Cut }‘; (smna a* @Bnaib), (56)

at, \p
. b . .

Lli,,bwn(wl,ekl) = —1ng (qﬁ + QL) E‘p sin 6| — 1w

= (0x109,0 + ©10000) L 1pons (57)
I
+ + H a;ilb b¢ cosn
L5 iboon(@2,0k2) = (0k200,, + 02000) Lo peon — p + o |7 ( d, + sinndy )
+ i + i +

= (gkzagko + wzawo)‘£6ybwn + ;aq'anbwnaU - n_q/aekOL(;yba)nax’ (58)

Moubwn(HkO) =inb { (qax -q'(n—- 9k0)3n6lzb)

cat, b
+iﬂ_(q'(,,_ek)sinn+qcos")}+i_wa (59)
r )

n; Qi R oy qR s
+ . /b 1 + sinn .
M bwon(Ok1) = ing E“’ (;6’7a,ub -2 aﬂb) 01
= (gklagk() + wlawO)Mgpbwn’ (60)

Mfﬂhwn(ng) = (9k269k0 + wzawo)ngbwn - ;’ Q; R

0, + sin nﬁx)

b
+£(8,,a Oy — Dya,0,)

i
(ekzagko + wza‘uo)MOybwn + - 6 ngbwn - n_q,agko gﬂbwnax’ (61)
Q _ €Tnio  nio nzf] +n /2( 0 ) (62)
Own—kBTIO QB q n — 0Gko
Qion = 2222 (ng"Y2(7 — 001 — ing'—2 3.6
lwn QB q )N —Uko)0k1 — quBxkO
= 01100, Qown — E 3 01095, Qowns (63)
Qown = —in Q Ba Okt + Q—(’%I (67, — 2(n — Ok0)bk2)

. . 1 i
+1n(r]—9k0)r x(rR Q_ . )+1nqﬁ6ﬂ( Q;)B )
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1 i1
= Ok200, (Qown — (—Egil + En_q,axekl) 93, Qown

) 1 , Nio . 1 nio
+1n(n—9k0)§6x (quﬁ . ) +1nqﬁ6,7 (Rﬁ . ) (64)

Let us now make the following important remark.

Remark 11. In (58) and (61) terms that are at least of second order in € fall into two groups:
if they involve radial or poloidal derivatives, they are of order €; if they do not, they are of order €.
Upon choosing y = 1/2 all the terms must be taken into account in defining the second-order group.
On the contrary, for y < 1/2 only the terms without poloidal or radial derivatives are needed, so
that partial derivatives with respect to the variables x and n drop out. The same applies to (64).

Substituting the asymptotic expansions (49) and (51) and (53)-(55) into (45)-(46) with J, = 1,
we get, at the zeroth order, the system

hE
+ Oubwn + qi -+ d10wn _
‘EO,ubwn( a* ) + MOybwn¢]0w" - %LOpbwn( a* ) =0, (65)
ub ! ub
Q; 1 1 Q; hgpbwn h(;ybwn
Qown + 27— Z ﬂpb(T——) Prown = 21— Z »7(,11;< — | (66)
gi ube€ Yp  Yup b ubes b up
at the first order,
+ lubwn + qi -+ 1lwn
'EO,ubu)n ( ot ) + /\/(0;117u1n¢1 lon ™ %'EO/wan ( a* )
ub ! ub
+
-Ei ho.ub“)n Mi ql Li ¢10wn _ 0 (67)
+ lubwn a* + lybwn¢10w” - z lubwn a* -
ub ! ub
Q; 1 1
Qown + 21— Z Aup (T - T) Al1iwn
9 bee b Yy
Q; h;rpbwn hljuhwn
+ Quunioon = 21— > Ay (a— - =), (68)
gi ube@ nb ub
and at the second order,
hE ¢ h*
+ 2ubwn + qdi o+ 12wn + lubwn +
‘CO,uba)n ( at ) + MOubwn¢12w" - m_l_‘EOyba)n ( a* ) + ‘Ll,uba)n ( at ) + Mlubwn¢11wn
ub ub ub

h:t
di p+ Pllwn + Opbwn + di -+ D10wn | _
T “lubwn + + ‘£2 bwn + + MZ bwn¢10w" - .'£2 bwn + =0, (69)
m; M a H a H m; M a
! ub ub ! ub

Q; 1 1
QOa}n + 271'_ Z ﬂ,ub ((,ZT - CIT) ¢12wn + Qlwn¢llwn + Qan¢lOwn

ub ub

Q; h;,ubwn hipbwn
=27~ Z ﬂ#b< T B Y

ub b
Before solving successively the three previous systems, we define the following new quantities:

a= \ b
+ _ K Tub) %% ( / - COSU)
= —+ — | = -0 simnp+qg——|,
a)d,ub n (q Qi ) R q (’7 ko) n q r

i
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Twn by [1 : Db ( . cosp
Wip = fﬁa - (qaxazb -q'(n— Gko)anaib) t R (CI (n — 0x) siny + QT) ,
at p
+ ub Yy . + cosn
Woup = _ZEE (sm N0xa,;, = p 6,7aﬂb)
+ _ q1 TEO l + . +
Q*/,lb *,ub m; e |a'ub|2( 0~ wdub + lwoyb)'

In the case of symmetric equilibrium contours, i.e., ai b(r,G) = +a,,(r,0), the previous definitions

simplify: wzﬂb = Wapp, W

— + +
b = Wipb, wwb = Woub, and Q*yb = Q*'ub.

B. The zeroth-order system

In this section we recast the system (65) and (66) as an integral equation for the potential ¢,
given by the following proposition.

Proposition 2. The zeroth-order system (65) and (66) is equivalent to the integral equation
L ynP100n =0, (71)
where
Lgwon = Con+ Lown + Lewn:

Here, the operators Q; Oww and L, are defined by

wn’ “~Q0wn
) Q 11 . .
Qesn = Qown + 21— Z ﬂpb(T——), Lowon = Z Loubwon
gi ube6 a#b al‘b ubeO
LOCwn = Z ‘Ez‘,uhwn’
ubeC
o QA [T (e qR .
Loyt =27 2 [ i 2980, a0 | @ exp (-isientn = D007,
i Au -0

21 +,
R Q; Aup v L;b HLgb ()
C/lbwn'r// = Z —2n—

qi Qub smfl,b(e £ 0% €b)

tez Lub’

92’,’;, [ e qR -
{ S (5 ) 08 0 05 T
n

" [ e qR _
+ /_ dTI (_q_Q*;lbaﬂblp) (ﬁ) COs Iﬂb(gLﬁb5ﬁ)COS be(ngb9n) ’
01;51; Teo by

where

— Wdub + iwoyb)

5
- gR

L, = [ dn

g 7 byaup

and Gi"fb(r) = 207 ,.p(r) + 27L.

Proof. We distinguish the case of open contours (the set Q) and closed contours (the set C). Let
us first deal with the set O. Integration of Equation (65) in nj-variable gives

qR . .
o,,hw,,(n) o,lbm(no) eXp( / dn ba ——(wo - Waup T I‘Uf#b))
[ pb

" (e 4R "~ _qR £ s
—if dn|=— b, Q@ $100n | (Mexp(i | di - (wo — wg,p, +iwy,,) ). (72)
70 Teo 7] “ub
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Since here we consider open contours and 1 € R, it is natural to take the following boundary condi-
tions: wgﬂ pon(£00) = 0 for the contours and @19, (+00) = 0 for the potential. As a consequence, we
get h(),u bwn(+oo) = 0 for all (u,b) € O. Moreover from Sec. III B, we have seen that if we assume
that the “initial” or boundary condition aH (r,0) is symmetric — so that a »(1,0) = £a,,(r,0),
with a,,(r,0) > 0 — then the contours a#b(r 0) also satisfy this property Therefore we get

(r 0) = xa,p(r,0), wd b = Wapbs W, b = Wiy Wy, = Wopbs and prh = Q.. Consequently,
for all (u,b) € O, we obtain

+
oub

(),,},wn(r/) / d)’] ( 0 b *,uba;lb¢10wn) (ﬁ) eXp( iSign(U - ﬁ)be(r]’ ﬁ)) > (73)

where

yb(n ﬁ) d?’] b
n Qub

((1)0 — Wdub + iwo,ub)'

Let us now deal with closed contours. As it has been shown for equilibrium contours {az pJ(ub)eC
(see Sec. III B), it is natural to assume that for all (u,b) € C, the perturbation contours wgﬂ bon
and Wouban close by meeting to each other at two angles 9}44 ,(r) and Hi# () where they vanish,
and thus form a multi-valued (double-valued function) closed contour. Even if it is not necessary,
we can assume that the limit angles HlLﬂ ,(r) and Qiﬂ ,(r) of the perturbation contours are the same
as those of the corresponding equilibrium contours, i.e., Hiﬂb(r) or €h(r) Orup(r) + 2mt, and

_!f . . .

Giﬂb(r) = GLMh(r) = —Opup(r) +2nt, with € € Z, 01,,(r) = |02Hb(r)| and HLHb(r) given by. (30).
In order that the contours connect each other, the boundary conditions for the contours belonging to
the set C, should be woﬂbwn(HL#b) Oybmn(gL,ub) and woybwn(G (Hiﬂb). Assuming
now that ¢, 1S continuous, we obtain the boundary conditions

O,ubwn(e yb) = ha;lbwn(elLub)’ and ha-ybwn(ezL,ub) = ha,ubwn(eszb)’ V(H7b) eC.

By taking (179 = GLHb,n HLHb) for hig,,p,,, defined by (72), (o = Hiyb,r] b) for ht

defined by (72), and using the previous boundary conditions we obtain the 2 X 2 hnear system

Lpb) Opbwn

Oubwn

Ophwn(e ,,b) Oyba)n(ei b)eXP ((_1)j b(eL’ub’Q]Z”b))

"
= (- / _“’"dn( c 4 Qx,,ba,,bqsmwn) () exp (=155 (L8] 10) = Lol @), 065 1))

b,
Lub eO

with (j, k) € {(1,2),(2,1)}. Solving the previous linear system gives

h(),uba)n(eL#b) = hOybwn(giyb)

-1 2 TLub e gR
=sin~ Iﬂb(eLyb’OLyb) o1 d Ob Q*ﬂbaﬂb¢1own (T])COSI#b(HL'ubJ]), (74)
Lub ¢

which finally leads to

T [ e gR
oﬂbwn(n) = €Xp (+1-[/1b(9[41b777)) { \/1 d’] ( Q*ybayb¢10wn) (ﬁ) €Xp (+1I,ub(9Lﬂb’ﬁ))
o

by
Lub eO

- 1 2 L e qR
+sin Iﬂb(gLyb’ngb) o1 dn T b Q*ybayb¢10wn (n)COSIub(GLﬂb’n) . (75
Lub

Substituting (73) and (75) into the quasi-neutrality equation (66), we obtain Proposition 2. ]

Remark 12. Further, we will discuss the question of the well-posedness of the integral Equation
(71). Let us note that this one-dimensional integral equation depends parametrically on the radius
through the x-variable. The solution of the integral Equation (71) gives the geometric structure of
the eigenmode in the poloidal direction or along a magnetic field line, locally in radius.
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In the integral Equation (71) the map [Xmin, Xmax] 2 X — Oxo(x) € R remains unknown. It
will actually be determined by solving the first-order problem (67) and (68), a matter handled in
Sec. IV C. The angle 6;0(x), called the ballooning angle, represents for each radius, the angle at
which is centered the poloidal envelope of the eigenmode ¢;¢,,. We will see that the ballooning
angle can be taken independent of the radius.

C. The first-order system

In this section we solve the system (67) and (68) and determine the map [Xmin, Xmax] > X —
Oro(x) € R. We first recast the system (67) and (68) in a suitable form given by the following
proposition.

Proposition 3. The system (67) and (68) is equivalent to
o o o i 1
L nPrion + 06100, 0L n + W10 LG n = En—q,axlgkoagzkoQOwn) H10wn = 0. (76)

Proof. Let us first deal with the set O of open contours. For this, let us introduce the following
definitions:

2
. b,
@pup = =1 (0k100, ) + W100y) Lopbwn = —nq’ qﬁ + —) Oy siny — wi,

Q, | R
. by (1 sinn
Bub = =1(0k100,, + ©100p) Moubwn = nq’ AP —0naup — g b Ok1s
e gR
= __Q* B
Yub Too b, ubQub

Wﬂb(n’ﬁ) = exp (_1 31gn(17 - ﬁ)I,ub(n’ ﬁ)) .

Following the same ideas for dealing with the zeroth-order system, integration of (67) with respect
to n-variable gives, for open contours, i.e., for all (u,b) € O,

+ . g —~ qR ub +
hl,uhwn(n) =-1 d’] tib‘z)llwn + b_ p h(),uhwn
Foo (7 b

{+:B/1b + &_} ¢10a)n:|) (ﬁ) 7(/127(77’77)' (77)

m; aup

Using (73), (77) and Fubini’s theorem to permutate the order of integrations, we obtain

(hl,ubwn Iﬂbmn)(n) =-1 {[ d)’] (y,uh(pllwn + - |:ﬂ;1 - 2@] ¢l()wn) (ﬁ) pr(n’ﬁ)

w0 m; aup

00

—i/ dn (YupP10wn)(7) sign(n — Ky (1, ﬁ)/ dn ( )(A)} (78)
- by aup

Let us now deal with closed contours. Using (74), we obtain

o1
L ub
hlﬂbwn(gLub) = hlybwn(giub) = s lfﬂb(eiub’giyb) [/01 dn (Yup$110n)(17) c0s Iﬂb(giub’n)
Lub
v (R qi Xpb >
+/ d?] b ﬁﬂb - ¢10a)n (77) cos Ipb(el_,#b’n)
o) b " mi aup
02 cos I,(6! )
ub qRa' b ub\Y b’ b L,ub .
o, an (b—f)@{ T z 07 (181007 €05 L6 1,7)
O} > o Aub sin Zy,p( Lub® ”b)

7
_/1 dn (yub¢10wn)(ﬁ) Sm[,ub(eL,,ba ‘)}j| , (19)

gLyb
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which leads to

n
lybwn(n) Oﬂbwn(giyb) exp (iijﬂb(glL,ub’ 77)) -1 /1 dﬁ (i7ﬂb¢llwn

gLub

R i i
S B s 2| ) D exp G007 50

by Aub m; Qup

Using (74) and (75) and (79) and (80), we get

M ibeon + Mueon) D) = 2 [ M baon(0] 1) €08 Lun(6]101)

n
qi @ub .
- /91 dn (7ub¢llwn + | Bub — ;aL] ¢10wn) (17) sin Z,,5(17,77)

Lub i Qub

Ra
+h0ybwn(9LlJb)/ (q 4 )(ﬁ)SIrl][lb(gLHbsﬁ)

by aup

n — qR Qb i —
- d’7 b_ (F]_) d’7 ()//Jb‘plOwn)(ﬁ) Cos be(ﬂ,fﬂ . (81)
9}‘ b e Aub O b

M
Substituting expressions (78) and (81) into the quasi-neutrality equation (68), we obtain the desired
integral equation. We now recast this integral equation in a more compact form by observing the

following identities:

R« b
‘2 = O+ 01000) Oy TG0 Vo € B (82)
qi Xub by
Bub — Ea_/xb = 4R (0k100, + W180p) Y ub- (83)
Using (82) and (83), the right hand side of (78) can be recast as
Qi b o o
- 2n— Z l‘ (hl;tbwn + hlﬂbw") (eklagkO‘LOwn + wlawo£0wn) D10wn- (84)
4i ubeO Ay

Using Fubini’s theorem to permutate the order of integrations, we get

1
Lub

O 7
- [ A a0+ 0100 00T [ T i ) sin L
HLub

giyb )
= /g' dn (Vb ®100n)(1) (05180, + ©180) €08 Lup(07 ,1,1)s

Lub
so that (82) and (83) and the previous formula allow us to recast the right hand side of (81) as

L Z TP

- _ o o
hl,ubwn) - (eklagko‘ECwn + wlawo‘£Cwn> P100n-
i ubeC Qb

lubwn
Finally, using (63) and (84) and the previous equation, the system (67) and (68) can be rewritten as
(76) of Proposition 3. o

The operator L,  is non-self-adjoint. We denote by L7 the dual operator of L, . deter-
mined through the Hermitian scalar product in LAR,,), i.e., (f,g),2 = Ju f(1)g*(n)dn with (-)* the
transposed conjugate. More precisely, we have

(L o) 2=, LY W) 2, Yo,y € L(R,).

We then define 510“,,, as the solution of the equation 'E:)G*wnalo“)" = 0. Let us now consider the
equation

%(wo, gkO(x)’x) = <$10a)ns Lfgwn¢10wn>L2 =0. (85)
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The function of two variables €, (60, x), defined for x € [Xmin, Xmax] = [Fmin = 70, "max = 7o), Oko €
R/27Z and wy € C, can be viewed as a Hamiltonian in the phase-space (6x0,x), which depends
parametrically on wy and where the variables (6y,x) are conjugate variables. The equation for the
characteristic curves in the two-dimensional (6, x)-phase-space is given by the Hamilton equations

koO _ (956)“,0 d_x _ _(3,%)(00 (d%wo _ O)
dr )’

dr — 0x ' dr 06k’
where X € [Xmin, Xmax), Ox0 € R/27Z, wy € C, and T € R,.

For such a one-dimensional autonomous Hamiltonian, i.e., with one degree of freedom, we
know that the system is integrable. It is clear that, qualitatively, the determination of the function
Oxo(x) will depend on the topology of the phase portrait associated to this dynamical system. The
numerical studies reported in the companion paper?* indicate that, typically, the phase portrait has
the same topology as the standard nonlinear pendulum, usually called cat’s eyes (see Fig. 4). It is
of interest to find general conditions ensuring such a topology. This is the goal of the following
proposition. We have used pg to denote a generic radial profile, which can be, for example, the
density n;0, one of the temperatures T;o and T, the radial profiles a; ,, of the contours, or the safety
factor g.

(86)

Proposition 4. Let py denote a radial profile in C6%([}}“1“, Fmax])- Suppose that

(i) there exists a unique point x. € |Xmin, Xmax| Such that
(0xH€0y)(Or0,xc) =0,  VOro € R/27Z,
(ii) at the critical points of ¥#€,, where agsz%wO and 6)%36‘00 have the same sign, the following
stability condition holds:
2
‘aezko»x%w0| < |(92

Oko

K| |02

Then, the topology of the integral curves of the Hamiltonian vector field (04, —(99k03€w0)r in
phase-space are those of the classical nonlinear pendulum. In other words the phase-space con-
tains an alternating sequence of X-points (saddle hyperbolic fixed points) and O-points (center or
elliptic fixed points) along the line x = x.. Moreover, the characteristic curves in phase-space are
periodic and of two different topologies: the first one, called rotation, corresponds to open trajec-
tories (passing orbits), while the second one, called oscillation (or sometimes vibration or libra-
tion), corresponds to closed trajectories (trapped orbits). The periodic separatrix curves connect
the various X -points and separate rotations from oscillations.

Proof. First, using the regularity assumptions of Proposition 4, we have €, (0ko,X) €

%g((R/ZnZ) X [Xmin» Xmax])- Therefore, using the Cauchy-Lipschitz—Picard theorem, we obtain
existence and uniqueness of the characteristic curves defined by the ordinary differential

Oro

Wo = Wylobal = constant
Oro = Oro(z;wo)

Oro,r -H

0ro = Oro,7 = constant
wo = wo(x; Oko)

T
T1separatriz L2separatrix

FIG. 4. Cat’s eye picture.
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equations (86). Let us now find the fixed point of the force field F = (0,5, —agkoyewo)T, i.e., the
critical point of the Hamiltonian #,,,. Since the kernel of integral operator (71) is 27r-periodic in
Bro, it is straightforward to prove that /€, is also 2x-periodic in 6y (see Remark 19). Therefore,
there exists an infinite sequence of isolated points {6xo..; }ien such that, for all X € [Xmin, ¥max]»

(o /es)Okoc.i-¥) =0 and  sign (3,

i) Okoc.i- X)) = (=1)', i € . (87)
This sequence corresponds to the alternating sequence of maxima and minima of #,, in the
variable 6. Using the above and assumption (i) of Proposition 4, the only critical points are the
sequence {(Oroc,i»Xc)}ien. To determine the nature of these critical points, we need to study the

eigenvalues of the gradient matrix VF at these critical points. It is straightforward to show that

9wy =05 S

VF(ekOc,i; xc) = 01\'0’;{ 20k0 0
8)(3(60)0’ _69/(0,)(3‘6‘“0
and
det(VF — Al) = 2> = (0, Huwo) + 0, P03y (88)

Therefore, the eigenvalues A of VF(6ioc.i,x.) satisfy 12 = (9?2 #&UO)Z - 02 %woaf%wo. On the

Ok0,x )
one hand, if ((93}{0,)‘3&,0)2 > (93}{0,“7’6"006)%%&,0, we have a saddle hyperbolic fixed point. If 633&,0
(Broc.i>xc) < O (resp. (9)%,“7’6%(9;(00,1-,&.) > 0), then the latter inequality is satisfied at even (respec-

tively, odd) points of the sequence {(0xoc.i,Xc)}ien. On the other hand, if (63}(0,)(%’“)0)2 < 6§k03€w0

6)%3‘6&,0, we have a center, that is, an elliptic fixed point. If af%wo(ek()c,i,xc) < 0 (resp. 633&,0
(Bkoc.i»xc) > 0), then the latter inequality is satisfied at odd (resp. even) points of the sequence
{(Bkoc.i»Xc)}ienw, provided assumption (ii) holds. Therefore, we obtain an alternating sequence of
X-points (saddle hyperbolic fixed points) and O-points (elliptic fixed points) along the line x = x..
From this follows the rest of the stated results, which concludes the proof. O

Now, restricting the phase-space to a period in 6o, we obtain a periodic (¢, x)-patch (see
Fig. 4). The points z = (0x0,x) = (6r0,x(0x0)) on an orbit are two-valued functions of 6, while
conversely the points z = (09, x) = (6ro(x),x) of the same orbit are two-valued functions of x.
Therefore, there are two points of view to describe the problem.

The first one is to view wy as a global parameter and Oy(x;wg) as a function of x, which
depends parametrically on wy: for a given magnetic flux surface x = x,, we search two branches
Hlfo,wo(x*) such that JC(wo, 6] y(x+; wo), X.) = H(wo, 0, ,(x+; wo), x.). The second one is to view g
as a global parameter and wq(x; 0xo) as a function of x, which depends parametrically on 6¢: for
a given 6o we search two magnetic flux surfaces x; and x, such that wo(x1; Oro) = wo(x2; Oko) =
constant. Let us consider the first point of view, which means that we search the characteristic
curves of the phase-space constituted by the set of points (6xo(x; wo), X)w, such that F€(wo,6bko
(x; wo), x) = 0; each orbit being associated to a unique value of wy. Supposing that the trajectories
are regular enough, the implicit function theorem implies that the function Oy¢(x;wy) is implic-
itly defined by (85), as long as dg, # # 0. Taking the derivative of (85) with respect to x, we
then find that 0,69 = —0#€/0g, 7. Furthermore, validity of the eikonal representation (35) and
(47) requires the condition |6x9ko/(nq’6i0)| < 1 to be satisfied. Nevertheless, from orbit topol-
ogy in phase-space, for a periodic patch (see Fig. 4), we know that there exist two points x7,,
i € {1,2}, called turning points, such that dy, ;/€(wo, Oro(xT;; wo), X1;) = 0 and [0Bko(xT;; wp)| = 00
(or 8g, ;x(Bko,7) = 0), and where 8,7 = Oro(x7,; wo) = Oro(xT,; Wo).

To avoid the turning points problem at zeroth order, we assume that d,0ro(x) = 0. Thus 0o =
constant, and then we adopt the second point of view according to which 8y is a global parameter.
Actually, the problem of dealing with the turning points is just postponed to the next order in the
expansion of 0y, i.e., for 6;1(x). Therefore the dispersion equation F€(wq, b0, x) = 0 can be inter-
preted as follows: we look for the local frequency wo(x; 0xo) such that F€(wo(x; Oro), Oko, x) = 0. As
a consequence wy is a function of x which depends parametrically on 8 and is implicitly defined
by HC(wo(x; Oko), k0, x) = 0. The equation wq(x; Oxo) = constant should allow us to construct the
phase-space orbits described by Hamilton’s equations (86).
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Within the second point of view let us show that the eigenvalue wy reaches an extremum at
the turning points 60,7 and that the first-order correction w; to the eigenfrequency vanishes by the
following proposition.

__ Proposition 5. Let us suppose that assumptions of Proposition 4 are satisfied. Let ¢1o.,n and
$10wn be, respectively, the solution of the problem LS, = ¢100n = 0 and the adjoint problem L

al()wn = 0. We assume that

(B100m D Lo n®100m) 2 # 0, V0o € RI2AZ, Vx € [Xnniny Xina]. (89)
Then,
(1) there exists a value of Oxo, called a turning point and noted Oy, such that
0
T (x36k01) = 0, VX € [Nonins Ximas (90)
300 '

i.e., the eigenvalue wq reaches an extremum at the turning points 6xo, T,
(ii) the eigenvalue wg reaches an extremum at x = x., i.e.,

%(xc; Oro) =0, Vo€ R/27Z, 91)
(iii) at the turning point 6o = Oxo,T we get, for the first-order system (76), the solution
w; =0, 92)
P110n = Ox100; ;1000 + 81(X)P10wn- (93)
hliybwn = gklagkoh(j):ybwn + gl(x)h(j):ybwn’ (94)

with g\(x) an arbitrary function.

Remark 13. Even if condition (90) seems to restrict the search of the eigenvalues to a subset of
the spectrum, it is actually not the case. Keeping in mind the topology of the characteristic curves
in phase-space (the integrable cat’s eye picture, see Fig. 4), the equation 0yy = Oro,r corresponds
to the line passing through the O-point. Therefore we can deduce two important conclusions. Along
this line (of equation 6ro = Oko,T), if X is varying in its range, then w describes all the eigenvalues
of the spectrum. Moreover the line Oy = Oko,1, corresponds to the value of Oro where the radial
extension of wy is maximum. As a consequence, it will select the eigenmodes for which the radial
extension is maximum. Indeed, the radial extension of wo will fix the radial extension of the poten-
tial function involved in the one-dimensional Schrodinger equation, which will determine the radial
envelope of the eigenmode. Therefore, condition (90) allows us to recover all the eigenvalues of the
spectrum, but only yields the eigenmodes of maximum radial extension.

Remark 14. The conditions (90) and (91) express that wq reaches an extremal value (which
should be a maximum in the case of an instability) at the point (x.,60ko,1). From 6-symmetry of the
equilibrium and since Toroidal-ITG instability has maximum amplitude on the low-field side, we
expect Oro1 to be close to the origin. Moreover we expect that x. is located in the vicinity of the
maximum of density and temperature gradients (v = ro by usual assumption), i.e., close to the origin
(in the radial variable x).

Proof of Proposition 5. Let us start with first item (i) of Proposition 5. We first notice that at the
turning point 6y r, we have the identity

_ . Py
<¢10wns aﬁkoicgwn¢10wn>L2 = aTk()

=0.

Differentiating now (71) with respect to 6y, and taking the Hermitian product with alowm and using
the previous identity, we get

- <80k0¢10wn» Lfﬁwn¢10w">L2 - <¢10wm Lfgwnaek0¢10wn>L2

60)0 - o _
Wko<¢10wma¢uo~£c@wn¢10wn>l‘2 =0.

Using assumption (89) we finally obtain (90).
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Let us continue with the second item (ii). Using assumption (i) of Proposition 4, we have, at the
point x = x,

0

a <a ¢10wna‘£<gwn¢10wn> <$lOwn"£Sgwnax¢10wn>L2 =0. (95)

<510wn» aX‘LS@wn¢10wn>L2

Differentiating (71) with respect to x, and taking the Hermitian product with 5 10wn» and using (95)
we obtain, at the point x = x,

680)0<¢10wna anL%wn¢10wn> =0,

which shows item (i), under assumption (89).

It now remains to prove the third item (iii). Until now, we have described the fast and slow
variations in the (6, ¢)-variables and fast variation in the r-variable. We now want to solve for the
intermediate scale of variation of length order n™7a in the radial direction, which corresponds to the
radial extension of the eigenmode. Since we are interested in the eigenmodes of maximum radial
extension, we fix Oxo = Oxo,7. Therefore, we restrict our problem to finding the spectrum of the
integral operator LZ,  for which (90) is satisfied. Taking the Hermitian product of (76) with Bl0wns
and using

“Cwn

<$10a)ns 66k0~£sgwn¢10wn> 89 <¢10wns aMOLngn¢10wn>L =0,

60 < > 4 k < >I
k1, ¢10wn’ w( <@“n¢10wn 2 nq X 0 9k0 Own ¢l()wna¢10wn 2 .

Using (89) and (90), the previous equation leads to (92).
Let us now establish formula (93). Differentiating (71) with respect to 6xo and using (90), we
get

09,0 L% onP100n = =L 1,100, 0P10wn- (96)
From (76), since w; = 0 and 0,6x0 = 0, we get

L nP110n + 0100, LG 1, P 1000 = 0.

Using (96), we can solve the previous equation to obtain (93) with g;(x) an arbitrary function. It
now remains to establish (94). Let us first do this for open contours and next for closed contours.
Using (82) and (83) and (92) and (93), and taking the 6;(-derivative of (72), we obtain

+ . qR qi Cub
k100,10 bon = +1/ dn (b [ﬁyb - —L] D1own + Ypb¢11wn) (7) Kun(n,17)
Foo (]

m; up
n
*i / T K. sty - ) [ ( b)(“)
by ay

Using Fubini’s theorem to permutate the order of integrations, in the second term on the right-hand
side of the previous equation, we get the relation (94) for open contours. Let us now deal with
closed contours by following the same method that we used for open contours. Differentiating (80)
with respect to 6y, using (82) and (83) and (92) and (93) and Fubini’s theorem to permutate the
order of n-integrations in some double integrals, we obtain

ekla‘)kohgpbwn = gklagl\ohaubwn(e}‘pb) €xp (ii]l‘b(eipb’ 77))

n .

_p aRaup |, qi — o ~
+ 1/ d" ﬁ,ub¢10a)n + 7;4b¢11a)n + -— 2 h5ybwn - ¢10wn (77) exp (+IIub(77, T])) -
0 by, aup m;

o7
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Now, the 6;(-derivative of the right-hand side of (74) gives

gklagko O/wan(g ,ub)

~ cos],,;,(@L”h, Lyh)
B sin Z,,(0}

a3

ub

69k0 ,Uh(eLyb’eipb)\/ d’] (7#b¢10wn)(ﬁ‘) COSIph(eiyb’ﬁ)
Lub’ ;tb) 01

+ sin” I,ub(eL'ub’giﬂb)/ d’? {(7yb69k0¢10wn + b 9 |:B,u - ﬂ_] ¢l()wn) (ﬁ)

€08 L (67 1010 + (¥ b B100n) (o [COSIub(gLﬂb’ﬁ)]}}- (98)

Using Fubini’s theorem to permutate the order of n-integrations in some double integrals, we get
that

Hiyb
/91 dn (Yur$i0wn) (1) dg,., [COSbe(HLHb»ﬁ)]

Lub
Hi”
=- /1 dn 0, \OpLun (17, '70)/ 7 (YupP1own) () sin Iﬂb(gL,,b’ﬁ)
gLyb
Inserting the last expression into (98), we get k19, /15 o bwn(@ Lu p) = fﬂ bwn(&}‘ﬂ ) Which together
with (97) implies (94) for closed contours. ]

We are now ready to solve the second-order problem to determine 6 and thus obtain the radial
envelope of the eigenmode.

D. The second-order system

In this section we solve the system (69) and (70), which leads to the determination of the
complex function [¢min, gmax] 2 ¢ — Gx1(g) € C satisfying a Riccati equation or equivalently, of
the complex amplitude

q q
Aq) = exp (in / dq e,d(q)) Aqo) = exp (in / dq ®k1) Alqo),
q0 q0

satisfying a Schrodinger equation. With the definition @, = —(i/n)d, (see Remark 9 of Sec. III C 2),
we have the following.
Proposition 6. Let 1/y > 2. Then the system (69) and (70) is equivalent to solving the non-self-

adjoint Schrodinger equation

-0}, + —I"ZwO)Al =0, 99)
2%;,W0

for the complex amplitude A, or equivalently the Riccati equation

—a 0k — 07+ ——2 =0, (100)

for the complex function 6y.

Proof. Here, we restrict our problem to the determination of the radial envelope of the eigen-
mode whose scale of variation is of length order n™7a, with o = 1 —y and 1/y > 2. The calculation
is tedious, so for simplicity, we only give the full derivation for the set of open contours. For the set
of closed contours calculations are similar, and lead to the same result as for open contours. Before
doing so, let us introduce the following notation:

é«‘#b =—1 <9k289k0 + (/.)zawo) L()pbwn’
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é’#b =—1 (ekzagko + u)2aw0) MOpbwn’
e gR
"T T b,

Kiun(n.17) = exp (~isign(y = D) Lup(1.77)) -

Yu Q*ybaub,

Following the same method that we used for dealing with the zeroth- and first-order systems and
integrating (69) with respect to the n-variable, we obtain, for open contours,

N Y R Eub ) .
h2ybwn = _1/ dT] (i’Yﬂbﬁblan + qb_ [{ (gklaako + 81) + 22 }hOybwn
Foo » Aub Aub
i i f b
{(ﬁ,,b - q——) G190+ 81) + Cup = =228 G100 | | (D KoY, (101)
m; Aup m; aup
where we have used (93) and (94). Using (101), we get
+00 q
h;,,bwn + hyppen = 1 [m dn (be¢12wn + {(ﬁpb - ;a—ﬂb) (Ox100,, + &1)
qi ‘fﬂb +
+ &b = == ¢ Pr0wn | () Kup(n,7) —1(X 7, + X,p.), (102)
m; aup
where

+ T (4R
X;;b = il d'? (?)__ [a',ub(gkla(JkO + gl) + f/Jb] hO/wan) (ﬁ) 7(;417(77,77)

o Aub

n n
—=i [ a7 [ dn[ Ko 1, DK, ﬁ)( ak

o by
(‘]R Qub
by aup

(aybgl + é:yb)) (ﬁ)('y;tbQSlOwn)(ﬁ) + Wyb(r] FD
aub

)(ﬁ) O1c1 {00, 0(¥ b B100m) () — 18107 = DY 1B 1000m) (1) oy o Ly (T 77)}] (103)

Using now Fubini’s theorem to permutate the order of n-integrations in the double integral, (103)
becomes

n
X5, = #i / dn {(gm,b(mom + 0100, b P100n]) () sign(n — M Kyup(n.77) [ ( ) ()
by aup

qR fﬂb

<Pﬂb

- Ooroon) D sienty - K. [ 7 (2 )@} ve, (104)

where, by (82), we have
. _ n . . n =N _ qR a,”b
Yoy =% | dn6ia(Yup@10wn) (D) sign(n = MKy, | - dig Gy Zup(1.1) | = —= | ()
F n

) o Cub

n n
e / AT 62 (5 r100m) (1, 7) / A7 90y Lo (7700, L (7.77)
Foo 7]

n g2
=% [ a7 o K000 Fus 1.
Foo

Substituting the previous equation into (104) and thus into (103), using (82) and (92), and in
addition noting that

b,a
Eup = i]R (kaagko + U)Zawo) @be(ﬂ no), VYo €R,
i Sub
Lub = (9k239ko + 200) Yy + D
m; aup



081518-34 N. Besse and D. Coulette J. Math. Phys. 57, 081518 (2016)

we find that (102) becomes:

+00

B beon + Mapbon = —i/ di (Yur®120n + {0k100,4Y ub [0x100,, + 811
+00

+ [0k200,5 + W2000p| Vb } Dr0wn) () Kup(m,77) — i di [81(¥ pup®100n) ()

—00

n
+ 0k100,0(¥ 1P r00n) (1) | {1 sign(n — ﬁ)}(](pb(n’ﬁ)/A dn 6x106,,057 L. (11,10)
n

+00 n
- i/ dn (¥ ub®100n) ) FKup(m, m){ —isign(n — n)} /A diy (0x200, + W204,) 07 L (1.170)
- i

00

[T 6} 2
+i / it 5 Vyu®100n) DKo (1700, L 01D
which after integration leads to

h+

2ubwn

+ h;ybwn = _11 dﬁ [ (7;4b¢12wn) (ﬁ) (]([.lb(n’ﬁ)

00

+ G100 (M) (6x208, + ©20000) {76 K111} + G11000(M)0k1 6, 1Y 6 Ko7, 1)} ]
Y 1
- 1[ dn 6z, [(aakoyuw10wn)(77)59k07(ub(77,77) - 5(7#b¢10wn)(ﬁ)7(ub(n’m{aﬁkojyb(nsﬁ)}z] .
(105)
Using now the fact that
B v =0, and 9 K. = ~Koup(0. {00, Lup (1. MY (since 9 Lup(m.77) = 0),

Equation (105) can be recast as

h;,uhwn + hZ_,ubzun =
+00 +oo
- i/ di (Yup®120n) (1) Kup(n.7) — i/ diT $100n(1) (Ox200, + @20000) {7106 K (11,7 }

+00 2

+00 6
=i [ AT 1m0 1 @K1} = [ AT 00 Do),

o 00

from which we obtain, for open contours,

Q w A i 0
_27[_1 Z - (h;llbwn + hZﬂbwn) = _Lown¢12wn
4i ubeO b

2
o o k1l o2 o
= (Or209, o + W2000) Lo, nP100n = k100, 0L ownP110n = 739k0-£0wn¢10wn-
Following the same calculations developed for open contours, we obtain for closed contours
Q; ‘ﬂ#b + - o
- 27‘[— a (hZ;lbwn + h2/_tbwn) = _LCwn¢|2w”
gi ubec M
2
o o k1l 2 o
= (0x209; o + W2000) Ly P10wn — Ox1060, 0L n P11con — 739k0£0w,,¢10wn-

Substituting the last two equations into (70), we obtain

Q2)n¢12wn + Qllwn¢11wn + Q12wn¢10wn + Lz)ucwn(puwn

o o 1 o
+ (0206, + W2000) Loy cwn®10wn + k1060, L oL cwnPlion + Eeilagzkoﬁowwnflﬂow =0. (106)
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Observing that
i
07, A = A (9,%1 - Za,,ek,) ,
(see Remark 9 of Sec. III C 2) and using (63) and (64), we find that (106) is equivalent to

(a(-)ko-ﬁfgwn {¢10wn®k2 + 69k0¢10wn®i1 + gl¢10wn®kl} + gko-ﬁc@wnqﬁmwn@kl
+ Lfgwnd)lan + U)Zawo-l:?gwn¢10wn)Al =0. (107)

Differentiating twice (71) with respect to 6y and using (90), we get

0w
2 0
ngoljfgm@gko@()wn + 69k0£%wn¢lown = - (602 6w0£c€w,,¢10wn + L?wnaﬁko(ﬁlo‘“"

Substituting the previous equation and (96) into (107), we obtain

(-Efgwncﬁnwn + W20y Lg n®10wn = LG 0 00,0P100181Ok1 — L 1,100, 0P 1001 Ok2

9wy o o
-= { 302, 0y L yn 1000 + L%wnagk(ﬂlewn} ®i1) A =0.
Taking the Hermitian product of the last expression with 510&,,1, using (52) and (92) to see that
wr = w — wy+ O(e¥), and taking into account the condition (89), we finally obtain the Schrédinger
equation (99) or the Riccati equation (100). ]

So far we have assumed for simplicity the gyroaverage operator to be the identity. We now turn
to the more general case of a non-trivial gyroaverage operator.

Before summarizing the three stages of the asymptotic analysis done above to design an algo-
rithm for computing the eigenmodes, we present in Sec. IV E how to extend the previous asymptotic
analysis to the case including the gyroaverage operator.

E. Asymptotic analysis including a non-trivial gyroaverage operator

In this section we extend the previous asymptotic analysis to the case where we keep the
gyroaverage operator J,, (see (42)) in Equations (65)-(70).

Proposition 7. Let 1]y > 2. Then propositions 2-5 and 6 remain valid if we replace the linear
operator L3, = by the gyroaveraged linear operator (Lfgw) , which is defined by

(L%an) = (Qun) + (Lown) + {(Lewn)

where

11\,
<Q¢un> QOwn + 277_ Z ﬂprO,u ( a—_b)\Sow

L ubet ub M
o _ o~ o o _ o~ o ~
<‘£0wn> - Z ‘SOII‘EO,ubwn\SO#’ <‘£Cwn> - Z \SOM‘LCybmn\SOH’
ubeO ubeC

= Jo(lnlq = 1+ 8% - 9k0)2)
r £,

Here, s = q'r/q denotes the shear parameter, and J, the Bessel function of first kind of order zero.
Proof. The expansion of the gyroaverage operator 3. (given by (42)) in powers of €” is

Jp = J3(Ok0) + (B — 01006, Spu(Or0) + —(9k — Oko)* gkO\Sy(Qko) + ..

~ 1 ~
= Ju(Oko) + 1109, ,3u(0ko) + (szaekooy(9k0)+ EQilagkO\Sy(ﬁo)) + O(e). (108)
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We also have to perform the asymptotic expansion of J,(6xo). Using the scale ordering of Sec. II D
and the gyroaverage operator (42), we obtain
1 2r ) )
Ju(Oro)y(n,x) = o / d¢ exp(ia(OW (7 — (v /[Qir]) cos £, x — (v./€) sin ), (109)
0
where we can make the decomposition a/(g’) = ao(¢) + R(Z), with @¢(¢) = O(1), R(Z) = O(e),

ao({) = —5 (cos + s(n — Bko)sin{),

and s = ¢'r/q. Therefore, from (109) we obtain

2
:m%wmm=§l d¢ expliao( O (. x) + O(e).

Defining tan(8) = s(n — 6yo), the last equation becomes

l 2
SMW:EA dz expliao(?)) + O(e)
2r
= Zi / d¢ exp (inr—q%iw/l + 52(n — Oro)* cos(L — ﬂ)) +O(e)
= Jo ( '”r'q ;’; 1+ 52 - eko)z) +0(e)

1

= 30[1 + O(E)7
where Jj is the Bessel function of first kind of order zero. Let us remember that to be consistent
with the previous asymptotic analysis we can drop all the terms smaller than order €% with y < 1/2.

Therefore the asymptotic expansion (108) is still valid if we replace J,(6xo) by Jo, in (108). Let us
now introduce the following notation:

D1gwn = 30y¢10wn,
Di1wn = 30y¢llwn + 9k169k030y¢10wn,

~ ~ ~ 1 ~
D120, = J0uP120n + k100, ;304 P1100n + (0k269k0\50/1 + 5921532,(0;80,1) D 10wns

and for j € {0,1,2}, ht , [®1jwn] = w7, [P1jwn] + (qi/mi)®P1jwn. The bracket notation is used
m wn jubwn

to emphasize that for j € {0,1,2}, the perturbed Hamiltonians h*ﬂbwn[(Dl,wn] are functionals of

@, wWhich are obtained by solving respectively (65), (67), and (69). Substituting the asymptotic

expansions (49)-(51), (53)-(55), and (108) into (45) and (46), we get, at the zeroth order, the system

hi
+ Oubwn + qi + (DIOu)n
. FME L Do — L =0, 110
LOubwn( azb ) Opbwn > 10 m; LO#bwn( aZb ) ( )
Q, 1 1
QOwn + 2 — Z ﬂﬂb\SO[J {_ - _} Sou ¢10wn
qi ubet aub a[lb
ht hy
2y mo,,( —) i
i ube@ b b

at the first order,

=+

h
+ lubwn + qdi -+ (Dl lon
LOubwn( at + MOybwnq)“w" - m.‘LO;lbwn T
i

ub a,ub

h*
+ Opbwn + di p+ T
+ ‘El_ybwn( Cl:i ) + Ml_ybwnq)IOwn - %‘El_ﬂbwn (CIT> =0, (1 12)

ub ub
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Q; 1
(QOwn + 271'_.1 Z ﬂbeOy {aT - Q_}S()y)(p]lwn

gi ubee ub ub

- 1 1 - - 1 1 -
09,4304 {aT - aT} Sop + Jou {aT - T} 0, 4 S0u

) ¢10wn

Q;
+ (Qhu,, + 271'—'9k1 Z ﬂﬂb

a
4i ubeg ub Hb ub ub
+ - + -
Q[ hl,ubwn hlybwn Q[ hOthn hOybwn
= 27T—_ Z AubSou P T T +2ﬂf9k1 Z ﬂybaﬁkOSOy . s >
4i ube€ ub ub gi ube€ ub ub

(113)

and at the second order,

hs h

+ 2ubwn + qdi px @120n + lubwn +

‘EOybwn a* + MO/wan(Dlzw" - %‘Eollbwn a* + ‘El/,tbwn a* + Mlybwnq)l lwn
ub ! ub ub

hi

qi s Di1wn N Oubwn . qi . Diown |

- E‘glphwn< aib ) + LZuhwn( aib ) + MZ,ubwn(me" - E‘EZ;thwn( aib ) =0, (114)
u 2 u

Q; - 1 I |
(QOwn + 277_ Z ﬂbeO,u {GT - a__b} st,u) ¢12wn

qi ubee ub H

) ¢11wn

- 1 1 |- - 1 1 -
O, S0 il GUUTR AN TR B 0, S0
ub ub ub ub

~ 1 1| - 1 1 N
09,4904 - T Sou + Sou o T 0, 0 S0u
ub ub ub ub

Q;
+(Q1wn+2ﬂ'—'9k1 Z Aub

qi ube€

Q;
+ (Qan + 27T—‘0k2 Z ﬂﬂb

4i ube6

Q. 6;
S e O

1 1 1 1
2 ~ o~ ~ 2 ~
agkO\SOp {aT - aT} Sog t Sop {aT - T} agkO\SOy

qi ubet ub ub ub b
+ 200, 130 P O pd0u | | P100n =
ub ub
+ - + -
Q; B3 P Q; L R
2n— Z Apubou #+ e e B S8 Z A0, 1 Sou N+ e
qi a a qi a a
b ubese Hb ub ubee Hb ub

Q,‘ ~ 1 2 42 ~ h(-;,uha)n h(;ybwn
+2n— Z Aup | 0x200, gS0u + Eé’kl@gkodo;l — ——
gi ube€ ub ub

). (115)

We observe that (110), (112) and (114) have respectively the same structure as (65), (67), and (69).
The only differences come from the potential function. Therefore, by solving (110), (112), and
(114), we obtain the same results (73), (75), (77), (80), and (101), provided we replace ¢, by
Dy for j € {0,1,2}. From (73), (75), (77), (80), and (101), and observing that h;f'ﬂbwn[cl)ljwn] are
linear functionals of ®,,, for j € {0,1,2}, we obtain, after some algebra,

Boubeon @10wn) = 15,4100 S0P 100n]s (116)
B ibon @rion] = 1 0nlS0p@110n] + 017G, 0,0 0610 S0uP100n]; (117)
h_ziﬂhwn[(DIan] = h;uhwn[SO;l(ﬁlan] + lehliﬂbwn[69k030p¢llwn]

~ 1 ~
+0k215, 10 [ 0010 S0 B1000n ] + Egi1h(j):”bwn[692k0\§0,u¢10wn]- (118)
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Substituting (116) into (111), the zeroth-order integral equation becomes

<‘£36wn> ¢10wn = 0’ with <‘£f€wn> = <Q2)n> + <‘£00wn> + <'£z’wn> .
The operators (Q¢),,), (LS ), and (L2, Y are defined by

Own Cwn

o (1 1\
(sz> = QOwn + 271'— Z ﬂyb\SOy ((IT - F)QOM’

' ubee nb ub

<‘£?)wn> = Z Soﬂ‘E?),ubwnSO#’ <‘£Z’wn> = Z SO#‘EZ’ybwnSOﬂ'

ubeO ubeC

Substituting (116) and (117) into (113), the first-order equation becomes, after some algebra,

i1
<‘£‘O€a)n> ¢llmn + (eklagk() <‘£?€wn> + “)lawo <‘£:€wn> - %n_q/axekoagzkoaow”) ¢10¢un =0.

Since the previous equation has the same structure as (76), all the conclusions inferred from solving
(76) in Sec. IV C remain valid and identical. Substituting (116)-(118) into (115), the second-order
equation becomes, after some algebra,

1
(5ak0 (L) {81001Ok2 + B9, (1000 OF | + 81B100nOr1} + §3§k0<£3@wn> $100n097,
+ <‘£S€wn> 1200 + wzawo <-£‘o@wn> ¢10wn>Al =0.

Since the last equation has the same structure as (107), all the conclusions inferred from solving
(107) in Sec. IV D also remain valid and identical. Particularly, we obtain the same Schrédinger
equation (99) or Riccati equation (100). O

F. An algorithm for solving the eigenvalue problem

We now summarize the results of the zeroth-, first-, and second-order problems of the above
asymptotic analysis in order to design an algorithm for solving the eigenvalue problem.

(a) First for any fixed value g. € [¢min, gmax], We have to solve the eigenvalue problem associated
to the one-dimensional integral operator of Proposition 7, i.e.,

(L% o) B100n =0, (119)

for different values of the parameter 6, to reconstruct the local eigenfrequency wo(gs,60x0)-
Knowing wo(q., ko), we can determine the value of the turning point i1 for which
0o, (w0(gs, Oko,7) = 0. From the §-symmetry of the equilibrium and given that the toroidal-
ITG instability has maximum amplitude on the low-field side, we may expect 6xo,7 to be
close to the origin, thus limiting our search.

(b) Once the turning point 6y 7 is known for every value ¢ € [¢min, gmax], We have to solve the
eigenvalue problem (119) to reconstruct the local eigenfrequency wo(q,0r0,7) and get the
eigenfunction ¢, Which gives the slow poloidal 8-envelope of the eigenmode.

(c) Once the local eigenfrequency wo(q,8ko,r) is obtained, we can solve (numerically) the
non-self-adjoint Schrodinger equation (99): this consists of finding 4, i.e., the set of w € C
such that the kernel of (99) is non-trivial or empty. The set &, constitutes the point spectrum
of our problem, while the associated eigenvectors give the slow radial g-envelope A; of the
global eigenmode.

(d) Then, using the ballooning representation (36) (see Sec. III C 2), in which we replace $wn by
®10wn> and O by o1 + 01, or exp(in f dq 6y) by exp(inq0ro,1)A1(q), we obtain the desired
three-dimensional eigenmode ¢(z,r).

Finally the heart of the problem is to solve an eigenvalue problem for the one-dimensional linear
integral operator (119).



081518-39 N. Besse and D. Coulette J. Math. Phys. 57, 081518 (2016)

V. SPECTRAL ANALYSIS

In this section, we perform the spectral analysis for the one-dimensional non-self-adjoint
Schrodinger-type operator and for the nested one-dimensional Fredholm-type integral operator with
a nonlinear dependency of the eigenparameter.

A. The schrodinger-type radial envelope equation

We aim at giving some general spectral properties of the Schrodinger equation (99) and to
present a particular resolution of (99) in the case of two closely spaced simple turning points under
some additional assumptions on the local eigenfrequency wy. We consider the non-self-adjoint
Schrodinger equation (99), recast as the boundary value problem with homogeneous Dirichlet
conditions:

T(w)A; =0, A1(gmin) =0, A1(gmax) = 0. (120)
Here, we use the following notation:

2

9 - ,0
Tw) = 55 ~mQq.0). Qg.0) = @ = wil4,0k07)

- eC, (121)
%agkowo(q ,0ko,7)
where qmax = q(rmax) and qmin = q(rmin)-

1. General case

Let us first give some general spectral properties of the non-self-adjoint boundary value prob-
lem (120), which can also be seen as a non-self-adjoint Sturm-Liouville problem. We have the
following spectral theorem.

Theorem 1. Let us assume that the complex radial functions g — wo(q,0k0,r) and q —
Bgzkowo(q, Oro.1) are such that

1
(92—’ azwo € Ll([qmin,Qmax];C)
0k00 99,0

Let Q be any open connected subset of C and let the toroidal number n € Z be fixed. Then either

(i) T Nw) exists fornow € Qand Ker T # {0}, Yw € Q.

(ii) T Nw) exists forall w € Qand Ker T = {0}, Yw € Q.

(iii) T~ Yw) exists for all w € Q\S,, where &,, is a discrete subset of Q constituted of an (infinite
or finite) countable number of isolated points (i.e., a set which has no accumulation point
in Q and contains a finite number of singular points — poles — in each compact subset of
Q). In this case w — T~ (w) is a meromorphic operator-valued function in Q, analytic in
Q\Y,,, and the residues at the poles are finite rank operators such that Ker T(w) # {0} for
w € &P ,. Therefore, if w € S, the boundary value problem (120) has at most two linearly
independent solutions which are not zero almost everywhere. More precisely, if we &,, and
A, € Ker T(w) then A} € W>!' N W([gmin» gmax]; C) and dim Ker T(w) = 1.

Proof. Under assumptions of Theorem 1, items (i)-(iii) follow from Lemma 3.2.1 to
Lemma 3.2.4 of Chapter 3 of Ref. 107. Particularly, the fact that dim Ker 7'(w) = 1 comes from
Lemma 3.2.2 of Chapter 3 of Ref. 107 and the homogeneous Dirichlet boundary condition of the
problem (120). In addition, the meromorphic property of the operator-valued function w +— T~ (w)
and the finite rank residues can be deduced from the Laurent series expansion of the Green function
of the non-self-adjoint boundary value problem (120) given by Theorem 3.8.1 of Chapter 3 of
Ref. 107. O

Remark 15. Contrary to the spectral theory of self-adjoint Schrodinger (or Sturm-Liouville)
operators, which is nowadays well understood and established, the non-self-adjoint theory (with
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complex-valued potential) is in its infancy and no general results concerning the asymptotic behav-
iour (for large n) of the spectrum of (120) are known.?%%

Remark 16. In the case where (992’ wo € R (negative real), the spectral analysis of the non-self-
adjoint Schrodinger (or Sturm-Liouville) operator (120) has been performed in Refs. 18, 85, and
107. Let us also point out the pioneering works of Sims*>=* and Glazman® (§35 & §66) concerning
the spectral analysis of Schrodinger operators with complex potentials.

2. Case of two closely spaced simple turning points

Let us first introduce some notation. We set z = ¢ — o with gg = g(r¢) and where ry is a refer-
ence rational magnetic flux surface between rpi, and rp,y, say at the middle radius. We use the
notation 9w = 6§wo(q,0k9,r)\q=qo, a.nd 65§§k0w8 = Gjﬁgkowo(q,eko,r)|q=610, for 0 < k < 3. In the
case of two closely spaced simple turning points we have the following

Theorem 2. Let us assume that

|z/qol < 1, wo,az woE (63([‘]mianmax]’C)7

010
0 0 2.0 2 0 k‘li(gk()g 3k (122)
04wy =0, wy#0, J,w,#0, ngoa)o +0, 07 o0 =O0(|z/qol”™"),k = 1,2.
00?0

Then the eigenvalue problem associated to the non-self-adjoint Schrodinger boundary value prob-
lem (120) reduces to the solution of the algebraic dispersion equation D(w) = 0, where

D(w) = U(a(n, wg’w)’3min)v(a(n:w8’w)’3max) - U(a(n’wg»w)»Smax)V(a(n’ wg’w)73min)' (123)

Here, the functions U(-,-) and V(-,-) are the linearly independent parabolic cylinder functions. We
also use the following definitions

0 2 0y\1/4
Smin = dmin — 40 3 _ 4max — 40 q= Cl(}’l wo U_)) _ n(wo - w) _ ( 1 a(-}koo‘)0>
min — — s dmax — ~— > - s Wy - m, 0= —2 5 0 .
20 20 (204wy0;, wy) / 2n* Olw,

(124)

Proof. We first set 0(2) = 0O(qo + z) and Ai(z) = Ay(go + 7). Using assumptions (122), and the
Taylor series expansion we obtain

0

0(z)= 22

2
—w+ 502
——2 4 0(1z/q0l).
9,20
Then, the non-self-adjoint boundary value problem (120) is approximated to third order, for small
z/qo, by

(aZZ - FQV)AVI =0, A"](me) =0, Avl(zmax) =0,
where Zmin = gmin — g0 a1d Zmax = gmax — qo- In the previous equation, making the change of vari-
ables z = 793, where zg # 0 is a complex constant given by (124), and setting A(3) = Ay(z), we
finally obtain the following Weber equation:
2
3
63214 - (a + Z) A=0, AGmin) =0, AGmax) =0, (125)
With 3min, 3max, and a given by (124). It is well known' that a fundamental system of solutions for
the Weber equation (125) is formed by the two linearly independent parabolic cylinder functions
U(a,3) and V(a,3). Therefore a solution of the boundary value problem (125) is given by a linear
combination of the functions U(a,3) and V(a,3) for specific values of the global eigenvalue w such
that the boundary conditions A(3yin) = 0 and A(3max) = O are satisfied. Now, using the Wronskian
W{U(a,3),V(a,3)} = V2/x (see Ref. 1), and Lemma 3.2.2 of Chapter 3 of Ref. 107, we obtain that
the values w, for which the boundary conditions of equation (125) are satisfied, are solutions of the
dispersion or characteristic equation D(w) = 0, given by equation (123) of Theorem 2. O
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Remark 17. In order to find the solutions of the dispersion equation D(w) = 0, we may use the
asymptotic approximations (see Ref. 1) of U(a,3) and V(a,3) since |3min| = O(n'/?), |3max| = O(n'/?)
(using (124)), and |a| = O(1) (see Remark 18) or perform directly a numerical resolution.

Remark 18. Actually, we may expect that w — ‘”o O(1/n). Indeed, let us choose a symmetric
approximation of the functions U(a,3) and V(a,3) given, respectlvely, by exp(—32/4) and exp(3*/4).
We then take A(3) ~ exp(—s32/4) where s = sign(Re (62 (‘)ko )1/ 2) such that the radial envelope

approximation Ay(q) = exp(—sn(ﬁéwo/ﬂgkowo)l/ 2/(2V2 )(q q0)?) has its modulus decreasing when
lg — qo| increases. Substituting the approximation A(3) ~ exp(—s32/4) into (125), we obtain

1 2,042 172
w = “)0 + 2\/5—(6(1 00, © )
which means that w — “)0 O(1/n) and thus using (124), |a] = O(1). Let us now estimate how
close the two simple turning points {qr,}i=1» are. Since w — wy = O(€?) with y < 1/2, using the
following Taylor expansion:

w — wlgr;) = w — W) + wo(qo) — wolgr,) = O(1/n) + (qo — qr,)04wo(qr,) + O(qo — q1,)*),

we find that the two simple turning points are separated by a distance Aq smaller than or equal to
n~awithv =2y < 1, if d,wo(qr;) # 0. This estimation must be compared with the radial extension
a priori estimate of the global eigenmode from the phase factor n f dq 01 = O(1) of the eikonal
form (34). Since 01| = O(€”), we get Aqg = O(n"a) with o = 1 —y > 1/2. These estimations are
in good agreement and equal if we choose y = 1/3 (v = o =2/3). Taking v = 1/3 leads to a radial
extension of the eigenmode of order n™*'*a.

B. The nested Fredholm-type integral operator

In this section we discuss the solution of the linear homogeneous Fredholm’s integral equa-
tion (Lfgwn) ¢ = 0, whose kernel depends nonlinearly on the eigenvalue parameter wy. Although
the theory of linear Fredholm integral equations with linear eigenparameter dependence is well
known;?/02-0%120569,0%05,575,99,02 in the case of a nonlinear eigenvalue parameter dependence, and
more generally for nonlinear eigenvalue problems, the theory is far from being complete despite a
lot of analytical®7:68:52:53,36,103,104.86.87.25.34 4 q numerical®+>7-!1°! developments. In order to use the
theory of the linear Fredholm’s integral equation with linear eigenparameter dependence, we may,
by means of some transformations, increase the dimension of the space of unknowns and convert
the nonlinear eigenvalue problem into a generalized (linear) eigenvalue problem. Using appropriate
changes of variables and taking into account only open contours, we are able to linearize the
nonlinear eigenvalue problem <.£f6wn> ¢ = 0 (see Remark 23). For closed contours, nonlinear terms
with respect to the eigenfrequency still remain, and it seems difficult to get rid of them. Another
point of view for considering the problem (LSGM) ¢ = 0 is the perturbation theory of linear opera-
tors depending continuously on a parameter, for instance, the eigenfrequency wy.?'"*® We first give
some properties of the integral operator, next consider the case of only open contours, and finally
deal with the case of both open and closed contours.

1. Basic properties of the integral operator

The integral equation (Lfgwn)qﬁ = 0, satisfied by the electrical potential ¢ = @10, can be
rewritten as

o(0) = / A K (0.7 00)8(7) = Op(E)p(6) = (Op(Ko) + Op(K)#(®),  (126)
where

K (0,75 w0) = Ko6,1; wo) + Ka(O,m500) = D Koun(0,m500) + | K05 w0),
ubeO ubeC
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Here, the kernels Ko,,; and K¢, are defined by

' Qi A Jou(6) J0,(n) (e qR
Eoun(6.11:00) = =27 5.0) ayn) a,,b(m( Too by *”b(“’O)"“”) =

exp (isign(n — 0)Z(0,m5w0)),  (127)

~ ~ 21 e (6
Keun(0,m; wo) = Z ZﬂQ Aub 30u(0) J0.(7) (97 aLﬁb( ) ( ¢ qR (wo)a? )(77)
Cub LAV 0) — * b 0
a = qi Q(Q) ayb(g) aub(n) sin Il‘h(gLyb’ lt;b’ a)()) eO b H Hb

{cosfﬂb(HL ool wo)cosfﬂb(GL K a)o)]l +(’ (77)

+ cosfpb(GL o1l wo)cosf,,b(HL b,@ wo)Jl - (n)} (128)
where
~2
Q:(6) J30,.(6)
0(60) = Q°(0) +4r— = D Auv s,
qi ube‘@ Aub
eTn;o lol/l

o _ v 2
00 = {1+ st

Jou(@) = Jo (@ Q?(Le) 1+ 5% - 9ko)2) ,

1,p(0,m; wo) = /H dn [wo — Waup() + iweup()] (

),

bpaup

l

Teo : 1
Q% (0 wo) = {w*#b(n)aub(n) + —T[wo = Waun(n) + lwoub(ﬂ)]} '

b a
Wapb(1) = ;(:) 5 + (QLI’) (n)] [q'(n — ko) sinm + Q(U)@] .
b,T,
w*ph(n) m { [(qa aub)(r/) - q (7] gk())ana,ub(n)]
+a0r = 6oy sinn + a0p =L (242) @}
b,
Wopp(m) = =2 [sm n0xaup(n) — —6 a,ub(n)] ( L )( ),

a,(6) = aZb\/l + Ap(cos@ - 1), for § €] -mal, if (wb) €O,
or 6 E] — QLIJb,QLMb[, if (,u,b) e C,
Hiﬂb =07, + 210, L €Z, 01, = |arccos (1 = A,p™")],

Here, the quantities Q;(0) = ¢;B(6)/m;, R(0) = Ry+rcos8, B(8) = By(l +r/Rycos)!
V1 +72/[qR(O)]? = Bo(1 —r/Rycos0) + O(€2), b, = 1/y/T+r2[qRO)? = 1 + O(e?), a(6) =
alr* + ¢°R(0)’1/[qRO) = q(r) + Oez). s =4q'r/q, a, = a,(r), nio=nio(r), Tio = Tio(r), and
T,o = T.o(r) are given quantities. We assume that n;g, T;o > 0, and that n;o(r), Tio(r), ¢(r), and
s(r) are regular enough typically in the space 6" ([/min "max]) With m > 1. Let us now make two
important remarks.

Remark 19. First we can straightforwardly show that (i) the kernel X(0,1n; wy) is 2n-periodic
in Oy, that is if we add 2r to 0y and make the change of variables n = n’ + 2m and 6 = 6’ + 2n,
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thanks to 0-periodicity of equilibrium quantities, we obtain the same kernel K in the variables n’
and 0'; (ii) the spectrum of the integral operator (126) is symmetric with respect to the sign of the
toroidal number n; that is, if we change n into —n, then we obtain the same integral operator (126)
where wy = w?ﬁ + iu)g and ¢ are changed, respectively, into —a)g{ + iwg and ¢* in (126).

Remark 20. If we choose the approximation B = ByR/R + O(€Z), then we get 8,B = Br sin
n/R+ O(€2) and 0,B = —Bcosn/R + O(€2). Using this approximation and the approximated

equilibrium contours (28), we obtain the formula

e nby, q d B(r,0
T OQ*,ubaub = —(wo +iwopp) + B‘p T ( + %) (129)

2 m;

- 1-i 22 B2 Gino
m; «o rB 1an S dr R2B sin2n

o2
_a, b, ( T ) d (a,,b . ,uB(r,O)) 2b, us
whose r.h.s. is bounded with respect to the n-variable. Without this approximation (e/ Teo)Q*#bai b
is linear in n and thus unbounded.

We now intend to study the spectral properties of the operator I — Op(K) defined by (126). For
this, we will state few lemmas, propositions, and theorems. Let us begin with the following lemma.

Lemma 1. Let us suppose that {a;b}ﬂbecg € %l([rmm,rmax]) are bounded from below and
above, i.e., there exist two constants a_. >0 and ag,,, > 0 such that a;. < a”b < apax for all
(u,b) € 6. Then,

max

1 Y
oy S L®. 70, V(nb) e 6. (130)
i Rw
/ ! dn(q <"”’)(77):0, Y(u,b)e C, V€ Z, (131)
¢ bcp aub
no+2n R w,
/ dn (q—“’””)m):o, Y(u,b) € 0, VnoeR, (132)
0 by app

and

<C<oo, Vm,n’€eR, Y(u,b)eO. (133)

exp (— sign(n’ — 1) / de (qR wo”bb) (9))
b, ay

Proof. Since we have supposed that {a; »}ubee are continuous with respect to the r-variable,

bounded from below and above we get 2ryintminBo/ (m,-afnzaXRO) < Apb £ 2rmaxtmaxBo/ (miafnszO).
As a consequence, we obviously have, for all fixed r € [rmin, rmax] and for all (u,b) € O, that
1/au € Lloc(Rg). The only singular points are the limit angles Gi’lfb where a,;, vanishes, for all

(u,b) € C. For all (u,b) € C and for all fixed r € [Fpin, 'max], in the neighborhood (V(G ) of GL b
the closed contour a,,;, behaves as

1 1 + + -2
— = (w166, 700 (w5, 70R)) (134)
Aub =07 ") Lyt

which is an integrable algebraic singularity in 6 provided that A,;, > 1/2. Hence 1/a,;, € LIOC(RQ)
for 0 <y < 2, and for all (u,b) € C (130) is stated. Let us now look at the term gRw.u»/(aupby),
which can be written as

R w,
(452 ) = -3 [sinndran) - “ 0,000
o Ay
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4 sinn_g ruBy
( &)+ cosn),
()m

Q au(n ) i/2

g sinp 2 . uBo
- 0a’, + ——2cosn—-1)]|.
o a,,b(n)( it Romgfa 2O ))

From the previous equation, for all (i, b) € C, we observe that gRw..p/(aupb,) is odd with respect
to the n-variable and thus, by periodicity, we get (131). Now for all (u,b) € O, we observe that
qRwoub/(aupby) is periodic with a period of at most 2. Moreover, using the change of variables in

n given by u = aﬂb + é)”T%(cosn — 1), we obtain

/7 dg(quoﬂb)( )_ _2_q&m ayb/z
n

b¢ Aub Q[ r ,UBO
12 0xa,
2 ruBy , ) 1 x4, 2 uBy
a’, + cosn’'—1 — =2 cos 1
[( w0 ¥ Ry ST D (3r @,  3Ryma Hb/z( 7=
12 dyac,
02 ’"llBO l X ub 2 l,l ,
- -] (=-2 )| =gt -
(a,,b  Rom, /z(cosn )) o F 3Rema /2(Cosn )| = g@) - g,
ub ub

where 17 — g(n) is a 2m-periodic function. Therefore, we get (132) from which we deduce (133). O

2. Case of only open contours

We first consider the case of only open contours. The case of only open contours is interesting
in itself, since with only open contours, we can take into account the behaviour of both passing
particles (open trajectories) and some trapped particles (closed trajectories). The main theorems of
this section are Theorem 3 (for the spectrum in C*) and Theorem 4 (for the spectrum in C), which
are established by using Proposition 8 and Proposition 9.

We start with a proposition stating that the operator Op(Kyp) is a bounded linear Hilbert-
Schmidt operator in the Hilbert space L%(R). Let us recall that if a Hilbert-Schmidt operator is
compact — and thus behaves as a finite-dimensional operator — the converse is false. In particular,
the singular values of a Hilbert-Schmidt operator are square summable. Let us remark that for open
contours the parameter y is non-negative. Let us also introduce two integers ¢ and o, such that

] 0 if there exists a y such that p = 0,
1 if u > Oforall y,

and
_ |0 if the approximation (129) of Remark 20 is assumed,
|1 if the approximation (129) of Remark 10 is not assumed.

Proposition 8. Under the assumptions of Lemma 1, for all values of wy in the upper half-
complex plane (Imwqy > 0), the operator Op(Kop) is a Hilbert-Schmidt operator and thus compact
on L*(R). Defining C* = C\{wy € C|Imwy < 0}, we find that Op(Ko)(wy) : C* > L(L?) is an
analytic operator-valued function such that Op(Ko)(wy) is compact for each wg € C*.

Proof. Let us show that the operator Op(K) belongs to the class of Hilbert-Schmidt operators
for all values of wy in the upper half-complex plane (Im wgy > 0), in other words that the kernel
Ko € LAR xR), i.e.,

//lKO(Q,n;w0)|2d6’d77 < o0, Ywq such that Imwq > 0.
RJR

From definition (127), taking into account Remark 20, and using (133) of Lemma 1, we can recast

KO,ub as
n R
/ (bq )(n’)dn’),
[ wAub

1+ D) Jou(6) Jou(n) .
Koupr(0,1; w0) = Boﬂb(e,n;w)( D a #2 exp |iwo

00)  auw®) aup(n)
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where Bo,5(0,1; wo) € L*(R,; X Ry). Using the property 0 < a,j, < oo for (u,b) € O, and (133) we
obtain that, for all (u, b) € O, there exists a constant C = C(u, b, wy) such that

(1 + >~ 2 ) . /'7 qR
K 0,6(0,1; wo)|* < C——= T (O)|3 exp (2i "Y'
Koun(8,m; wo)| 1+ 1077 B0, (0)171J0,. ()]~ exp | 2iwo L \boan (n")dn
Using the change of variables 77 = i — 6 into (135), and the asymptotic property Jo.(17) = O(1/+/|7])
as 7 — +oo, we then obtain that there exist two constants Cy; = Cy(u, b,wq) and C, = Co(u, b) such
that

). (135)

[K0ub(6:7; 00)l* < Co(1+ [61)27272(1 + 177 + 6))7 /% exp (=Calm wolff]) -

Hence |Ko(6,1; wo)|* € L'(R,, X Rg) as long as Im wy > 0, which concludes the proof. From expres-
sion (127), analyticity of Op(Kp)(w) with respect to wy is obvious since functionals of wy involve
only products of polynomials and exponential of wy. O

Remark 21. The operator Op(Ko) belongs to the trace class, i.e., Tr (Op(Kp)) < oo, since the
kernel Ko is such that [Ko(n,n;wo)| € L\(R,;). L'-integrability of the kernel Ko results from the
fact that J0,(n) = O(l/\/W) asn — xoo, if 1 +6 — o > 0. Therefore, the classical Fredholm the-
ory37/63.84.19.62,65.64,66.97.94.46.48.95.83 1h0 so-called 1st, 2nd, and 3rd theorems of Fredholm) applies
to the operator Op(Kp). Eigenvalues of the operator I — Op(Kp) are the zeros of the Fredholm
determinant defined as a series of determinant of infinite matrices (which can be rewritten in term
of traces only of the operators Op(Ko) and its higher iterates) while the eigenfunctions can be
computed using higher Fredholm minors. If 6 = 0 (i.e., there exists a value of the parameter u such
that pu =0 or Jo, = 1: no gyroaveraging) and o = 1, then the operator Op(Ko) is no more in the
trace class. Nevertheless, the Fredholm theory still holds, provided the classical Fredholm determi-
nants are replaced by regularized ones. The latter are the so-called Hilbert-Carleman determinants
of infinite matrices, setting to zero the main diagonal terms (where otherwise would appear the
meaningless trace of the operator),6319-62:9495,31.47.48,50

As a consequence of Proposition 8, we get the analytic Fredholm theorem for the open-contour
operator in C*.

Theorem 3. Let us suppose that assumptions of Lemma 1 are satisfied. Let Q be any open
connected subset of C*. Then either

(i) I — Op(Kyp) is nowhere invertible in Q, or

(i) the resolvent (I — Op(Kp))™! exists for all wy € Q\F, where & is a discrete subset of Q
constituted of a countable number of isolated points (i.e., a set which has no limit points in
Q, and contains a finite number of singular points — poles — in each compact subset of Q).
In the latter case, the resolvent (I — Op(Ko))™! is meromorphic in Q, analytic in Q\¥, and
the residues at the poles are finite rank operators (i.e., the invariant algebraic eigenspaces
are finite dimensional). If wg € &, then the equations (I — Op(Ko)(wo))¢ =0, and (I —
Op(Kop)*(wo))¢ = 0 have the same number of linearly independent solutions; these are non-
zero in L*(R), and hence almost everywhere. Moreover, the poles of (I — Op(Ko)(wo, x))™! in
the wo-complex plane depend continuously on x and can appear and disappear only at the
boundary of Q.

Proof. From Proposition 8 we infer that Op(Ko)(wp) : Q — $£(L?) is an analytic operator-
valued function, such that Op(Kp)(wo) is compact for each wqy € Q. This, together with the an-
alytic Fredholm theorem such as Theorem VI.14 of Ref. 89 or Theorem 1 of Ref. 97 implies
Theorem 3. The last assertion of Theorem 3 is a consequence of Theorem 3 of Ref. 96 and the
fact that Op(Ko)(wo,x) is a family of compact operators jointly continuous in (wo,x) for each
(wo,x) € Q X [Xmin» Xmax]- ]

We notice that Theorem 3 only asserts existence of eigenmodes for Im wq > 0, which is the case
that interests us most; indeed we aim at characterizing the plasma micro-instabilities driven by den-
sity and temperature gradients. Nevertheless, we would like to extend the kernel K of the integral
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equation (126) to eigenfrequencies of the non-positive imaginary part. The only obstacle for this
comes from the divergent part of integral (126), associated to the kernel Kp; indeed for Imwy < 0
the exponential term in (127) is not integrable. In order to extend Theorem 3, we need to make an
analytic continuation of the operator Op(K), which is the purpose of the next proposition. We will
find that the analytic continuation of the kernel Ko(w) with wg € C* to the half wy-complex plane
C™ is Ko(wy), where (-)* denotes complex conjugation. If we consider only open contours, this
means that the spectrum will be symmetric with respect to the real axis, and that the eigenmodes
with eigenfrequency of negative imaginary part are the same as those with the eigenfrequency of
positive imaginary part, but for negative time. Here, the analytic continuation allows us to recover
time reversibility broken by the way boundary conditions were chosen. Indeed, in Sec. IV B, when
integrating the perturbed Hamiltonian i (see (73)) for open contours, we have two possible

N .. Oubwn . . . .
choices for the boundary conditions. The first choice, which has been done in Sec. IV B, consists of

taking 9 = —oo (resp. 179 = +o0) for hgﬂ bon (TESD- haﬂ pon)- Therefore, the kernel Ko is integrable
only for wy € C*. The second choice consists of taking 179 = +co (resp. 179 = —oo) for hgﬂ beon (TESD-
haﬂ bon)- Therefore, the kernel Ko is integrable only for wp € C™. As a consequence, damped eigen-

modes, which must be seen as resonances or pseudo-eigenmodes, are described here by mixing of
real frequencies (as a sum of all eigenmodes with real eigenfrequency wy). This is usual in waterbag
descriptions'” (where Landau damping is obtained as sums of plane waves with real frequencies)
and is reminiscent of the Van Kampen-Case resolution of the eigenvalue problem.!%>-20

Before dealing with analytic continuation, let us look at the case where the frequency wy
is purely real. The kernel Ko is then no more integrable because of the loss of the exponential
decay property. Nevertheless, using a well-suited change of unknowns, we can retrieve an integrable
kernel. For this purpose, we introduce the following Hilbert space:

Li®) = {fin e Rims f) € R st [z = (D) gy, <o)

where the scalar product (-, ), 25, is defined by

(f-82m) = /R Fmgmin)dn.

Here, the weight function 7 — «(77) is given by

«() = (1 + [P, ae(l“S z 3“5).

+ =, —
4 2 4

Making the change of unknowns ¢, = ¢k, we can rewrite the integral equation (126) as

(136)

6,(6) = / dn K (6.1 00)(n) = Op(K ) (6).

where
K (8,15 wo) = Ko(6,1; wo) + Kc(0,m; wo) = Z Koun(8,1; wo) + Z Keun(0,m; wo)
ubeo ubeC
and
k(0 x(0
Koun(0,m; wo) = Koyb(g,fl;wo)% and  Ke,.p(0,1; wo) = Kc;lb(e,ﬂ;wo)%n;

The extension to real frequency wy relies on the following lemma.

Lemma 2. Proposition 8 and Theorem 3 can be extended to purely real frequencies wy. In other
words, the operator-valued function Op(Ko)(wp) : C* U R +— L(LA(R)) (respectively, Op(Ko)(wo)
: CtUR +— L(L*(R))) constitutes a Hilbert-Schmidt family, hence a family of compact operators
on the Hilbert space L2(R) (resp. L(R)).

Proof. Using the previous new formulation and estimate (135), we observe that the kernel
Ko € LR, x Ry) for wy € C* UR. The properties of the kernel K¢ will be studied later. Using
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the change of variables 77 = n — 6 in (135), and the asymptotic property Jo.(n7) = O(1/+/|7]) as
n — +oo, we find that there exist two constants C; = Cy(u, b,wo) and C; = Co(u, b) such that

1K 0up(0,17; wo)|* < Ci(1 + |01)727°/229(1 + [ + 6172 exp (-C Imwylii]),  (137)

and thus |[Ko(6,1;wo)*> € LR, X Ry) for wp € C*UR, as long as (1-6)/4+0/2<a <3+
6)/4. O

Analytic continuation to the lower half-complex plane relies on the following proposition.

Proposition 9. Let us set C~ = C\{wp € C|Imwy > 0} and let w] be the complex conju-
gate of wo. Then, for every wy € C7, the operator Op(Ko)(w() (resp. Op(Ko)(w()) constitutes
an analytic continuation of the operator Op(Ko)(@o) (resp. Op(Kp)(@y)) for &g € C*. Moreover
Op(Ko)(wy) : C +— £ (L?) (resp. Op(Ko)(wy) : C +— L(L2)) is an analytic operator-valued
function such that Op(Ko)(w() (resp. Op(Ko)(wy)) is a Hilbert-Schmidt operator, hence compact
on L*(R) (resp. LX(R)) for each wy € C~.

Proof. To show that the operator Op(Ko)(wg) with wg € C™ is an analytic continuation of the
operator Op(Kop)(wo) with wy € C*, we write the integral equation (126) (restricted to the kernel
Ko) in new variables, with new unknowns. Let us define, for all (u,b) € O,

T 2n
T()yb = / dn ( )(77) and Woub = .
x aupby Toub

Since {a,p > 0}(u,p)c0, We define the monotone and invertible change of variables

n
N« 0u(1m), () = wopb/o dn’ (
Let us then define for all (u,b) € O,
n R 77 ’ qR ’ r
Quup == | dn’ ) wapp(m), and Q. =~ [ dn ") Woun(n’).
0 a#hb‘p 0 a”bbw

Now we introduce the unknowns ¥,,+(6,,5) defined as

wybi(g,ub) = lIl,ubi(n(gyb))

= exp (Fi [ Quaup(1(0up)) — 1Qopun(11(01))]) (

)(77)

aﬂbb

Qa2 4,) 10D (138)
eO H2 K
Let us suppose that ¢,,+ € L(Ry,,). Since Jo. (1) = O(1/+/Inl) as n — +co, and a2 »Quun(1) <
(1+ |n|2)‘7/ 2 (see Remark 20), this is the case if either (1 + ||>)7/?7%/%¢ € Lz(Rn) or the Fourier

transform ¢ € H” ~%/2(R). Therefore we can introduce the Fourier transform l//,, p+(A) of Y p+(Oup)
defined by

l//,ubi(/l) = \/% [m dgﬂb eXp(—iﬂG”b)lﬁ”hi(Q#b). (139)
Roughly speaking, the analytical continuation away from the real axis of the functions ¥ (1) de-
pends on the decreasing and regularity properties of the function ¢(n). If ¢(n7) is square summable
and exponentially decreasing at infinity then it is the same for ¢/(6) and thus its Fourier transform
LZ(/l) belongs to the Hardy space H2. We recall that the Hardy space H? consists of functions which
are analytic in a strip of the complex plane containing the real axis, and which are square summable
on any line parallel to the real axis within this strip (see Theorem I of Ref. 80). Finally, we also
have Paley-Wiener type results that for a tempered distribution @ on R to be the Fourier transform
of a compactly supported distribution (resp. 6* function) ¥, it is necessary and sufficient for 1; to
be a ‘6 function slowly growing at infinity (resp. rapidly decaying at infinity, i.e., belonging to S)
extendable to C as an entire function of exponential type (i.e., with some exponential growing prop-
erties as the imaginary part tends to infinity). We refer to the Paley-Wiener (-Schwartz) theorems
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in Refs. 42 and 41 for precise results. Using definitions (138) and (139), equations (65) become

hgubeon() = Fiexp (Fi [ deh(n)+iﬂo,,b(n)])

WY — [ 1T expli0,00m) / dneXp( (Mwoﬂb)ﬁ)-

Since Im wq > 0, we can perform the 77-integration in the latter equation and we obtain

Q Aup k(1) Jou(n) 1

L — = — —
¢¢(n) = (Op(Ko)wo)d) (n) = ﬂbzeoz o wous 00D am) Vo= - dﬁexp(me,m))
exp (i [ Qs () = 1Q0up(1)]) ~ exp (=i [Qapup(m) — 1Qopup(n)]) ~
{ T wolaon - T+ ooloons Dub- m)} (140)

From definition (138) we observe that i, depends on wy, i.€., ¥ b+ = Y up+(Oup; wo = a)?f + ia)g).

Let us set Yuppr = Yup+(0up; wf) (resp. f//\*,,bt using (139)) and ¥ ups = d/,,bi(ﬁ,,b;w?) (resp.
Y b+ using (139)). Then, for Im wy < 0, we define ¢F as

Q: Aup k() Jou(m) 1 « i
2 — dAexp(id0,,(n))
ﬂ;() qi woub Q) aup(M) V271 J-oo Pt

{EXP( 1[Qaup(m) = 1Qoup()]) ~ Teupa() = exp (=1 [Quus(1) = iQepp(1)]) ~
A= wl/woup *ub+ A+ wf/woup

R (1) = (Op(Ko)wy)ebi) () = —

Y- (/1)} (141)

From (138) and (140) and (141), we obtain that (140) is analytic with respect to wg in C* and (141)
is analytic with respect to wg in C~. Now using the Sokhotski-Plemelj formula,”i.e.,

! — =p.V. (;) Find (/1 - w?/woyb) R

R R
A —wy /woup £10* A —wy /woup

we obtain that the boundary values of ¢£ as Im wy — 0" and ¢R asIm wy — 0~ areequal,i.e., ¢~ (a)‘R) =
¢f(w0 ). Therefore, from the principle of analytic continuation (see, for example, Ref. 79), ¢R consti-
tutes the unique analytic continuation in C~ of the function ¢~ analytic in C*. Let us note that the bound-
ary values of ¢,I; (as Imwy — 0%) or qﬁ,’f (as Imwy — 07) involve the Hilbert integral (with singular

Cauchy kernel)

[,
RY—X

which defines a bounded operator from L7 into itself, with 1 < p < oo (see for instance Part II,
Chapter XI, Section 7 of Ref. 31, or Chapter V of Ref. 102). Therefore, the boundary values
of ¢L and ¢ on the real axis of the wo-complex plane are well defined and equal in L2(R) as
long as (1 + |p[*)7/27%/4¢ € L*(R). Assuming (1 + |p|?)!/2e=0/2+1/2+&)g ¢ LX(R,), with & > 0, or
equivalently the Fourier transform ¢ € H7-9/2+1/2+£(R), we obtain that the boundary values of ¢~
and ¢R on the real axis of the wo-complex plane are equal in H'/>*¥(R). Therefore, using contin-
uous Sobolev embeddings theorem, the boundary values of ¢L and ¢ on the real axis are equal
in the space of continuous functions. Finally, assuming that ¢, is square summable and rapidly
decreasing (or compactly supported), we find that boundary values of ¢~ and ¢~ on the real axis
of the wg-complex plane are well defined and equal in the space of infinitely differentiable func-
tions. Moreover, following the proof of Proposition 8, we obtain that Op(Kop)(wy) : C™ +— £ (L?)
(resp. Op(Kp)(wp) : C"+— £ (L2)) is an analytic operator-valued function such that Op(Ko)(w(
(respectively, Op(Ko)(w()) is a Hilbert-Schmidt operator; it is thus compact on L*(R) (respectively,
LX(R)) for each wy € C~; which ends the proof. O

s

We can now state the analytic Fredholm theorem for the open-contour operator in C.
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Theorem 4. Let us suppose that assumptions of Lemma 1 are satisfied. Let Q be any open
connected subset of C, and Op(Kp) be the analytic extended operator obtained in Proposition 9.
Then either

(i) I — Op(Ko) is nowhere invertible in Q, or

(i) the resolvent (I — Op(Kp))™' exists for all wy e Q\F, where & is a discrete subset of
Q constituted of a countable number of isolated points. In the latter case the resolvent
(I — Op(Kp))~! extends to an operator-valued function in wq, which is analytic in Q\¥,
meromorphic in Q, and such that the residues at the poles are finite rank operators. If
wo € &, then the equations (I — Op(Ko)(wo))¢ = 0 and (I — Op(Ko)*(wo))y = 0 have the
same number of linearly independent solutions; these are non-zero in L*(R) and hence
almost everywhere. Moreover the poles of (I — Op(Ko)(wo,x))™! in the wy-complex plane,
depend continuously on x and can appear and disappear only at the boundary of Q.

Proof. From Propositions 8 and 9 we find that Op(Kp)(wo) : Q —> £L(L?) is an analytic
operator-valued function such that Op(Kop)(wo) is compact for each wg € Q. This, together with
the analytic Fredholm theorem such as Theorem VI.14 of Ref. 89 or Theorem 1 of Ref. 97, im-
plies Theorem 4. The last assertion of Theorem 4 is a consequence of Theorem 3 of Ref. 96 and
the fact that Op(%)(wq,x) is a family of compact operators jointly continuous in (wg,x) for each
(wo,x) € Q X [Xmin» Xmax]- o

Remark 22. A theorem similar to Theorem 4 can be stated for the analytical continuation of the
operator-valued function I — Op(Ko)(wy) : Q — L(LA(R)), in the Hilbert space L2(R).

Remark 23. Let us note that the transformation, introduced in the proof of Proposition 9 can
be used to transform the eigenvalue problem with nonlinear eigenparameter wg dependence, into
an eigenvalue problem (for instance, a generalized eigenvalue problem of higher dimension) with
linear eigenparameter wq dependence. This strategy seems to work only for open contours. We
can also use similar Fourier transforms for closed contours, but the nonlinear trigonometric terms
sin be(ezlfb, 92517’ wy) in K¢ (128) cannot really disappear.

Let us recover the generalized eigenvalue problem (linear in wy) for open contours, i.e., for
all (u,b) € O. We consider only the case for which wy € C*, but obviously we can recover this
reformulation straightforwardly for wy € C. Taking (140), multiplying it by

wou’b’
V2r

and integrating the result with respect to n, we obtain

-~ o Qi A : b’ . .
Viwsld) = _/ “ Z /Rdr] ai Q(l;;; ;ZZEZ; L:)(Z;Z exp (F1 [Quyp(1) = 1Q0y(1)])
e ubeO !

exp (i [Qdﬂ/b/m)—ifzo,,/bfm)]exp(—ife,,/b/(n)))(Te ‘l’) Qo) ™ | (),

( o Q*,,/b/wo)af,/bso,u) (1) exp(LA8,05() = £6,0/(7)])

{eXp( 1[Qapn(m) = 1Qopup(m)]) ~ o)~ P (=1 [Qapp(m) = 1Qopup(m)]) ~
A = wo/woun ubt A+ wo/woup

Yuub- (/1)} (142)

Let us define the set 0=0x {+,-} and the index € = (u,b,a), where (u,b) € O and @ € {+,-}.
Let us introduce the unknowns ¥,,;,+(1) = bei(/l)/(/l F wo/wopup), and the unknown vector ¥ =
(ll‘[)ggé' Finally, we define the diagonal matrix Q5 = Diag({—aw&lﬂb}(ﬂ’h’a)ea). Since in (142) the
term Q..,p(wo) is linear in wo, we can recast the eigenvalue problem (126) with nonlinear eigenpa-
rameter dependence as the following generalized eigenvalue problem, with linear dependence in the
eigenparameter wy:

AY — weBY = 0.
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Here, A and B are linear operators written as follows:
(AY)E) = ¢15¥(&) - /Rd/1 Kalg, DY), (BY)E) = QzY(8) - /Rd/l K&, )Y (),

where the matrix-valued kernels Ka and Kg are independent of wo and whose exact expressions
can be easily inferred from (142).

3. Case of open and closed contours

In this section we consider both open and closed contours. The main results of this section
are Theorem 5 (with hypothesis (H) and the spectrum in C\Z, where X is a subset of the real
axis defined by (143)), Theorem 6 (without hypothesis (H) and the spectrum in C*) and Theo-
rem 7 (without hypothesis (H) and the spectrum in C\X), which are established using Proposi-
tions 10 and 11.

Let us deal with the operator Op(K), associated to closed contours. We remark that for closed
contours the parameter u is positive. From (128), we observe that the kernel K¢ is singular in
wo when sin 2,5(=01 up, O up; wo) = sinI,,b(Hl:fb,QZﬁb;wo) for all ¢ € Z, vanishes. By (131), this
happens whenever

1
wo = a_)Cd;zb + (l + E) Weubs VYl eZ, (ﬂ,b) eC.

Here we have set, for all (¢, b) € C,

OLub 2n
Teun =/ dn ( 3 )(77) Weub = 7
—OLub Aub Cub
1 HLﬂb
Ocdub = T_/ dn wdﬂb(n)( )(77)
Cub J-0r 1 a}l
We define the set X by
1
T = {a)() € Rlwg = @eaup + (l + E) weup, YIEZ, (u,b) € C} . (143)

We note that this set ¥ depends on the radial variable x, i.e., ¥ = Z(x). Since the set ¥ contains the
poles of the kernel K, the operator Op(K¢)(wo) : C — £L(L?) is a meromorphic operator-valued
function of C. Let us fix wg € C, say a regular point of analyticity of the meromorphic operator-
valued function Op(K¢)(wo) : C — £(L?). When we look at the integral operator I — Op(K¢) (see
(128)) we observe that roughly speaking the integral operator is weakly singular with an alge-
braic singularity of power minus one-half due to the equilibrium closed contours (see (134)). This
suggests that the operator should be compact on some well-suited Hilbert spaces (see Ref. 71 or
section 9.5 of Ref. 33). In addition, the semi-separable structure of the kernel suggests that the
operator is a Hilbert-Schmidt operator in some relevant Hilbert spaces (see Chapter IX*°). In order
to prove such properties, let us introduce the Hilbert space

LR = {fin e R f0) € Ry st Ml = D)2y <)

L3(R)

where the scalar product (-, -) L2®) is defined by

(f.8) 2w = /R Fmegm)e’(n)dn.

Here, the weight function g is given by

B
0=«kw, with @ = ( > ﬂ,,b—) e Ll (R), Be(0,1), y € (0,2/p),

ube€
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and « is given by (136). Making the change of unknowns ¢, = ¢o, we can recast the integral
equation (126) as

00

0,(0) = / dn G(0.7:00)6(n) = OP(G) b (6).

where
G(0.11;00) = Gol6,m; o) + Ge(O.m;w0) = D Goun(O:m:00) + ) Gopn(6:1; wo),
ubeo ubeC
and
6 6
Goun(6,1; wo) :KOyb(é”mwo)%, and  Geun(0,1; wo) =Kcﬂb(9,n;w0)%- (144)

If for every u such that (u,b) € C, the zeros of the map 6 +— J,(0) are different from the limit
angles {Qi’ﬁb}ubea ez, we can show that Op(G)(wp) : C — £(L?) is a meromorphic operator-
valued function of C where the coefficients of the Laurent series of Op(G)(wy) are trace class and
Hilbert-Schmidt, hence compact operators on L*(R). This feature relies on a specific behaviour of
the denominator Q, which remains unexploited until now. This nice property fails if for every u such
that (u,b) € C, the zeros of the map 6 — J,(6) coincide with the limit angles {Gi’lf plubec, tezs
because the zeros of SO# are of order larger than one-half and thus cancel those of a,,;. Therefore we
make the following hypothesis.

Assumption H. For every u such that (u,b) € C, the roots of the map 6 — J0,(0), do not
+,{
belong to the set {HLHb}#b eC. tez:

Under this assumption we obtain the following proposition.

Proposition 10. Let us assume hypothesis (H) and assumptions of Lemma 1. Then Op(G)(wy) :
C\X +— L(L?) (resp. Op(K)(wp) : C\X +— .%(Li,)) is an analytic operator-valued function such
that Op(G)(wo) (resp. Op(K)(wy)) is Hilbert-Schmidt, hence compact on LX(R) (resp. Lz(R) ) for
each wy € C\X. Moreover, Op(G)(wo) : C +— L(L?) (resp. Op(K)(wp) : C +— .SB(Lé)) is a mero-
morphic operator-valued function of C where the coefficients of the Laurent series of Op(G)(wo)
(resp. Op(K)(wy)) — in particular the residues at the simple poles T — are Hilbert-Schmidt, hence
compact operators on L*(R) (resp. LE,(R) ).

Proof. Let us first show that the operator Op(Go) belongs to the class of Hilbert-Schmidt
operators with bounded trace for all values of wy in the upper half-complex plane C* and the real
axis, i.e., that the kernel Gp € L2(R X R). Of course, we can extend it to the lower half-complex
plane C~ by analytical continuation as has been done in Proposition 9. This requires that ¢ decay
rapidly enough at infinity. If we replace Go. by Kopus, then estimate (137) for Imwg > 0, still
holds for all 17, 8 € V(£o0) (the notation V(x) denotes a neighborhood of x). As a consequence, the
kernel |Goun(6,m; wo)|? is integrable in the neighborhood of infinity as long as (1 — §/4) + 0/2 <
@ < (3+06)/4, and thus we only need to check that for all (u,b) € O, Gou» € L (RXR) in

loc
+,€

the neighborhood of the limit angles {6 Lu b}#bec, ¢ez- Under assumption (H), we obtain, for all

n eV’ )ando e V©e-L ),

ll,b, Lﬂllbll
B 1-B
1 1 a”/b/(n) Cl”/,b,,(g) 1 v {;/ ” pr
Goun(8. 1 s o €L (VOL) X VO
@ @(OPF2 3% () 320 ) (v, )

and thus the kernel Go,p € LA (R X R), for all (u,b) € O. Let us note that the same kind of esti-
mates holds if some pairs of limit angles have identical values, since the corresponding equilibrium
closed contours have the same algebraic singularity of power minus one-half. By (135), it is also
clear that Go,»(n,m) € L'(R xR) as 1 + 6 — o > 0, since the rescaling factor o(6)/o(17) simplifies.
Moreover from (144), analyticity of Op(Go)(wy) (resp. Op(Kp)(wp)) with respect to wy is obvious
since functionals of wy involve only products of polynomials and exponential of wy. Therefore,
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Op(Go)(wo) : D +—> L(L?) (resp. Op(Ko)(wp) : D +—> £L(L})) forms an analytic operator-valued
function on any open connected subset D of C, such that the families of operators Op(Go)(wy)
(resp. Op(Ko)(wp)) belong to the class of Hilbert-Schmidt operators in L*(R) (resp. LE,(R)) with
bounded trace provided 1 + 6 — o > 0, for all wg € D.

Let us now consider the closed-contour kernels Gc,p, for all (u,b) € C, where we use the
decomposition

4
gCub = Z gc,ub'
CeZ

We first suppose that wy € C\X. By Lemma 1, Remark 20, (144) and (128), the kernel gé# , can be
recast as

(1 + 0D 0(8) Jou(®) ;‘soﬂ(n)
00) o) as(® apotn) CrP OO0 gt oy, ()

{cos Lup(07 s 0) COS be(é'zﬁb,é';wo)l[g,gzﬁbl(n) + €08 Zp (07 11,0175 0) €08 Zyp (0 1,63 wo)]lmzlgbﬂ](n)} )

Qgﬂb(e,n;wo) =

where Bc.p(0,17,w0) € L7(Rg X R;;). Using Lemma 1, we observe that the term 7,5(60,7; wo) can be
written as

. o R .
1,(0,m; wo) =1Imw0/ dn ( 9 )(ﬁ)+a(0,77)+1b(0,17),

0 b¢a#b

where a, b €R, and [|b]|Lo®yxz,) < co. Therefore, for n € [0, 9+ 5] and 6 € [HZHb,QL’{b] using
Lemma 1, we find that

n
cos fpb(GL”b,Tl wo) < C(||b|Lo®gxr,y) (exp (—Imwo /+ . dﬁ(
o+

Lub

+ exp(lmwo/gr7 dn (b fb)(ﬁ)))
’ ey

Lub

HL’yb -
sc<||b||Lw<Rng,,>)(1+exp(|1mwo| /9 ai (22 )(ﬁ)))

b‘paﬂb

92’,5;, qR
< C(||b|z= 1 I dn
< C(Bl. (Rng,,»( +exp(| m | /9 T (50 @

< C(||b||Lm<Rng,7>)(1 +eXP(|Imw0| / af (L )(ﬁ)))
OLub oQub
< 0, (145)

Lub’ L;lb’e (UO),
0; wp) with the same bound (145). Consequently, we obtain

In the same way as we have bounded cos[nb(é? 1; wp), we can bound cos Z,,,(6

cos ],,;,(9 n; wo), and cos ]#;,(8

Lub’ Lub’

(1 + )" 0(8) [30u(O) [0,
00) o) am(® a6ty or O iopep, 100,

and thus, using the disjoint support property, we obtain

2
/ / dodn |Gewl” = / / dodn | Gép| = / / dod |G,
RJR RJR teZ (’EZ
<[Z/ . de/ dancﬂbl2 //d9d77|chb|
€Z

1G&,.(0.1; w0)| < C
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where
(1 + D7 0(8) [S0u(O)] 130, (n)l
00) o) au(8) au(n)’
For i, 6 € V(£0), using the previous equation, we get |Ge,p| < (1 + |0])722271/2(1 + |7]|)"‘2"‘1/2
€ LRy x R,) aslongas 0/2 < @ < 1. We now get forall y € (V(Os ,b,) and 6 € "V(G ,,b,,)

180 (0)] 130, (1) 1 _
aub(g) aub(n) wl/B 1(9)13( )

Let us first look at IT,;(n). If (u',0") # (u,b), then for all 5 € (V(H )
(aup/1J0/1%)P. Under hypothesis (H) and the condition 8 > 0, we then get Hﬂb e LAV (05 ,b,))
Otherwise, if (u’,b") = (u,b), then for all € (V(t‘)s ,b,) we have IT,,(7) < 1/a’ ,b,/|\50,, |?2-1. Un-

der hypothesis (H) and the condition 8 > 0, we then get I1,,;, € LAV (6’5 /b,)) Let us note that
the same type of estimates can be obtained if some pairs of limit angles have identical values,
since the corresponding equilibrium closed contours have the same algebraic singularity of po-
wer minus one-half. Now, let us look at I',4(60). If (u”,b") # (u,b) then for all 6 € V (HS ,,b,,)
we have I'y,(0) < (a,,ubu/ |Jou'/|2)l ~B. Under the condition 8 < 1 and hypothe51s (H), we then
get Ty € LZ((V(QS ,,b,,)) Otherwise, if (u”,b”) = (u,b), then for all 9 € (V(Qs fb,,) we have

T(6) < 1/d” o |3071'7%2. Under the condition 8 < 1 and hypothesis (H), we then get T, €

LAV (HS ,,b,,)) Let us note that the same type of estimates can be established if some pairs
of limit angles have identical values, since the corresponding equilibrium closed contours have
the same algebraic singularity of power minus one-half. Moreover for all € V (OZ’ﬁ »)» we have

|Geur(n.ml < 1/au, € L‘(W(9Zﬁb)), while for all 7 € V(xe0), |Geup(m.m)l < 1/(1+Inl) € L'
(V(£0)). Therefore, we infer that Ywy € C\X, the operator-valued function wy — Op(Gc)(wo)
(resp. wo —> Op(K¢)(wyp)) constitutes analytic families of Hilbert-Schmidt operators in LZ(R)
(resp L? »(R)) with bounded trace. Using the Taylor expansion of the sinus functions sin 7, ,,b(G

Geun(0,m) =C

|Geun(0.m)] < ub(OILp(17).

) we have Hﬂb(n) <

Lub’
6, L# ,> wo) around a point w € X, we obtain the Laurent series expansion of the wq-operator-valued
functions Op(G¢)(wo) and Op(IK ¢)(wy). For example, we have

Op(Go)(wo) = Op(Ge_)(w)(wo — w) ™" + Z Op(Ge, )W)y — w)*. (146)
k=0

From the above analysis, we can show that the terms {Op(G¢, )(w)} k-1, (resp. {Op(K¢, )(w) }xs-1)
of the Laurent series constitute families of Hilbert-Schmidt operators in L*(R) (resp. Lé(]R)) with
bounded trace. Therefore, Op(G)(wy) : D —> L(L?) (resp. Op(K)(wo) : D — £ (LZ,)) are mero-
morphic operator-valued function on any open connected subset D of C where the coefficients of
the Laurent series of Op(G)(wy) (resp. Op(K)(wp)) — in particular the residues at the simple poles
¥ — are Hilbert-Schmidt, hence compact operators on L*(R) (resp. L> >(R)). O

As a consequence of Proposition 10, we obtain the following analytic Fredholm theorem for the
open-and-closed-contour operator in C\X.

Theorem 5. Let us suppose that assumptions of Lemma 1 and hypothesis (H) are satisfied. Let
Q be any open connected subset of C\Z. Then either

(i) I — Op(G) is nowhere invertible in Q, or

(i) the resolvent (I —Op(G))~" exists for all wy € Q\S, where & is a discrete subset of Q
constituted of a countable number of isolated points. In the latter case the resolvent (I —
Op(@))~! extends to an operator-valued function in wy which is analytic in Q\S, meromor-
phic in Q, and the residues at the poles wy € & are finite rank operators. If wy € &, then
the equations (I — Op(G)(wo))¢ = 0, and (I — Op(G)*(wo))¥ = 0 have the same number of
linearly independent solutions; these are non-zero in L*(R) and hence almost everywhere.
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Proof. From Proposition 10, we obtain that Op(G)(wo) : Q — £L(L?) is an analytic operator-
valued function such that Op(G)(wy) is compact for each wqy € Q. This, together with the analytic
Fredholm theorem such as Theorem VI.14 of Ref. 89 or Theorem 1 of Ref. 97, implies Theorem 5.

O

Remark 24. A theorem similar to Theorem 5 can be stated for the operator-valued function
I - Op(K)(wyp) : Q+— L (Lé(R)), in the Hilbert space Lé(R). Therefore, the poloidal envelope
D10wn Of the eigenmode belongs to Lé(R), which means that the map 0 +— ¢100,,(0) decays rapidly
enough at infinity and integrable singularity is not ruled out.

Remark 25. Let us note that the operators Op(K¢) and Op(Ge) have semi-separable ker-
nels (see Chapter IX*°) but not-separable or degenerate kernels,¥%%% i.e., they are not defined
through a sum of finite number of product of functions of 6 alone by functions of n alone.
Then the operator Op(Gc_,) in the Laurent series (146) or the associated operator Op(K¢_,) has
semi-separable kernels. Therefore the ranges of the operators Op(Gc_,) and Op(Kc_,) are not in
general finite dimensional (see Chapter IX*). Consequently, we cannot use the meromorphic Fred-
holm theorem (see Theorem XIII.13 in Ref. 88 or Theorem 2 in Ref. 97) to extend the resolvents
wo — (I = Op(G)(wp))™" and wo — (I — Op(K)(wy))~! to operator-valued functions in wq that
are analytic in Q\& and meromorphic in Q, where now Q is any open connected subset of C.

Actually, we can remove the assumption (H) and prove that meromorphic operator families
C 3 wy +— Op(K¢)(wo) are still compact but not Hilbert-Schmidt, in some Hilbert spaces. More
precisely, we have the following proposition.

Proposition 11. Let us assume hypothesis of Lemma 1. Then, Op(K¢)(wo) : C\Z +— L(L?) is
an analytic operator-valued function such that Op(K¢)(wy) is compact on L*(R) for each wy € C\X.
Moreover Op(K¢)(wp) : C > £L(L?) is a meromorphic operator-valued function of C where the
coefficients of the Laurent series of Op(K¢)(wo) — in particular the residues at the simple poles %
— are compact operators on L*(R).

Proof. Let us note that the operator Op(K¢) can be written as

Op(Ec) = Op( > ZKC,,I,) >0 > op(KE,,)

ubeC CeZ ubeC CeZ

with

(1 + 7D J0.(0) 00;:('7)
00)  au(6) auw(n)

{cos Iﬂb(GZ’ﬁb, 15 Wo) COS I,,b(HZ’lfb, 0, wo)]l[g’g;.fb](r]) + cos be(QZﬁb, 1 wo) €OS Iﬂh(QZ’ﬁb, 0, wo)]l[g;.fb?e](n)} .
L L

Kéub(e 1; wo) = Beun(6,1, wo)]l[g ot |(0)

0 )

For every wy € C\X, we have Bc,,(0,17,w0) € L*(Rg X R;;). Therefore, using the same type of
estimate as (145), obtained in the proof of Proposition 10, we find that

Z ZOp Cub Z Z”Op Cub ¢||L2(R)

||OP(KC)¢||L2(R)

ubeC tez L2(R) ubeC ez
< > >lor ([KE,.) I¢IHL2(R) < Z N PR Téﬂb|¢|HL2<R>
ubeC ez ubeC teZ
- Z Z||T§HboTéﬂb|¢|“L2( ) (147)
ubeC eZ

where Téﬂ ,, is the multiplication operator

£ |\50,u(9)| 1
Bub¥ = " (0) 00) Wi

oyt O)(6) = m(0)p(0),
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and Téﬂ , 18 the weakly singular operator

Lﬂb |J0u(1)
T, 0 = / A= T B, Ol + 1) Lz pre (Do)

-
gLub a,ub( )

Let us first show that m = |Jo,la,,,0~" € L? N L™(Ry) with p > 1. Indeed for § € V(xc0), we have
m < C/(1 +|6]%). In the sequel of the proof, C will denote a generic constant which will change
from line to line. Let us now suppose that 8 € V(6,), where 6, is any limit angle belonging to the
set {Hifb Yubec, cez. Indeed, since the zeros of Bessel function of first kind of zeroth order Jj are of
order greater than one-half, if 8 is a zero of J,, then there is no singularity at 8;.. If however 6y is
not a zero of J,, then the algebraic singularity of order minus one-half of a;}) at 07 (see (134)) is
compensated by Q. Therefore m € L? N L®(Ry), with p > 1. Since m € LP N L*(Ry), with p > 1,
the operator T‘ b is a bounded operator in L?(R). Moreover we easily get the estimate

i _ 7t
HTBﬂb"0||L2(R) - ”TBub‘pHL2([ezlfb,az’,fb])
s —
< CA+ 107, Ml 2ot vt ) (148)
-t _
< C(1+ 1070, Py el 2y

Now, we can recast the operator Té as
ub

9+,€
¢ _ Lub  K(n,0,wp)
Mo = [ " n = ),

Lub

where the kernel K (77,6, wy), jointly continuous in the variable n and 6, is such that

K|l o, e +|9”’ 1772, (149)

L[ '9

for every wy € C\X. At the neighborhood of the limit angles 67, , using (134), we have the estimate

Lb’

l
e,

where the weight function w :]O,+oo[0—> R represents the weak singularity, i.e., w is continuous
and satisfies |w(n7)| < Cy~!'/%. The power minus one-half comes from the integrable algebraic singu-
larity of order minus one-half of the closed contours {a,p }(u,b)ec (see (134)). The following is well
known (see Ref. 71 or Section 9.5 of Ref. 33 and Exercises 9.19 to 9.22 of Ref. 33): let T be an
integral operator with weak singularity, that is, defined by

(Te)(t) = /r (It = DB T)e(T),

where the kernel B is continuous and bounded on I' X I', and where the continuous weight function
v :]0,+co[— R satisfies |v(¢)] < Mt with 0 < s < 1, then T is a continuous endomorphism of
LP(T) for 1 < p < oo, and a compact endomorphism of LP(I') whenever, 1 < p < oo, with I any
compact set of R . Therefore, the operator T€ , 18 a continuous and compact endomorphism on

LY([6¢
L ()
d
/9 Ty ()

Lub

Lub’ Lﬂb]) Moreover, using (149), we get

2)0'/2

4
)|Tcﬂb<p\|L2(wzeb,gz,fbD <ca+1o7,|
Ho L2(6;¢ )

Lub’ Lyb

4
< C(l + |92,ub|2)(r/2”(’Dlle([GZ’[b,E)z’gb])
u u

L€
< €1+ 1075, P Pl 2y
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Therefore, using the previous estimate, (148) and the Cauchy-Schwarz inequality, we obtain
(1+167,0,)7"

Z ZH BﬂboT[ b|¢|HL2([0 L gl ])SC Z Z

||¢”L2([9;;§b’925b])

ubeC (eZ Lub?"Lub ubec ez (1+10 Lu b|2)
(141670,
<c ) Z— (Z”"’”me o art, )
ubec \tez (1 +|9L,1,,|
< Cl19ll 2wy
because the cardinality of the set C is finite and

(1+|9+"|)
2

{eZ (1 + |0L/1b| )

1
CE —— < 00
= 2
EEZ1+|€|

Since Téﬂ , is @ bounded operator from L2([921fb, 67¢.1) onto L*(R) and Téﬂ , is a compact operator

from L*(R) onto Lz([HZ,fb’ Hzlfb]) then Tgﬂ b © Tc,, , is compact on LX(R). Moreover, since
¢ ¢ ¢ ¢
Z Z HTBub ° TCuh”:g(Lz(R)) Z Z HTBﬂb TC#’?”:B(LZ([HL 207 ) =

ubeC el

the operator 3., ¢ ez TE Bub TCﬂ ,, 1S compact on L*(R). Finally, using (147), we have

¢
I0P(Kel ez (r2my) < Z Z Bub © Tcup < 00,
ubeC ez $(L2(R))

and thus Op(K¢) is compact on L*(R). The end of the Proposition 11 can be proven as has been
done for Proposition 10. O

As a consequence, we obtain the following results: Theorem 6 for the spectrum in C* and
without assumption (H); Theorem 7 for the spectrum in C\X and without assumption (H).

Theorem 6. Let us suppose that assumptions of Lemma 1 are satisfied. Let Q be any open
connected subset of C*. Then either

(i) I — Op(K) is nowhere invertible in Q, or

(i) the resolvent (I — Op(K))™! exists for all wy € Q\F, where & is a discrete subset of Q
constituted of a countable number of isolated points. In the latter case the resolvent (I —
Op(K))~! is meromorphic in Q, analytic in Q\¥, and the residues at the poles are finite rank
operators. If wog € &, then the equations (I — Op(K)(wo))¢ = 0, and (I — Op(K)*(wo))y =0
have the same number of linearly independent solutions; these are not zero in L*(R) and
hence almost everywhere. Moreover the poles of (I — Op(K)(wo,x))™! in the wo-complex
plane, depend continuously on x and can appear and disappear only at the boundary
of Q.

Proof. From Propositions 8 and 11, we find that Op(K)(wy) : Q —> £(L?) is an analytic
operator-valued function such that Op(K)(wg) is compact for each wy € Q. This, together with
the analytic Fredholm theorem such as Theorem VI.14 of Ref. 89, implies Theorem 6. The last
assertion of Theorem 6 is a consequence of Theorem 3 of Ref. 96 and the fact that Op(K)(wy, x) is a
family of compact operator jointly continuous in (wy, x) for each (wg, x) € Q X [Xmin, Xmax]- O

Theorem 7. Let us suppose that assumptions of Lemma 1 are satisfied. Let Q be any open
connected subset of C\Z. Then either

(i) I — Op(K) is nowhere invertible in Q, or
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(i) the resolvent (I — Op(K))™! exists for all wy € Q\S, where & is a discrete subset of Q
constituted of a countable number of isolated points. In the latter case the resolvent (I —
Op(K))~! extends to an operator-valued function in w that is analytic in Q\S, meromor-
phic in Q, and the residues at the poles wy € & are finite rank operators. If wy € &, then the
equations (I — Op(K)(wg))¢ = 0, (I — Op(K)*(wo))¥ = 0 have the same number of linearly
independent solutions; these are non-zero in LXR) and hence almost everywhere.

Proof. First we show that Op(%K)(wp) : Q — $£(L?) is an analytic operator-valued function
such that Op(K)(wyp) is compact for each wy € Q. This follows on the one hand from Proposi-
tions 8 and 9, and on the other hand from Proposition 11, where we can substitute K¢ to K¢ by
keeping a similar proof. This, together with the analytic Fredholm theorem such as Theorem VI.14
of Ref. 89, implies Theorem 7. O

Remark 26. A theorem similar to Theorem 7 can be stated for the operator-valued function
1 - Op(K)(wp) : Q +—> L(LA(R)), in the Hilbert space LX(R).
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APPENDIX A: GLOSSARY OF MAIN NOTATION

r

: Coordinates of three-dimensional physical space.

v), & : Parallel velocity coordinates.
(r,vy), (r,&)) : Four-dimensional phase-space.
(e, eq, e‘P) . Toroidal vector basis.
(r,0,¢) : toroidal coordinates.
(x,m,a) : Field-aligned coordinates.
q(r) : Safety factor g =rby,/(Rbg); here, g(rp) rational & ry is a rational
magnetic flux surface.
ro : Constant radius denoting a reference rational magnetic flux surface.
r, x, q : Radial variables, x =r —rq.
[#min ¥max] : Radial domain.

[Xmin> Xmax] :

Radial domain.

@ min» gmax] : Radial domain.
s(r) : Shear parameter s =q’r /q.
a : Minor radius of the torus.
Ry : Major radius of the torus.
R : R=(Ry+rcosf)(cosOe, —sinbey) radius vector.
R : Euclidean norm of R.
B : Magnetic field.
B : Euclidean norm of B.
By, B, : Respectively, the poloidal and toroidal component of the magnetic field B.
A : Vector potential, B=V XxA.
b : Unit vector tangent to the magnetic field line.
bg, b, : Respectively, the poloidal and toroidal component of the vector b.
B : By=b-B, parallel component of the magnetic field B.
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: 0)=b -V, parallel gradient.

: V.= -b®b)V=-bx(bxV), perpendicular gradient.
: k=b-Vb=-bxVxb, curvature vector.

: Ton charge.

: Ton mass.

: Ton thermal velocity.

: Jon temperature.

: ITon density.

i © Q;=qB/m, ion cyclotron frequency.

i © Pi="Usp,i/; ion Larmor radius.

: Modulus of perpendicular velocity.

L u= mivi /(2B), magnetic moment, adiabatic invariant, label, index.
: Contour (or bag) index.

: Time frequency, global eigenfrequency.

: Toroidal wavenumber.

: Poloidal wavenumber.

1 ki ~1/(qRy), parallel wavenumber.

. k; ~n/a, perpendicular wavenumber.

Yy e(0,1).

: Small parameter, e=1/n.

: Small parameter, €, =a/Ry.

: Small parameter, €, = k/k .

: Small parameter, €, =w/Q;.

: Small parameter, p* = p;/a.

: Set of respectively open, closed, and all contours.

: Bessel function of first kind of order zero.

: Gyroaverage operators.

: Ballooning angles.

1 O =-1/ndy = —i/(q'n)0x, radial differential operator.
: Limit angles, Qi’ﬁb =401 ,p(r)+2nL.

: Constant bag height.

: Three-dimensional contours (level lines) of the four-dimensional phase-space

(r, vy, and (r, &), respectively.

: Equilibrium contours.

: First-order perturbation of the contours.

: Equilibrium electrical potential.

: First-order perturbation of the electrical potential.

: Hamiltonian associated to the equilibrium contours, Hib = a;';2b/2+,uB/mi.

M

: Hamiltonian associated to the first-order perturbation,

+ — it +
h;tbwn =W ibon%ub +qiduP1wn/mi.

: Local eigenfrequency.

: Linear integral operator of zeroth order.

: Kernels of integral operator for open contours.

: Kernels of integral operator for closed contours.

: Gyrokinetic distribution function in the variables (r, v)).

: Gyrokinetic distribution function in the variables (r, &).

: Four-dimensional force vector-field in the variables (r, v)).
: Four-dimensional force vector-field in the variables (r, &)).
: Hamiltonian, H = mivﬁ/2+,uB +qi Jud.

. B* :B+miv“V><b/qi.

DBy = B*-b.

: Heaviside function.

: Hilbert space of square summable function.

: Hilbert space of function g, such that gk is square summable with

k@) =1+, ae(1-61/4+0/2,[3+68]/4), 0 €{0,1}, 5 € {0, 1}.

: Hilbert space of function g, such that g o is square summable with

O =Kw,w = (Z,ube‘@ ﬂ#hsgﬂ/a#b)ﬁ € LK,C(R)7 ﬁ € (0’ 1)’ Y€ (O’Z/B)

J. Math. Phys. 57, 081518 (2016)
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APPENDIX B: RIGOROUS DERIVATION OF THE GYROKINETIC-WATERBAG EQUATIONS

As pointed out in Remark 2, of Sec. II B 2, the variables (r, £)) are well suited for applying the
waterbag reduction concept. Here,

Y
&) =/ dvyJ(r,v)), (B1)

and J(r,v)) =B - b+ v (m;/g;)b - V x b. Let us thus rewrite the gyrokinetic-Vlasov equation (3)
in this new set of variables. We introduce the new distribution function f = {(z,r, &), 1) such that
f(r,r, &), 1) = f(t,x,v), 1). Using the change of variables (r,&)) < (r,v)) and the chain rule, we
easily get the transformations

(Vr, 8””) — (Vr + Vr§||6§”,(9,,“§||(9§”), (Vr, (9‘5”) e (Vr + Vrl)”a,)”,af”l)”avu).
This leads to the new gyrokinetic-Vlasov equation for f,
O+ Fe - Vil + B Oy f = 0, (B2)
with
g'r = Fr, 8’5” = Fr . Vl“fi:ll + FUH60||§II'
It can be easily checked that the new force vector-field § = (&, &c”) is divergence-free, i.e., Vr,,f“ .
& = Ve B + 0g 8¢ = 0. Therefore the flow (r,&)) — (R(t),E(¢)) generated by the force vector-

field ¥ (solution of d;R = T, d,E)| = g, with the initial conditions (R(0),Z(0)) = (r,&))) defines a
volume-preserving map, i.e., the following Liouville theorem:

d
di o) dl'dfn =0
is satisfied. Here, Q(¢) is the image of any bounded phase-space volume element Q(0) from the
Lagrangian flow (R(¢), Z(#)) induced by the force field F.
Therefore, for every adiabatic invariant y, we can consider 2/ non-closed single-valued con-
tours {fzb(t,r)}bSN of the (r,&))-phase space ordered such that ... < 5; pal < §;b <.---20<
S < f;b < ;bﬂ < ---, and strictly positive real numbers {A,;}p<n, called the bag heights.

From the Liouville theorem in the phase-space (r, £)), we know that for every couple (i, b),

d
v / A&y, = €,p)dr = 0.

‘We observe that the distribution f reads

(. £y pt) = /R R ED6(Hm(d),

where m is a probability measure on R* and where the smooth functions f, still satisfy the
gyrokinetic-Vlasov equation (B2). We can now take for f,, the waterbag distribution function,

N
fut.r.&)) = Z A, (1 (£760) = &) =T (£,,(01) - &) - (B3)
b=1

As long as the contours fzb are smooth, single-valued, and do not cross, the function (B3) is an
exact weak solution of the gyrokinetic-Vlasov equation (B2) in the sense of distribution theory, if
and only if the following gyrowaterbag equations in advective form are satisfied:

atf;b + 81‘(1"‘5517) . szb = 8@““(1.’ é:zb) (B4)
Furthermore (B1) is equivalent to
m; b.VxDb

&y(r,v) =vyBy(1 + Ayvy), where Aj=—
II II 121 [k I q: 23”

Solving the previous quadratic equation, we obtain the solution,

-1+ \/l + 4§||AH/B||

v (r,€&)) = oA ,
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which leads to the definition of the new contours v7; of the phase-space (r,v)) as

vy = 0(0EL), = En = v B+ Az,

Using the previous definition in (B4), we get, after some algebra,

1
6t§ib +V. (@ (q[A + miv\\(r’fib)b) X V7’[(l‘,l)||(l‘,f;b))) =0.

This is exactly the gyrokinetic-waterbag equations (15) of Sec. II B 2 and thus definitely ensures the
validity of the gyrokinetic-waterbag equations (15).

Remark 27. Using |b.V X b| = 1/R (see formula (19) of Sec. Il C), we find that &\A/B) =
O(e,,) < 1 and thus, at first order in €, (see Sec. Il D for the definition of €,), we obtain
v = f”/B” + O(Ew), which leads to

+

+ ub
v, = — + O(ey).
#b By “

APPENDIX C: LINEARIZATION OF THE GYROKINETIC-WATERBAG EQUATIONS

Here, we explain in detail how to obtain the linearized gyrowaterbag equations (20) and (22) of
Sec. IIT A from the nonlinear gyrowaterbag equation (15) of Sec. II B 2. Using the decomposition

¢(t7r)=¢0(r’9)+¢l(t5r)’ (|¢l| < 1),
Vp(t1) = agy (r,0) + w, (1,1), (lwgpl < 1),

as an (r,6)-dependent equilibrium plus a (¢,r)-dependent small perturbation, we obtain at zeroth
order (with respect to the perturbation terms) the equation for the steady equilibrium state

ai
+
a,, 1+

ub
—b-V
ib Xb

L

2
N ubxVB 4, .
b-Va#b+(E B +EbXK -Va,ub

u Ay a.,
+-VB-|(b 1+QLb-V><b +QLb><K
m; i i
qi A ay, 1
+_V*7I~4¢O. 1+HbV><b b+?bXK+§VaibXb =0,
m; i i i

and at first order the equation for the unsteady small perturbation

. Dap
0r W 1+Hib~be

qib \Y 1 azbb Vxb
—_— . QL — . X
+ i Jud1 |1+ o

bXVIub1 o o 4 Y
+ T . Va,ub + E?L(b XK) . V~7;4¢l
ax 1 a*, u q
+ + ub + + ub i
+a'ubb-Vwﬂb 1+HleXb +wﬂb(b-Va“b+ai(b-be)b-V T+EB+E$_,¢0“)

2 42
a, bxVB bxV V(az,) VB V
o x+ £ + Judo VuE, +wk, LI Judo
Q; qi B B " " Q; q;i B B

)~b><|<=0.

Using the approximation (D3) and the same arguments as leading to (D6) in Appendix D, we obtain
bxVB/B ~b XKk,

a’ 1 a*, .
b b M q
Qiib -V xb = 0(ey), ai(b -V X b)b - v(% + E_B + ;’ij,,gbo) =0 (b-Va,e,).
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Using these estimates, we may neglect the bracket terms (except the unit term) in the previous
equations and obtain the linearized Equations (20) and (22).

APPENDIX D: SOME APPROXIMATIONS RELATED TO THE TOROIDAL GEOMETRY

The magnetic field line is locally curved with a local radius-of-curvature vector R.. The Eu-
clidean norm R, = |R.| is the radius of local curvature of the magnetic field line, while N = —R./R,
is the unit vector in the direction of centrifugal force. Since any unit norm vector field satisfies
b-Vb = -b x V X b, we obtain

N 1 1 V.B
Ki=—=b-Vb=-bxVxb=-bx|-VxB-BxV|=]||=%yxB+—=2 D)

R. B B B2 B
where we have used the Faraday law V x B = yJ. For a scalar-pressure equilibrium, we have
J X B = VP, where P is the plasma pressure. Thus, using (D1) and noting that b - VP = 0, we obtain

VP V.B B?
— + — =&Vl P+ —.
B2 B B2 2/10

2

a’

K = o (D2)

In a system with low B :=2uoP/B?, i.e., for B of order €
magnetic field line curvature vector k as

VLB
K =
B
By (D1), the approximation (D3) is equivalent to neglecting the diamagnetic current J,. Replacing

R, by R, using definition of the magnetic field (18) (see Sec. II C), we obtain, after straightforward
calculations,

we can use (D2), to determine the

+ O(ei/a) ~

V.B
. D
B (D3)

vV.B R ) VB V.B _ R 3
3 - R +O(e;/a) and bXx 7= b x 3 = b x 7 + O(€e,/a). (D4)
Finally, using (D3) and (D4) we have
R R
K=—25+ O(é2/a) = — 27 (D5)

A low-p regime (i.e., B = €2) means that the plasma pressure does not play an important role in
equilibria and instabilities. The low B approximation (D3) is commonly used in nonlinear gyroki-
netic simulations, such as the GYSELA code.>**0
Now, recalling that, by (19), we have |b.V X b| =~ 1/R, we obtain

By miv| ) kjvy N

B =1+ qub-be—1+O(QiR) —1+O( o ) =1+4+0(e,) ~1, (D6)
where €, = @/Q; < 1 and @ = kyv;p,;. Approximation (D6) means that the Liouville theorem
"’tBT\ + V- (BﬁFr) + 8U||(B"‘|F”) = 0, which ensures the equivalence between the conservative and
advective forms of the Vlasov equation (3) and energy conservation is not exactly satisfied. Preser-
vation of the Liouville theorem is important for long-time nonlinear simulations. Indeed preserva-
tion of conservation laws in the nonlinear stage is crucial for numerical stability and for avoiding
spurious effects. Let us note that approximation (D6) is used in nonlinear gyrokinetic codes.* In
addition, linearization of the gyrokinetic-Vlasov equations (which is the starting point for the eigen-
value problem analysis and for the microinstablilities study) already leads to the loss of all nonlinear
conservation laws. We observed, in Sections III B and III C, that solving equilibrium and first-order
equations allows recovering conservation laws of the Hamiltonian associated to the contours. This,
of course, only to relevant order. Let us note that approximation (D6) is commonly used in the study
of eigenvalue problems for the characterization of kinetic microinstabilities (e.g., Refs. 99 and 98).
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