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Achieving plasmas with good stability and confinement properties is a key research
goal for magnetic fusion devices. The underlying equations are the Vlasov–Poisson
and Vlasov–Maxwell (VPM) equations in three space variables, three velocity vari-
ables, and one time variable. Even in those somewhat academic cases where global
equilibrium solutions are known, studying their stability requires the analysis of the
spectral properties of the linearized operator, a daunting task. We have identified a
model, for which not only equilibrium solutions can be constructed, but many of their
stability properties are amenable to rigorous analysis. It uses a class of solution to the
VPM equations (or to their gyrokinetic approximations) known as waterbag solutions
which, in particular, are piecewise constant in phase-space. It also uses, not only the
gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but
also an asymptotic approximation regarding the magnetic-field-induced anisotropy:
the spatial variation along the field lines is taken much slower than across them.
Together, these assumptions result in a drastic reduction in the dimensionality of the
linearized problem, which becomes a set of two nested one-dimensional problems:
an integral equation in the poloidal variable, followed by a one-dimensional complex
Schrödinger equation in the radial variable. We show here that the operator asso-
ciated to the poloidal variable is meromorphic in the eigenparameter, the pulsation
frequency. We also prove that, for all but a countable set of real pulsation frequencies,
the operator is compact and thus behaves mostly as a finite-dimensional one. The
numerical algorithms based on such ideas have been implemented in a companion
paper [D. Coulette and N. Besse, “Numerical resolution of the global eigenvalue
problem for gyrokinetic-waterbag model in toroidal geometry” (submitted)] and
were found to be surprisingly close to those for the original gyrokinetic-Vlasov
equations. The purpose of the present paper is to make these new ideas accessible
to two readerships: applied mathematicians and plasma physicists. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4960742]

I. INTRODUCTION

A. Motivations and key issues

It is well known that plasmas confined by magnetic fields are often unstable. Indeed, the
presence of density, temperature, velocity, and pressure gradients in the transverse direction of
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the magnetic confinement field constitutes free-energy sources, allowing small perturbations of
the equilibrium state to grow exponentially, that is, the development of instabilities. This, in turn,
leads to an important enlargement in the range of scales (particularly towards high wavenumber)
present in the wave spectrum and to a significant increase in their amplitudes. In this wave-spectrum
configuration, particles interacting with the waves have turbulent or chaotic dynamics. The study of
such instabilities is important, in particular because they are the main cause of turbulent transport of
heat and momentum.

Moreover, the thermal confinement of a magnetized fusion plasma is essentially determined
by the turbulent heat conduction across the equilibrium magnetic field (in the transverse direction
of the magnetic confinement field). Since the main energy loss in a controlled fusion device is of
conductive nature, the energy confinement time has the same order of magnitude as the diffusion
time a2/χT , where χT is the thermal diffusivity and a is the transverse plasma size.

Consequently, the development of microscopic instabilities, through the generated microtur-
bulence, can cause a dramatic reduction in the energy confinement time. The microturbulence
stems from various instabilities (electrostatic, electromagnetic, fluid, . . . ); furthermore, it may or
not involve passing particle trajectories (open trajectories) or trapped ones (closed trajectories). The
problem of accurately describing the status of all these possibilities for a given plasma is not yet
completely solved. So far, many theoretical linear studies have been done on various microinsta-
bilities to estimate their nonlinear saturation levels, the corresponding spectra, and the resulting
transport across the equilibrium magnetic field.

Among all the microinstabilities, usually mentioned in investigating the stability of a magnet-
ically confined plasma, those due to “flute-like” modes are particularly important when explaining
anomalous energy transport in tokamak devices. The main property of these modes, justifying their
name, is that k ∥/k⊥ ≪ 1. Ion temperature gradient (ITG) modes are an example of such modes.

As far as turbulent diffusion is concerned, it is commonly observed that fluid simulations
overestimate the turbulent diffusivity χ by roughly a factor two over the more accurate kinetic
simulations.29 Therefore, deciding which description to use may significantly impact the insta-
bility threshold and the growth rates and thus the predicted turbulent transport. The reason for this
discrepancy is poorly understood, but wave-particle resonant processes (such as Landau damping)
do certainly play an important part. Semi-empirical statistical approximations, known as closures,
have been tried for this, but with little success so far (see, e.g., Ref. 92 and references therein).

The natural framework for studying turbulence and diffusion in the core of fusion plasmas is
the six-dimensional kinetic collisionless models, such as the Vlasov–Poisson and Vlasov–Maxwell
systems. Nevertheless, the presence of a very strong confining external magnetic field introduces a
major simplification: to leading order, one obtains a helical cyclotronic motion (also called gyro-
motion) of the ions around the magnetic field lines. The radius of this helix is of order of the ion
Larmor radius ρi, while the time frequency is of order of the ion cyclotron frequency Ωi. Since
the problem possesses an approximate symmetry (the ion gyromotion), a perturbation analysis can
be applied to create an ignorable coordinate ζ (the gyro-angle, which parametrizes the ion helical
motion) and thereby one has transformed the approximate symmetry (ion cyclotron motion) into an
exact one (ion helical motion). Noether’s theorem then provides a corresponding invariant, the adia-
batic invariant µ (the magnetic moment), which together with the gyro-angle ζ constitutes a pair of
conjugate variables. The gyrokinetic equation, parametrized by the magnetic moment µ, is obtained
by averaging the Vlasov–Poisson or Vlasov–Maxwell along the gyro-angle ζ . The six-dimensional
Vlasov equation has thus been reduced to a four-dimensional gyrokinetic equation, parametrized
by the one-dimensional adiabatic invariant µ, where time frequencies larger than the ion cyclotron
frequencyΩi and wavelengths smaller than the ion Larmor radius ρi have dropped out.38,30,58,17,16

It is important that gyrokinetic simulations measure the discrepancy between the local distribu-
tion function and the Maxwellian distribution, used by most fluid closures. Note that, although more
accurate, the gyrokinetic description of turbulent transport is much more demanding in computer
resources than fluid simulations. This motivates us to revisit an alternative approach, based on the
waterbag-like weak solution of kinetic equations.
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The aim of this paper is to develop the linearized theory of collisionless kinetic flute-like waves,
such as ionic instabilities (ITG modes), using an exact geometric reduction of the gyrokinetic-
Vlasov equations. This reduction makes use of the “waterbag invariants,” expressing, on the one
hand, the conservation of the distribution function along phase-space characteristics and, on the
other hand, the conservation of phase-space volume (Liouville’s theorem). The waterbag model,
which will be discussed in Secs. II-V, can be seen as a special class of weak solutions of the col-
lisionless kinetic equations. It also constitutes a bridge between fluid and kinetic descriptions of a
collisionless plasma, allowing to preserve the kinetic aspects of the problem (such as Landau damp-
ing and resonant wave-particle interactions), while possessing much lower complexity, namely that
of a multi-fluid model. We believe that gyrokinetic-waterbag (or, simply, gyrowaterbag) models are
very promising, insofar as they are amenable both to much analytical theory (thanks to their lower
dimension) and to efficient numerical simulation.6,5,7,9,8,10,2

B. Presentation and explanation of the results

The main result is the design of an algorithm to construct eigenmode solutions for the line-
arized gyrokinetic-waterbag operator, here called the gyrowaterbag integro-differential operator
(see Sec. III A). This construction relies on the asymptotic analysis of the eigenvalue problem
(see Sec. IV) and the spectral analysis of integro-differential operators (see Sec. V) arising from
the asymptotic analysis. We should note that we have been influenced by pioneering work of
Refs. 22, 73, 72, 44, 21, 99, 90, 39, 28, and 70. Such work has provided us with complementary
formalisms for the study in tokamaks, on the one hand, of two dimensional ideal magnetohydro-
dynamic modes and, on the other hand, of kinetic modes, the latter being based on a linearization
of the Vlasov–Maxwell equations, followed by a gyrokinetic approximation (whereas, we use the
gyrokinetic approximation first).

As usual in collisionless collective interactions, the particles described in the waterbag distribu-
tion function are coupled nonlinearly and self-consistently to the field — here the electrical potential
φ — that they produce. In order to have a scalar problem we choose the electrical potential as the
main unknown to write the eigenvalue problem in a closed form.

For describing microinstabilities and low-frequency waves in a toroidal plasma confinement
system whose phase is approximately constant along a magnetic field line, but whose transverse
vector is large, i.e., for k ∥/k⊥ ≪ 1, we usually use the “ballooning formalism” first introduced
in Ref. 22 to describe ideal magnetohydrodynamic ballooning instabilities driven by pressure gradi-
ents. For a detailed description and use of the ballooning formalism, see Sec. III C 2. Here we just
extract what is necessary for an overview of our results.

Using the ballooning transform (see Sec. III C 2), the electrical potential fluctuation φ = φ(t,r)
with r ∈ R3 reads

φ(t,r) =


(n,ℓ)∈Z2


ω∈Sn

exp(−iωt)φωn(θ + 2πℓ; q, θk0,T) exp
�
in
�
ϕ − q(θ + 2πℓ − θk0,T)�� A1(q), (1)

where n is the toroidal wavenumber, q stands for a radial variable, ϕ and θ denote respectively the
toroidal and poloidal angle (see Sec. II C for the description of the toroidal geometry). The constant
angle θk0,T is called the ballooning angle, and the set Sn constitutes the point spectrum of our
linear operator. The eikonal term n

�
ϕ − q(θ + 2πℓ − θk0,T)� in the decomposition (1) represents the

fast variation of the solution in the radial variable q and poloidal angle θ. The constant ballooning
angle θk0,T centers the solution poloidally. The poloidal envelope φωn(θ; q, θk0,T), which depends
parametrically on q and θk0,T , gives the slow variation of the solution in the poloidal angle θ, while
the radial envelope A1(q) determines the slow variation of the solution in the radial direction.

To obtain φωn, θk0,T , A1, and Sn, we roughly proceed as follows. For high toroidal wavenum-
bers n (flute-like modes), that is for k ∥/k⊥ ≪ 1, we use a WKB-type analysis in a field-aligned coor-
dinate system, to demonstrate that one can construct eigenmode solutions of the two-dimensional
gyrowaterbag integro-differential operator. The corresponding equation in the (r, θ)-poloidal plane
turns out not be a two-dimensional partial differential equation; instead, it reduces to two nested
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equations: a one-dimensional Fredholm-type integral equation and a one-dimensional non-self-
adjoint Schrödinger equation (with complex potential).

Let us indicate some key ideas leading to such equations. First, by a suitable choice of the
small parameter expressing the strong transverse/longitudinal anisotropy, we are able to decouple
the radial and poloidal differential operators up to and including the second order.

To zeroth order, we obtain the slowly varying poloidal eigenmode envelope φωn(θ) = φωn(θ; q,
θk0) (see Sec. IV B and the Proposition 2), which satisfies the integral equation

φωn(θ) =
 ∞

−∞
dη K(θ,η;ω0,q, θk0)φωn(η), (2)

where the kernel K(θ,η;ω0,q, θk0) depends parametrically and nonlinearly on the local eigenfre-
quency ω0, radial variable q and ballooning angle θk0. Let us point out that solving (2) amounts
to solving for the mode geometry along the magnetic field lines locally in the radial variable.
After solving (2), for each value of the couple of parameters (q, θk0), we obtain the local eigen-
frequency ω0 = ω0(q, θk0) that depends on the radial variable q and on the ballooning angle θk0.
The zeroth-order solution contains also an arbitrary ballooning function θk0(q) which is determined
from the first-order problem and found to be a constant that can be chosen to maximize the radial
extension of the eigenmode. The study of the first-order problem also shows that the first-order
correction to the eigenfrequency vanishes. Finally, from the second-order problem one obtains
a linear Schrödinger equation for the determination of the radial eigenmode profile A1 and the
second-order global complex eigenfrequency ω∈ Sn.

Some of the key results regarding the compactness of the integral operator in (2) are, of course,
obtained by the detailed study of this operator. This requires, on the one hand, the use of standard
results about compactness of weakly singular operators and integrability properties of the kernels
involved in (2), and, on the other hand, a careful examination of the analytic continuation in com-
plex eigenfrequency in connection with the boundary conditions used to integrate the zeroth-order
equation (for statements of the theorems and detailed proofs, see Sec. V B).

Finally, let us note that our asymptotic approach allows us to prove the construction of normal
modes whose radial extension is of order n−σa with σ > 1/2 (a is the length scale of the small
radius of the torus). Note that in the plasma physics literature, this exponent is frequently found to
be exactly one half, rather than strictly greater to one half.70,73,21,39 It would be of interest to find if
this slight discrepancy is or not an artefact of using the waterbag model.

C. Advantages and drawbacks of the asymptotic approach

The asymptotic approach has one obvious advantage: solving one-dimensional integral equa-
tions has much lower complexity than tackling a two-dimensional partial differential equation prob-
lem to determine the whole spectrum, and furthermore is easily amenable to high parallelization.
Also, of course, the underlying physics and mathematics emerge more clearly and are likely to
lead to further theoretical work. The development of numerical schemes for solving the nested
one-dimensional Fredholm-type equation is beyond the scope of the present paper. Such computa-
tions are presented in a companion paper for the quasilinear gyrowaterbag initial-value problem,24

where it is shown that the asymptotic reduction to nested one-dimensional problems is very faithful,
even when the toroidal wavenumber is only moderately large. Moreover, standard numerical results,
obtained with full gyrokinetic-Vlasov codes without waterbag modeling,29 show also fair agreement
with our results.24

At the moment, there is no rigorous asymptotic theory for the high-toroidal-wavenumber
expansion. Actually writing the equations beyond the second order is quite a challenge, but this
is only a mathematical issue: beyond second order one loses the decoupling into nested one-
dimensional problems and thus one ceases to gain in numerical complexity over the original
problem. Still, if it turns out that one needs to determine modes with radial extension comparable
to the small radius of the torus, then one cannot use our asymptotic theory and solution of the
two-dimensional gyrokinetic-waterbag model becomes unavoidable.
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D. Organisation of the paper

In Secs. II and II A, we recall the gyrokinetic framework and the gyrokinetic-Vlasov equation.
In Sec. II B, we explain the waterbag reduction concept, beginning with a simple one-dimensional
Vlasov model and then apply the waterbag reduction concept to the gyrokinetic-Vlasov equation
to obtain the gyrokinetic-waterbag model. In Secs. II C and II D, we describe the magnetic field
line geometry and the different scales of the problem. In Secs. III A, III B, and III C, we intro-
duce the linearization of the gyrowaterbag model, explain how to analytically solve for the steady
equilibrium state, and how to use field-aligned coordinates and the ballooning-eikonal represen-
tation to recast the system for the perturbations in a form suitable for its subsequent asymptotic
analysis. In Secs. IV and IV F, we perform the asymptotic analysis of the linearized gyrowaterbag
equation and describe an efficient algorithm for constructing eigenmode solutions. In Sec. V, we
perform the spectral analysis of the linear operators that arise from the eigenvalue problem; more
precisely the one-dimensional non-selfadjoint Schrödinger-type operator and the one-dimensional
nested Fredholm-type integral operator with a nonlinear dependency on the eigenparameter. In Ap-
pendix A we give a glossary of the main notation of the paper. In Appendix B we present a rigorous
derivation of the gyrokinetic-waterbag equations. In Appendix C we present the linearization of
the gyrokinetic-waterbag equations in detail. This uses some approximations related to the toroidal
geometry, given in Appendix D.

The length of the present paper, to some extent, reflects our desire to make the material acces-
sible to both the community of applied mathematicians (not necessarily involved in plasmas) and to
that of theoretical and numerical plasma physicists.

II. THE GYROKINETIC FRAMEWORK

A. The gyrokinetic-vlasov equation

Predicting turbulent transport in collisionless fusion plasmas requires solving the gyrokinetic-
Vlasov equation for all species coupled to the Darwin or magnetostatic equations (low-frequency
approximations of Maxwell equations in the asymptotic limit of infinite speed of light11). This gy-
rokinetic approach has been widely used in recent years to study low-frequency micro-instabilities
in a magnetically confined plasma, which are known to exhibit a wide range of spatial and temporal
scales. Within the gyrokinetic Hamiltonian formalism,38,30,58,17,16 the Vlasov equation expresses
the fact that the ion gyrocenter distribution function f = f (t,r, v∥, µ) is constant along gyrocenter
characteristic curves in gyrocenter phase-space (t,r, v∥, µ) ∈ ]0,T] × R3 × R × R+,

Dt f = ∂t f + Fr · ∇r f + Fv∥∂v∥ f = 0, (3)

where the force vector-field F = (Fr,Fv∥) reads

Fr =
b

qiB∗∥
× ∇rH +

1
mi

B∗

B∗∥
∂v∥H , Fv∥ = −

1
mi

B∗

B∗∥
· ∇rH ,

with the definitions

H = 1
2

miv
2
∥ + µB + qiJµφ, B∗ = B +

miv∥

qi
∇ × b, B∗∥ = B∗ · b.

In the previous equations B = B(t,r) denotes the magnetic field with B its Euclidean norm, while
b B B/B stands for the unit vector tangent to the magnetic field line. The magnetic moment
µ B miv

2
⊥/(2B) is the first adiabatic invariant of the ion gyrocenter; mi and qi B Zie are respec-

tively the mass and charge of ions with e > 0 being the electron Coulomb charge. Finally, the
integral operator Jµ stands for the gyroaverage operator defined by

Jµ f (r) = 1
2π

 2π

0
dζ f (r + ρ(ζ)), (4)
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where ζ is the gyroangle. The gyroradius vector ρ is given by

ρ(ζ) =


2µ
qiΩi

â(ζ) = v⊥
Ωi

â(ζ),

where â(ζ) = x̂ cos ζ − ŷ sin ζ is defined in terms of the fixed local unit vectors (x̂, ŷ,b = x̂ × ŷ). The
gyrogauge invariance involves an arbitrary rotation of the perpendicular unit vectors x̂ and ŷ around
the parallel unit vector b. Using Fourier transforms the gyroaverage operator reads

Jµ f (r) =

R3

dk f̂ (k) exp(ik · r) 1
2π

 2π

0
dζ exp(ik · ρ)

=


R3

dk f̂ (k) exp(ik · r) 1
2π

 2π

0
dζ exp

(
ik⊥

v⊥
Ωi

cos(ζ + γ)
)

=


R3

dk f̂ (k) exp(ik · r)J0

(
k⊥v⊥
Ωi

)
,

where k2
⊥ B k2

x̂ + k2
ŷ and tan(γ) B kŷ/kx̂. As usual, Ωi B qiB/mi is the ion cyclotron frequency and

J0 is the Bessel function of the first kind of zeroth order.
The gyrokinetic-Vlasov equation (3), which describes the dynamics of ions gyrocenter, is

coupled to an adiabatic electron response via the quasi-neutrality condition

−∇⊥ ·
(

ni0

BΩi
∇⊥φ

)
+

eτni0

Ti0
(φ − λ⟨φ⟩∥) = 2π

Ωi

qi


R

dv∥


R+

dµJµ f (t,r, v∥, µ) − ni0, (5)

which determines self-consistently the electrical potential φ from ion gyrocenter distribution func-
tion f . In quasi-neutrality equation (5) we set τ = Ti0/Te0 and λ ∈ {0,1}; the quantity ⟨φ⟩∥ denotes
the average of the electrical potential φ over a magnetic field line (or surface for irrational magnetic
flux surface).

Since the magnetic moment µ is not an independent variable but a parameter or a label related
to an (adiabatic) invariant, we can consider the plasma as a superposition of a (possibly uncount-
able) collection of bunches of particles having the same initial magnetic moment µ. This standard
approach is equivalent, mathematically, to considering solutions of the Vlasov equation (3), written
as

f (t,r, v∥, µ) =

M

fν(t,r, v∥)δν(µ)m(dν).
Here δν(µ) is the Dirac mass, ν is a parameter belonging to some probability space M (presently,
M = R+), m is a probability measure on that space and fν are smooth functions, which still satisfy
the Vlasov equation (3) with µ = ν. A particular useful instance of this, which is quite central in our
approach, happens when µ is a discrete variable, taking finitely many or enumerably many values,
labelled by an index ℓ, so that m(dν) = 

ℓϖℓδ(ν − µℓ), where ϖℓ are positive constants. As a
consequence the distribution function f can be recast as

f (t,r, v∥, µ) =

ℓ

ϖℓ fµℓ
(t,r, v∥)δ(µ − µℓ), (6)

where the function fµℓ
(t,r, v∥) satisfies the Vlasov equation (3) (with µ = µℓ), for all values of the

index ℓ.

Remark 1. Let us note that the gyrokinetic-Vlasov equation (3) satisfies the Liouville theorem

d
dt


Ω(t)

B∗∥drdv∥ = 0 ⇐⇒ ∂t(B∗∥) + ∇r · (B∗∥Fr) + ∂v∥(B∗∥Fv∥) = 0,

where Ω(t) is the image of any bounded phase-space volume element Ω(0) from the Lagrangian flow
induced by the force field F. The Liouville theorem allows to recover the conservative form of the
Vlasov equation (3), i.e.,

∂t(B∗∥ f ) + ∇r · (B∗∥Fr f ) + ∂v∥(B∗∥Fv∥ f ) = 0. (7)
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The Liouville theorem is also the key ingredient to obtain the conservation laws associated to
the gyrokinetic system (3) and (5), such as the conservation of mass, of energy, of the Boltzmann
entropy, of the Casimir functionals Θ( f ) (with Θ : R+ → R, smooth functions), and of the Lp-norms
(1 ≤ p ≤ ∞) of f .

B. The gyrokinetic-waterbag model

In this section we present the derivation of the gyrowaterbag model by using the waterbag
reduction concept that we apply first to a simple one-dimensional (1D) Vlasov equation. This high-
lights the concept without burdening the reader with the full complexity of the gyrokinetic-Vlasov
multi-dimensional equation.

1. The waterbag reduction concept in 1D

Let us consider a 1D periodic (in x-space) collisionless plasma (with a 2D phase-space (x, v))
described by the Vlasov equation

∂t f + v∂x f + F∂v f = 0, (8)

with f = f (t, x, v). The force vector-field F = F(t, x, v) is taken divergence-free: ∇x, v · F = 0, and
does not need to be specified here. At the initial time, the situation is as depicted in the left panel
of Fig. 1. Introducing the bag heights A1, A2, and A3, as shown in the right panel, the initial
distribution function reads (withN = 3)

f (0, x, v) =
N
j=1

A j

(
Υ(v+j (0, x) − v) − Υ(v−j (0, x) − v)

)
. (9)

Here v+j and v−j denote contours or curves in phase-space (with j = 1, . . . ,N ) and Υ is the Heaviside
unit step function.

The Liouville theorem expresses phase-space measure conservation, namely

d
dt


Ω(t)

dvdx = 0.

Here Ω(t) is the image of any bounded phase-space volume element Ω(0) from the Lagrangian
flow induced by the force field F. This requires v+j and v−j to remain smooth and not to cross
(single-valuedness is not mandatory); as a consequence, the area between the contours v+j and v−j is
conserved and equal to a fixed initial constant. Moreover, since the advective form of the Vlasov
equation (8) expresses the constancy distribution function along the characteristic curves, the bag
heights A j are invariants (constant) and the structure of the waterbag distribution function (9) is

FIG. 1. The waterbag reduction concept: phase-space plot for a three-bag waterbag model (left panel) and corresponding
waterbag distribution function (right panel); from a continuous distribution function f (right panel), we can obtain the
waterbag distribution function (its velocity profile, right panel) with three bags by using a Lebesgue subdivision; in the
right panel we observe the waterbag invariants (colored horizontal slices) and Liouville invariants (hatched vertical slices).
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also preserved in time so that we obtain

f (t, x, v) =
N
j=1

A j

(
Υ(v+j (t, x) − v) − Υ(v−j (t, x) − v)

)
. (10)

Therefore the problem is entirely described by the constants A j and the functions v+j and v−j for
the evolution equations are obtained as follows: observing that a particle on the contour v+j (or v−j )
remains on this contour, the equations for v+j and v−j are

Dtv
±(t, x) = ∂tv±(t, x) + �v±∂xv±� (t, x) = F(t, x, v±). (11)

This equation can also be obtained directly by substituting the distribution function (10) into the
Vlasov equation (8), in the sense of distribution theory.

Since a hydrodynamic description with several fluids, labelled by the index j, involves n j, u j,
and pj (respectively, density, average velocity, and pressure of the fluid j) we can predict the possi-
bility of casting the waterbag model into the hydrodynamic frame with, in addition, an automati-
cally provided equation of state. Indeed, let us define for each bag or fluid j, the density n j, average
velocity u j, and pressure pj such as n j = A j(v+j − v−j ), u j = (v+j + v−j )/2, and pj = n3

j/(12A2
j). By

adding and subtracting contour equations (11), for each bag or fluid j we recover the conserva-
tive form of the continuity (12) and Euler (13) equations (isentropic gas dynamics equations with
γ = 3), namely

∂tn j + ∂x(n ju j) = 0, (12)

∂t(n ju j) + ∂x
(
n ju2

j + pj

)
= n jF. (13)

The geometric interpretation of the continuity and Euler equations (12) and (13) is that the shape
(defined by the boundaries v+j and v−j ) of the bag j deforms, while its volume

n j dx

is conserved in time. This is what we call the waterbag invariant. Obviously, we observe that we
have reduced the kinetic Vlasov equation (8) to a multi-fluid hydrodynamic system (12) and (13).
This is what we call the waterbag reduction concept, which is an exact reduction (we pass from a
N-dimensional problem to a (N − 1)-dimensional problem; here N = 2) based on Liouville invari-
ants. Finally, another right and short way to see the waterbag reduction concept is just to consider a
foliation of the phase-space by level lines, and solve the dynamics of the level lines.

The idea of using the many fluid structures to approximate collisionless kinetic equations seems
to date from the sixties. In order to work with low-dimensional models for performing accurate
numerical simulations with a tractable amount of data, physicists introduced first the waterbag
model in plasma physics27,3,4 and astrophysics.67 Next mathematicians use the representation of
many fluid structures (using Dirac and Heaviside distribution functions) to study rigorously the
quasineutral limit of the Vlasov-Poisson equation55,56 or to derive formal relations between the
Vlasov equation and the semi-classical limit of the nonlinear Schrödinger equation.106 In these
works the idea is to use the nice properties of some fluid models such as hyperbolicity or con-
vexity. The reciprocal idea to use a kinetic formulation of fluid equations to get a mathematical
breakthrough in the well-posedness of nonlinear systems of conservation laws and to design new
accurate numerical schemes dates from the eighties with a series of works.12–15,43,74,75,81,82 In these
works the waterbag or Heaviside function plays a crucial role. The idea is to take advantage of the
linear structure of the kinetic equation (the so-called free-streaming equation) which is obtained
from a lifting of the nonlinear conservation laws by using an extra variable, i.e., by increasing the
dimension of the space.

2. The gyrokinetic-waterbag equations

Let us now assume that we deal with the discrete decomposition (6), where the number of
values of the parameter µ is finite, say M. Now, for every magnetic moment µ, we shall consider
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two three-dimensional foliations, denoted {v±
µb
(t,r)}b, of the four-dimensional phase-space (r, v∥),

which may be viewed as families of three-dimensional smooth functions {v±
µb
(t,r)}b, labelled by

the one-dimensional index b, belonging to the set [1, . . . ,N ]. For every adiabatic invariant µ, we
specify 2N non-closed single-valued smooth contours {v±

µb
(t,r)}b≤N of the (r, v∥)-phase-space or-

dered such that ... < v−
µ b+1 < v−

µb
< · · · ≤ 0 ≤ · · · < v+

µb
< v+

µ b+1 < · · · , and some strictly positive
real numbers {Aµb}b≤N that we call bag heights. In other words, for a fixed value of the parameter
µ, the “plus” and “minus” branches v±

µ b
are monotonic with respect to the variable index b. For

every value of the parameter µ, we then construct the distribution function fµ(t,r, v∥) such that

fµ(t,r, v∥) =
N
b=1

Aµb

(
Υ

(
v+µb(t,r) − v∥

)
− Υ

(
v−µb(t,r) − v∥

))
. (14)

As long as the contours are smooth, single-valued, and do not cross, the function (14) is an exact
weak solution of the gyrokinetic-Vlasov equation (3) in the sense of distribution theory, if and only
if the following gyrowaterbag equations in advective form are satisfied:

B∗∥(v±µb)∂tv±µb +
(

1
qi

b × ∇Φ + v±µbB∗(v±µb)
)
· ∇v±µb +

1
mi

B∗(v±µb) · ∇Φ = 0, ∀(µ,b).
After some algebra, the previous advective form of the gyrowaterbag equations can be written in
conservative form as

∂

∂t

(
1
2


B + B∗(v±µb)


· bv±µb

)
+ ∇ ·

(
1

miqi

(
qiA + miv

±
µbb

)
× ∇H (v±µb)

)
= 0, ∀(µ,b), (15)

with the definitions

B = ∇ × A, B∗(v±µb) = B + (mi/qi)v±µb∇ × b, B∗∥(v±µb) = B∗(v±µb) · b,
H (v±µb) = miv

±2

µb/2 + Φ, Φ = qiJµφ + µB.

The quasi-neutrality coupling (5) can be rewritten as

−∇⊥ ·
(

ni0

BΩi
∇⊥φ

)
+

eτni0

kBTi0
(φ − λ⟨φ⟩∥) = 2π

Ωi

qi

M
ℓ=1

N
b=1

AµℓbJµℓ
(v+µℓb

− v−µℓb
) − ni0. (16)

Remark 2. Since the force vector-field F = (Fr,Fv∥) is not divergence-free (∇r, v∥ · F , 0), we
have

d
dt


Ω(t)

drdv∥ , 0,

and thus the Liouville theorem is not satisfied in the variables (r, v∥). Therefore, we should not a
priori use the variables (r, v∥) and the waterbag distribution function (14) to apply the waterbag
reduction concept, which leads to Equations (15). Introducing the Jacobian

J(r, v∥) = B∗∥(r, v∥) = B · b + (mi/qi)v∥b · ∇ × b,

we observe that the Liouville theorem for the gyrokinetic-Vlasov equation (3) reads

d
dt


Ω(t)

J(r, v∥)drdv∥ = 0. (17)

The appearance of the Jacobian J in (17) expresses that the variables (r, v∥) are not canonical.
Nevertheless, we can introduce the new “velocity” variable ξ ∥, which is defined as the primitive of
J with respect to v∥, i.e.,

ξ ∥ =

 v∥
dv∥J(r, v∥).

The variables (r, ξ ∥) are now well suited to applying rigorously the waterbag reduction concept (by
introducing the contours ξ±

µb
(t,r) in the (r, ξ ∥)-phase-space). Indeed, we have the Liouville theorem

d
dt


Ω(t)

drdξ ∥ = 0.
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In Appendix B, we use the variables (r, ξ ∥) to rewrite the gyrokinetic-Vlasov equation. Then apply-
ing rigorously the waterbag reduction concept, we show that we finally recover the gyrowaterbag
Equation (15), which is definitely correct even if it is not rigorously derived by using the waterbag
distribution function (14) in the variables (r, v∥). This result is not surprising since, whatever the
variables we used (canonical or not) if there exists intrinsically a Liouville theorem, the latter can
be expressed in such variables. Another way to understand the Liouville theorem (17) is that it is
equivalent to the following conservation law satisfied by the Jacobian J:

∂t J + ∇ · (JFr) + ∂v∥(JFv∥) = 0.

This conservation law can be easily recovered by taking f = 1 in the conservative form of the
gyrokinetic-Vlasov equation (7).

Before proceeding, we need to specify the magnetic field line geometry that we consider, and
describe the spatial and temporal scales of our system. Let us note that the equations written above
are valid for any suitable magnetic field-line geometry. We next restrict the problem to a magnetic
field having special symmetry and geometric properties described below.

C. The magnetic field line geometry and the toroidal coordinate system

In the toroidal coordinate system of Fig. 2, ϕ denotes the toroidal angle, θ the poloidal angle, r
the minor radius of a magnetic flux surface, a the minor radius of the torus, and R0 the major radius
of the magnetic axis with θ = 0 at the outside of the torus.

The expression for the magnetic field, corresponding to the assumption of concentric circular
cross-section magnetic flux surface, is given in the orthonormal toroidal basis (er ,eθ,eϕ) by

B = (B0eϕ + Bθ(r)eθ)/λ(θ), (18)

where λ(θ) B 1 + ϵa cos θ, and with ϵa B r/R0 ≪ 1, the inverse of the so-called aspect ratio. We
then define the vector field R = R0λ(θ)(cos θer − sin θeθ) (see Fig. 2), and R = |R| = R0 + r cos θ,
where | · | denotes the Euclidean norm. The poloidal component of the magnetic field Bθ(r) is given
by Bθ(r) = rB0/(qR), where the so-called safety factor q = q(r) is given and of order unity. Fig. 3
illustrates the geometry of a magnetic field line on a rational magnetic flux surface r0 (i.e., the safety
factor q(r0) takes a rational value at the particular radius r0).

Let us define b = B/B, the unit vector tangent to the magnetic field line with B = |B|. We
then get Bθ/Bϕ = bθ/bϕ = r/(qR), with bϕ = (1 + r2/(qR)2)−1/2 = 1 + O(ϵ2

a) ≃ 1 and B = B0/λ(θ)
1 + r2/(qR)2 = B0/λ(θ) + O(ϵ2

a) ≃ B0/λ(θ) = B0R0/R.
Finally, let us recall useful expressions of the gradient, divergence, and rotational differential

operators in the orthonormal toroidal basis (er ,eθ,eϕ),
∇ = er∂r + eθr−1∂θ + eϕR−1∂ϕ, ∇ · A = (r R)−1∂r(r RAr) + (r R)−1∂θ(RAθ) + R−1∂ϕ(Aϕ),

∇ × A = er(Rr)−1 �∂θ(RAϕ) − ∂ϕ(r Aθ)	 + eθR−1 �∂ϕ(Ar) − ∂r(Raϕ)	 + eϕr−1 �∂r(r Aθ) − ∂θAr
	
,

where (Ar , Aθ, Aϕ) are the components of the vector A in the orthonormal toroidal basis (er ,eθ,eϕ).
Moreover, it is useful to get the expressions of the parallel and perpendicular components of the

FIG. 2. Toroidal geometry.
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FIG. 3. Geometry of a magnetic field line (yellow) on a rational magnetic flux surface r0 (purple).

gradient operator in the toroidal coordinate system. Since bθ/bϕ = r/(qR), we get

∂∥ = b · ∇ =
bϕ
R

(
∂ϕ +

1
q
∂θ

)
,

∇⊥ = (I − b ⊗ b)∇ = −b × (b × ∇) = er∂r + eθ *
,
−

bθbϕ
R

∂ϕ +
b2
ϕ

r
∂θ+
-
+ eϕ *

,

b2
θ

r
∂ϕ −

bθbϕ
r

∂θ+
-
,

where ⊗ denotes the tensor product.
Let us note that the geometry of our assumed magnetic field implies, after a simple calculation,

the estimate

|b.∇ × b| ≃ 1/R, (19)

which will be useful later on.

Remark 3. The most important magnetic confinement devices currently being developed and
under construction are of axisymmetric toroidal shape, i.e., invariant under ϕ-angle rotation around
the Z-axis, see Fig. 2. In this paper we restrict ourselves to axisymmetric toroidal geometry with
concentric circular cross-section nested magnetic flux surfaces. Nevertheless, the analysis can be
extended to more general shapes of axisymmetric nested toroidal magnetic flux surfaces. In that
case, instead of classical toroidal coordinates we need to consider orthogonal magnetic flux coor-
dinates and to define a local safety factor q with angle-like dependence.60 Even if the algebra is a
little more cumbersome, the method developed hereafter remains valid and can be straightforwardly
applied.

D. Definition of scales and their ordering

In this section we define the different scales involved in our problem and dimensionless param-
eters, which fix the ratio between the different scales. The longitudinal scale L ∥ and the transverse
scale L⊥ are defined by

L ∥ = O(qR0), L⊥ = O
( a

n

)
, so that k ∥ = O

(
1

qR0

)
, k⊥ = O

( n
a

)
,

where n is the toroidal mode number, and where a and R0 are, respectively, the minor and the major
radius of the axisymmetric torus (see Fig. 2). We next suppose that the longitudinal (respectively,
transverse) velocity scale v̄∥ (respectively, v̄⊥) is of order of the ion thermal velocity vth, i. We set
ω̄ = k ∥v̄∥ ≃ k ∥vth, i, the magnitude order of eigenfrequency of the waves, while ρi = vth, i/Ωi (with
Ωi B qiB/mi) is the ion Larmor radius. We then define

ϵ =
1
n
, ϵa =

r
R0
=

r
R
=

a
R0
, ϵω =

ω̄

Ωi
, ϵk =

k ∥
k⊥
, ϵ∇⊥ =

1
k⊥a

, ϵ⊥ = k⊥ρi, ρ⋆ =
ρi
a
.

Assuming the ordering ϵ < ϵ⊥ . 1, we then get

ϵ∇⊥ = O(ϵ), ϵk = O(q−1ϵϵa), ρ⋆ = O(ϵ⊥ϵ∇⊥) . O(ϵ), k ∥ρi = O(q−1ϵϵaϵ⊥) . O(q−1ϵϵa).
For microinstabilities such as the ion-temperature-gradient (ITG) instability, the physical values
are typically ϵa & 10−1 (e.g., ϵa ≃ 1/4), ϵ ≃ 10−2, and ϵω ≃ 10−3, which lead to ϵk ≃ 10−3 and
k ∥ρi ≃ 10−3.
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III. DERIVATION OF THE EIGENVALUE PROBLEM
FOR THE GYROKINETIC-WATERBAG MODEL

With the eventual goal of determining the eigenelements of the linearized gyrowaterbag model,
in this section, we solve the equilibrium problem and derive a two-dimensional linear integro-
differential operator in a suitable form. We shall be able to reduce it into a sequence of one-
dimensional integral equations by exploiting the anisotropy between parallel and transverse
directions.

A. Linearization of the gyrowaterbag model

With the aim of studying the spectral properties of the operator stemming from the linearization
of the gyrowaterbag model (15) and (16), we decompose the solution into a steady equilibrium
state and an unsteady small perturbation. More precisely, since we assume axisymmetric magnetic
flux surfaces, the steady equilibrium state remains also invariant by any rotation of the toroidal
angle ϕ around the symmetry axis Z of the torus. Therefore we are allowed to make the following
decomposition:

φ(t,r) = φ0(r, θ) + φ1(t,r), with |φ1| ≪ 1,
v±µb(t,r) = a±µb(r, θ) + w±µb(t,r) with |w±µb | ≪ 1.

Here, the unknowns (a±
µb
, φ0) define the steady equilibrium state while the unknowns (w±

µb
, φ1)

specify the unsteady small perturbation. Using the previous decomposition and some approxima-
tions related to the magnetic field geometry (see Appendix D), at zeroth order with respect to the
perturbation, we obtain the following system (for more details, see Appendix C):

a±µb∂∥a
±
µb +

*.
,

1
B

b × ∇Jµφ0 +
*.
,

µ

qi
+

a±
2

µb

Ωi

+/
-

b × κ+/
-
· ∇⊥a±µb

+ *
,
b +

a±
µb

Ωi
b × κ+

-
·
(
µ

mi
∇B +

qi
mi
∇Jµφ0

)
= 0, (20)

−∇⊥ ·
(

ni0

BΩi
∇⊥φ0

)
+

eτni0

kBTi0
(φ0 − λ⟨φ0⟩∥) = 2πΩi

qi


µb

AµbJµ(a+µb − a−µb) − ni0, (21)

where κ := b · ∇b is the local radius-of-curvature vector of the magnetic field line. To first order —
here, there is no need to expand beyond first order — we get the system

∂tw
±
µb + a±µb∂∥w

±
µb +

*.
,

1
B

b × ∇Jµφ0 +
*.
,

µ

qi
+

a±
2

µb

Ωi

+/
-

b × κ+/
-
· ∇⊥w±µb + w

±
µb

*
,
∂∥a±µb + 2

a±
µb

Ωi
(b × κ) · ∇⊥a±µb+

-

+
1
B

b × ∇Jµφ1 · ∇⊥a±µb +
qi
mi
∂∥Jµφ1 +

qi
mi
∇⊥Jµφ1 · (b × κ)

a±
µb

Ωi
+

qi
mi
∇⊥Jµφ0 · (b × κ)

w±
µb

Ωi
= 0,

(22)

−∇⊥ ·
(

ni0

BΩi
∇⊥φ1

)
+

eτni0

kBTi0
(φ1 − λ⟨φ1⟩∥) = 2π

Ωi

qi


µb

AµbJµ(w+µb − w−µb). (23)

B. The analytic representation of the steady equilibrium state

Here we aim at solving analytically the zeroth-order system (20) and (21), defining the steady
equilibrium state. Before stating the proposition, which gives the analytic integration of equilibrium
contours, we must introduce some notation and definitions.
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Let [rmin,rmax] be the radial domain and a◦
µb
(r) ∈ C1

b
([rmin,rmax]) be the given non-negative

functions. We define the functions Λµb : [rmin,rmax] ∋ r −→ R+ as

Λµb(r) = 2µB0

mia◦
2

µb
(r)

r
R0
,

with B0 the maximum of the Euclidean norm of the magnetic field and R0 the major radius of the
torus (see Sec. II C). Since we will see below that a contour a±

µb
(r, θ) can be decomposed into

disjoint open or closed contours with disjoint radial compact supports, for a fixed couple (µ,b) we
can define the following partition of the radial domain:

[rmin,rmax] = ∆Oµb ∪ ∆Cµb, ∆Oµb ∩ ∆Cµb = ∅.
Here

∆Oµb B
�
r ∈ [rmin,rmax] s.t. Λµb(r) < 1/2,

	
,

∆Cµb B
�
r ∈ [rmin,rmax] s.t. Λµb(r) > 1/2,

	
.

Therefore, we define two sets

O =
�(µ,b), s.t. Λµb(r) < 1/2

	
, (24)

C =
�(µ,b), s.t. Λµb(r) > 1/2

	
, (25)

which correspond respectively to open and closed contours. We denote by C = O ∪ C the set of all
contours. Let us fix a couple (µ,b). We observe that the open contour (µ,b), i.e., belonging to the set
O defined by (24), has radial support ∆Oµb, while the closed contour (µ,b), i.e., belonging to the set
C defined by (25), has radial support ∆Cµb.

Using the definition of scales and of the ordering of Sec. II D, and dimensionalizing (20),
we observe that the third term of (20) is of order ρ⋆ = O(ϵ), while the others are of order one.
Therefore, we can neglect the third term of (20), because it will be consistent with the forthcoming
asymptotic analysis of order ϵγ, with 0 < γ < 1. Neglecting that term, (20) becomes

a±µb∂∥a
±
µb +

(
1
B

b × ∇Jµφ0

)
· ∇⊥a±µb + *

,
b +

a±
µb

Ωi
b × κ+

-
·
(
µ

mi
∇B +

qi
mi
∇Jµφ0

)
= 0. (26)

Within this framework, we have the following.

Proposition 1. We assume that the functions a±
µb
(r,0) are symmetric so that a±

µb
(r,0) = ±aµb

(r,0) = ±a◦
µb
(r), with a◦

µb
∈ C1

b
([rmin,rmax]) non-negative. Then (21) and (26), which govern the

shape of equilibrium contours a±
µb

, admit the following unique solution:

a±µb(r, θ) = ±a◦µb(r)


1 + Λµb(r)(cos θ − 1),
with θ ∈ ] − π,π[ if (µ,b) ∈ O or θ ∈ ] − θLµb, θLµb[ if (µ,b) ∈ C. Here the limit angle θLµb is
defined by

θLµb(r) =
�����
arccos

(
1 − 1
Λµb(r)

) ����� ,
and corresponds to the angle where the positive branch a+

µb
and negative branch a−

µb
of closed

contours are meeting.

Proof. At the boundary of the poloidal domain (here a poloidal ring), we take the usual homo-
geneous Dirichlet conditions for φ0. Moreover, we assume that

ni0 =
2πΩi

qi


µb

AµbJµ(a+µb − a−µb),

and that the given density ni0 and temperature Ti0 have the desired regularity. We then get φ0 = 0,
because the elliptic operator on the right hand side of (21) is invertible. Using φ0 = 0 into (26),
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and the approximation (D3) of the magnetic field line curvature (see Appendix D), Equation (20)
becomes

∂θH±µb = 0, with H±µb =
a±

2

µb

2
+
µB
mi

. (27)

Equation (27) can be easily integrated to obtain

a±µb(r, θ) = a±µb(r, θ0µb)*.
,
1 +

2µ(B(r, θ0µb) − B(r, θ))
mia±

2

µb
(r, θ0µb)

+/
-

1/2

. (28)

From the assumptions of Sec. II C, we can easily see that B = B0(1 − r/R0 cos θ) + O(ϵ2
a), and

thus, with the choice θ0µb = 0 for all (µ,b) (other reference points could be chosen), Equation (28)
becomes

a±µb(r, θ) = a±µb(r,0)


1 + Λ±
µb
(r)(cos θ − 1), with Λ

±
µb(r) =

2µB0

mia±
2

µb
(r,0)

r
R0
. (29)

If the argument of the square root of (29) is positive, i.e., for Λ±
µb
< 1/2, then the corresponding

contour is open in the sense that it is single-valued. But now, if Λ±
µb
≥ 1/2, then there exists a limit

angle θ±
Lµb

(r), given by

θ±Lµb(r) = ± arccos *
,
1 − 1
Λ±

µb
(r)

+
-
, (30)

such that the argument of the square root of (29) and the contour itself vanishes. Assuming now
that a±

µb
(r,0) are symmetric, so that a±

µb
(r,0) = ±aµb(r,0) = ±a◦

µb
(r), with a◦

µb
(r) ≥ 0, then the

contours a±
µb
(r, θ) for which Λµb ≥ 1/2 can be connected to each other and thus form a multi-valued

(double-valued) closed contour. �

Remark 4. In a field-aligned coordinates description (see Sec. III C 1), the contours must be
extended in the variable θ over the whole real line by periodicity. Extension of open contours is
done by periodicity of period 2π. For closed contours and each couple (µ,b) ∈ C, we extend the
contour aµb by continuity to zero in the variable θ on the set ] − π,π]\]θ−

Lµb
, θ+

Lµb
[ and next extend

it to the whole real θ-line by periodicity of a period 2π.

Remark 5. Let us note that the case where Λµb = 1/2 is a transition point between two contour
topologies (closed and open) and can be considered both closed and open. This transition point
seems to lead to a loss of integrability in the equation of the perturbation, since it is an algebraic
singularity of order minus one (see Sec. V B 1). Hence we suppress this pathological case in the
definition of the equilibrium contours. This is not surprising, since the nature of this transition point
is the same as the X-point in an autonomous one-dimensional Hamiltonian system, where the role
of the separatrix is played here by the contour for which Λµb = 1/2.

Remark 6. Let us note that H±
µb

can be interpreted as the unperturbed equilibrium Hamilto-
nian, associated to the steady equilibrium contours a±

µb
. Therefore, (27) can be interpreted as a

conservation law, which expresses the conservation of the unperturbed equilibrium Hamiltonian on
magnetic flux surfaces (here, axisymmetric nested tori with circular cross-section). Equation (20)
can be seen as a first-order transport equation of the form

Fθ

(
r, θ,a±µb

)
∂θa±µb + Fr

(
r, θ,a±µb

)
∂ra±µb = S

(
r, θ,a±µb

)
, (31)

with the given initial conditions r(t0) = r0, θ(t0) = θ0, and a±
µb
(r(t0), θ(t0)) = a±

µb
(r0, θ0). Equation

(31) can be solved by the characteristic curves method (i.e., {dtr = Fr; dtθ = Fθ; dta±µb = S}), as
long as the characteristics are regular enough and do not cross.
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Remark 7. By neglecting terms of order ρ⋆ in the first-order Equation (20) and choosing sym-
metric radial profiles for a±

µb
(r,0) (i.e., a±

µb
(r,0) = ±a◦

µb
(r)), we obtain symmetric closed contours,

i.e., a symmetry between the positive and negative branches of a closed contour. Therefore the
projection on the poloidal plane of the level lines (in absolute value) of the positive and negative
branch of a closed contour, coincide. On the contrary, when we solve the initial value problem (20)
or (31), the level lines (in absolute value) of the negative and positive branch of a closed contour
will no more be symmetric. Consequently, projections on the poloidal plane will not coincide and
thus poloidal projections of level lines will form some kind of banana-shaped orbits with non-zero
width. The symmetric case corresponds to banana orbits with zero banana width.

C. System for the perturbation

We will define a well-suited system for the perturbation (22) and (23) that will facilitate the
asymptotic analysis in Sec. III C 3, by using a field-aligned coordinate system and the ballooning-
eikonal representation presented respectively in Secs. III C 1 and III C 2.

1. Field-aligned coordinate system

Assuming that the given radial function q : [rmin,rmax] −→ R+ is such that q′ > 0 (see
Sec. II C), the coordinate system aligned with the magnetic field lines reads

x = r − r0,

η = θ,

α = ϕ − q(r)θ,
which implies

∂r = ∂x − q′η∂α,
∂θ = ∂η − q∂α,
∂ϕ = ∂α.

Here the constant radius r0 is a reference rational magnetic flux surface, and (r, θ, ϕ) is the toroidal
coordinate system (see Sec. II C for more details). Using the previous field-aligned coordinate
system, the parallel and perpendicular gradient operators read in the orthonormal toroidal basis
(er ,eθ,eϕ)

∂∥ =
bϕ
qR

∂η,

∇⊥ = er (−q′η∂α + ∂x) + eθ
�
g11∂α + g12∂η

�
+ eϕ

�
g21∂α + g22∂η

�
,

with the matrix coefficients g11 = −g12q, g21 = −g22q, g12 = b2
ϕ/r , g22 = −bθbϕ/r , and the safety-

factor-like q = (r2 + q2R2)/(qR2). Since q′ > 0 (q > 0), we can use as radial variable, either r , q or x
whose domains of definition are respectively given by [rmin,rmax], [xmin, xmax], and [qmin,qmax], with
xmin = rmin − r0, xmax = rmax − r0, qmin = q(rmin), and qmax = q(rmax).

2. Ballooning transformation and eikonal representation

Description of the ballooning transformation. In this section we briefly present the balloon-
ing transformation, which is commonly used in toroidally confined plasmas to represent a field
perturbation in an axisymmetric system.59,61,60,23,78 The first step of this method is to transform
the θ-periodic space into an unbounded “covering space” in the variable η, which has the sense
of a coordinate along the magnetic field lines. The second step takes advantage of the anisot-
ropy between the η-parallel and the α-transverse directions to use eikonal analysis. Since we
have assumed axisymmetric equilibrium magnetic flux surfaces, toroidal Fourier modes in the
ϕ-variable with wavenumber n ∈ Z are still eigenmodes in the toroidal ϕ-direction, while this is
no more the case for the poloidal Fourier modes in the θ-variable with wavenumber m ∈ Z. In
other words the eigenmode envelope in the (r, θ)-variables satisfies a truly two-dimensional quasi-
linear integro-differential equation in the (r, θ)-variables, with nonlinear (resp. convolution) terms
in the variable θ (resp. m). Let us consider an arbitrary perturbation φ(t,r). The periodicity of the
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perturbation in the toroidal (θ,ϕ)-variables allows us to use a Fourier decomposition

φ = φ(t,r) =

n∈Z
Φn(t,r, θ) exp(inϕ) =


m∈Z


n∈Z
Φmn(t,r) exp(i(nϕ − mθ)),

where

Φmn(t,r) = 1
(2π)2

 2π

0
dθ

 2π

0
dϕ φ(t,r) exp(i(mθ − nϕ)).

In the field-aligned variables r = (x, η,α), since φ = φ(t,r, θ, ϕ) = φ̃(t, x, η,α) = φ̃(t, x, η, ϕ − qθ),
the 2π-periodicity of φ in ϕ implies the 2π-periodicity of φ̃ in α. Therefore in the field-aligned
variables we can use a Fourier decomposition along the α-variable, i.e.,

φ = φ̃(t,r) =

n∈Z

Φn(t, x, η) exp(inα),

where the nth Fourier mode Φn in ϕ-variable is linked to the nth Fourier mode Φn in the α-variable
by Φn(t, x, θ) = Φn(t,r, θ) exp(inqθ). But the n-th Fourier mode Φn(t, x, η) is generally not periodic
in η since its periodicity depends on rationality of the safety factor q.

The inverse Laplace transform and the residue theorem allow us to obtain the following spectral
decomposition:

φ(t,r) =

n∈Z


ω∈Sn

exp(−iωt)Φωn(r, θ) exp(inϕ), (32)

where Sn is the spectrum that we still have to determine. Let us note that we have Φωn(x, θ) =
Φωn(r, θ) exp(inqθ). We now assume that for every ω ∈ C and n ∈ Z, there exists a function
Φωn ∈ L2([rmin,rmax],Rη), such that Φωn = Φωn ∗ ∆2π, where ∆2π is the 2π-periodic Dirac comb in
the θ-variable. Therefore, using Poisson’s sum formula, we get

Φωn(r, θ) =

m∈Z

exp(−imθ) 1
2π


R

dη Φωn(r, η) exp(imη),

which by identification leads to

Φωmn(r) = 1
2π


R

dη Φωn(r, η) exp(imη). (33)

Since in an axisymmetric toroidal confinement system, micro-instabilities (flute-like perturbations)
develop small perpendicular scales comparatively to parallel ones, the natural technique for such
problem with disparate length scales is the eikonal or WKB decomposition. Therefore, with n ≫ 1,
we use the following eikonal form:

Φωn(r, η) = φωn(η; q, θk(q)) exp(inS(η,q, θk(q))). (34)

Here, the eikonal S is given by

S(η,q, θk(q)) = −qη +


dq θk(q), (35)

where θk denotes a normalized radial wavenumber conjugate to the radial variable q.
Substituting the eikonal (35) into the Fourier mode (33), we observe two dual relationships.

First, the variable η, which determines the global mode azimuthal structure (slow poloidal varia-
tion), is dual to the variable nq − m ≃ x/dmn, which provides the local radial structure (rapid radial
variation). (Previously we have used the definitions x = r − rmn and dmn = 1/(nq′(rmn)), where
dmn corresponds to the distance between neighboring rational magnetic flux surfaces and where
the rational magnetic flux surface rmn associated to the mode (m,n) is defined by nq(rmn) = m.)
Second, the variable θk, dual to nq, provides the global radial structure (slow radial variation).
The global azimuthal structure is given by the envelope φωn(η; q, θk(q)), which depends parametri-
cally on (ω,n,q, θk), and is such that ∂ηφωn ≃ ∂ηS ≃ O(1). We shall return to the definition of the
different space scales involved in our problem in Sec. IV.
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Because of the safety factor q, in a sheared system (i.e., with q non-constant with respect to the
radius r) flute-like perturbations (i.e., k ∥ ≪ k⊥) can occur only near rational magnetic flux surfaces,
which are isolated and defined by m = nq.60 It is easy to prove that on toroidal magnetic flux
surfaces, pure flute perturbations (i.e., k ∥ = 0) can only occur on rational magnetic flux surfaces.
Indeed, to have different values of the perturbation in the transverse direction to the magnetic field
on a given magnetic flux surface there must exist distinguishable field lines and irrational magnetic
flux surfaces are densely covered by a single field line. Therefore, for flute-like disturbances such as
the ITG instability, the poloidal number m and toroidal number n are not really independent. As a
consequence, the spectrum Sn associated to such eigenmodes depends only on the toroidal number
n. Therefore, using (34), and Poisson’s sum formula we get

φ(t,r) =


(n,m)∈Z2


ω∈Sn

exp(−iωt) exp(−imθ) 1
2π


R

dη exp(imη)φωn(η; q, θk) exp
(
in

(
α +


dq θk

))

=


(n,ℓ)∈Z2


ω∈Sn

exp(−iωt)φωn(θ + 2πℓ; q, θk) exp
(
in

(
α − 2πℓq +


dq θk

))
. (36)

Expansion (36) can either be written in the toroidal variables r = (r, θ, ϕ) (i.e., φ = φ(t,r, θ, ϕ)) or in the
field-aligned variables r = (x, η,α) (i.e., φ = φ̃(t, x, η,α)) of Sec. III C 1. Expansion (36), which can
been viewed as a generalized transform analogous to the Fourier or Laplace transforms, is called the
ballooning transformation. It was introduced by tokamak physicists to get a pseudo-spectral decom-
position of the flute-like modes, strongly localized poloidally but not radially, and which can be seen
as coupled set of modes with different helicities and nearly equal amplitude.

Remark 8. There exist different versions — with different names — of the ballooning transfor-
mation, whose mathematical definition is not always fully specified. The mathematical treatment
of short-wavelength toroidal eigenmodes using ballooning transformation is similar to the Bloch
analysis of lattices in solid state physics.73,72,70 An attempt for laying the mathematical foundations
of the ballooning transformation, where questions of existence, uniqueness, and inversion of such
transform are discussed and somehow cleared up, can be found in Refs. 59, 61, 60, 23, and 78.

Remark 9. Let us note that the inhomogeneous normalized radial wavenumber θk can also be
interpreted as a differential operator, which we denote by Θk. Indeed, let us define the complex
amplitude A(q) by

A(q) = exp
(
in
 q

q0

dq̃ θk(q̃)
)

A(q0) or A(x) = exp
(
in
 x

x0

dx̃ q′(x̃)θk(x̃)
)

A(x0).

The differential operators Θk and Tq are defined respectively by

Θk = −
i
n
∂q = −

i
nq′

∂x and Tq = exp
(
in
 q

q0

dq̃Θk

)
.

Assuming now that A ∈ C∞([qmin,qmax]), we get

TqA(q0) = exp
(
in
 q

q0

dq̃Θk

)
A(q0) =

∞
ℓ=0

1
ℓ!
(q − q0)ℓ∂ℓqA(q0) = A(q).

Therefore, the operator Tq can be interpreted as a translation operator, which gives the state A(q) at
q, when acting on the reference state A(q0) at q = q0. Thus, we can indifferently write

A(q) = exp
(
in
 q

q0

dq̃ θk(q̃)
)

A(q0) = exp
(
in
 q

q0

dq̃Θk

)
A(q0).

The action of the operator Θk on the complex amplitude A is thus given by

Θk A = θk A = Aθk,

(Θk)2A = AΘkθk + θkΘk A = A
(
θ2
k −

i
n
∂qθk

)
,

(Θk)ℓA = A
(
θℓk +

ℓ(ℓ − 1)
2in

θℓ−2
k ∂qθk + O(n−2)

)
.
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The inhomogeneous normalized radial wavenumber should be considered as a function θk(q)
(respectively, a differential operator Θk) when it is placed at the right (respectively, left) of the
complex amplitude A.

Use of the ballooning transformation. Here we describe the action of a linear integro-differential
operator and the gyroaverage operator in the ballooning representation. Let us start with the gyroav-
erage operator. From the definition (4) of the gyroaverage operator Jµ, we obtain

(Jµφ)(t,r, θ, ϕ) = 1
2π

 2π

0
dζ φ(t, r̄(ζ), θ̄(ζ), ϕ̄(ζ)),

with100

r̄(ζ) = r − v⊥
Ωi

sin ζ, θ̄(ζ) = θ − v⊥
Ωi

1
r

cos ζ, ϕ̄(ζ) = ϕ − v⊥
Ωi

r
qR2 cos ζ .

Therefore, using the ballooning expansion (36), we get

(Jµφ)(t,r, θ, ϕ) =


(n,ℓ)∈Z2


ω∈Sn

exp(−iωt)

1
2π

 2π

0
dζ exp

(
in


ϕ̄ − q(r̄)(θ̄ + 2πℓ) +


dq(r̄) θk(x̄)

)
φωn(θ̄ + 2πℓ; x̄, θk(x̄))

=


(n,ℓ)∈Z2


ω∈Sn

exp(−iωt) exp
(
in


ϕ − q(r)(θ+2πℓ) +


dq(r) θk(x)

)
Jµ(θ+2πℓ)φωn(θ + 2πℓ; x, θk(x)),

(37)

with x̄(ζ) = x − v⊥
Ωi

sin ζ , and where

Jµ(θ + 2πℓ)φωn(η; x, θ1k) = 1
2π

 2π

0
dζ exp

(
i
n
r

q
(
r − v⊥
Ωi

sin ζ
)
v⊥
Ωi

cos ζ
)

exp
(
in


dx {q′(r − (v⊥/Ωi) sin ζ)θk(x − (v⊥/Ωi) sin ζ) − q′(r)θk(x)}
)

exp
(
in


− v⊥r
ΩiqR2 cos ζ − (θ + 2πℓ){q(r − (v⊥/Ωi) sin ζ) − q(r)}

)
φωn

(
η − v⊥
Ωir

cos ζ ; x − v⊥
Ωi

sin ζ, θk

(
x − v⊥
Ωi

sin ζ
))
.

Let us now describe the action of a certain types of linear integro-differential operators L, on a
perturbed quantity φ. Here, we assume that the linear integro-differential operator takes the form

L =

µb

JµLµb(x, θ, ∂t, ∂ j
ϕ, ∂

p
r , ∂

m
θ )Jµ,

where Lµb stands for a linear differential operator in which the dependence on the variables (x, θ) is
governed by the unperturbed (equilibrium) solution, which is periodic in θ-variable. Using (37), we
then obtain

Lφ =

µb

JµLµb(x, θ, ∂t , ∂ jϕ, ∂pr , ∂mθ )Jµ


(n,l)∈Z2


ω∈Sn

e−iωtein(ϕ−q(θ+2πℓ)+ dq θk)φωn(θ + 2πℓ; x, θk)

=

µb

JµLµb(x, θ, ∂t , ∂ jϕ, ∂pr , ∂mθ )

×


(n,l)∈Z2


ω∈Sn

e−iωtein(ϕ−q(θ+2πℓ)+ dq θk)Jµ(θ + 2πℓ)φωn(θ + 2πℓ; x, θk)

=

µb

Jµ


(n,l)∈Z2


ω∈Sn

e−iωtein(ϕ−q(θ+2πℓ)+ dq θk)

Lµb

(
x, θ,−iω, (in) j, (∂x − inq′[θ + 2πℓ − θk])p, (∂θ − inq)m)

Jµ(θ + 2πℓ)φωn(θ + 2πℓ; x, θk)
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=


(n,l)∈Z2


ω∈Sn

e−iωtein(ϕ−q(θ+2πℓ)+ dq θk)
µb

Jµ(θ + 2πℓ)

Lµb

(
x, θ,−iω, (in) j, (∂x − inq′(θ + 2πℓ − θk))p, (∂θ − inq)m)

Jµ(θ + 2πℓ)φωn(θ + 2πℓ; x, θk)
B 0.

After making the change of variables η = θ + 2πℓ (∂η = ∂θ) and using the periodicity (of the steady
equilibrium state) in the θ-variable, we get


(n,l)∈Z2


ω∈Sn

e−iωt+in(α+ dq θk)

µb

JµLµb

�
x, η,−iω, (in) j, (∂x − inq′(η − θk))p, (∂η − inq)m�Jµφωn(η; x, θk) = 0. (38)

Since the integrand in (38) does not depend on ℓ, we get the integro-differential equation

JµLµb

�
x, η,−iω, (in) j, (∂x − inq′(η − θk))p, (∂η − inq)m�Jµφωn(η; x, θk) = 0,

where ω∈ Sn is the eigenfrequency and φωn is the eigenmode.

3. The well-suited system for the perturbation

We are now ready to reformulate the equations for the perturbations (22) and (23) as a
well-suited system, by using the field-aligned coordinates of Sec. III C 1 and the ballooning-eikonal
representation of Sec. III C 2. We emphasize that this section is only devoted to rewriting an
equivalent system for (22) and (23) and not to performing its asymptotic analysis, even if we already
take into account the anisotropy of the problem through the ballooning-eikonal representation in the
field-aligned coordinate system.

Substituting the ballooning representation (36) — see Sec. III C 2 for its use — into the system
(22) and (23), choosing the field-aligned coordinate system of Sec. III C 1 and using φ0 = 0, af-
ter some algebra, we obtain for every contour (µ,b) ∈ C the two-dimensional integro-differential
equations

L±µbωn(ω, x, η,η − θk, ∂x, ∂η)w±µbωn +M
±
µbωn(ω, x, η,η − θk, ∂x, ∂η)Jµφ1ωn = 0. (39)

In (39) the linear differential operators L±
µbωn

andM±
µbωn

are defined by

L±µbωn =


−iω + in *

,

µ

qi
+

a±
µb

Ωi

+
-

bϕ
R

(
q′(η − θk) sin η + q

cos η
r

)
+

bϕ
qR

∂ηa±µb − 2
a±
µb

Ωi

bϕ
R

(
sin η∂xa±µb −

cos η
r

∂ηa±µb
)


−


*
,

µ

qi
+

a±
µb

Ωi

+
-

bϕ
R

cos η
r
− a±µb

bϕ
qR



∂η −



*
,

µ

qi
+

a±
µb

Ωi

+
-

bϕ
R

sin η


∂x, (40)

M±
µbωn = inbϕ




1
rB

(
q∂xa±µb − q′(η − θk)∂ηa±µb

)
+

qi
mi

a±
µb

Ωi

1
R

(
q′(η − θk) sin η + q

cos η
r

)


+



qi
mi

bϕ
qR
−

bϕ
rB

∂xa±µb −
qi
mi

a±
µb

Ωi

bϕ
R

cos η
r



∂η +




bϕ
rB

∂ηa±µb −
qi
mi

a±
µb

Ωi

bϕ
R

sin η


∂x, (41)
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while the linear integral operator Jµ (see paragraph “Use of the ballooning transform” of
Sec. III C 2) is defined by

Jµ(η ′)φωn(η; x, θk) = 1
2π

 2π

0
dζ exp

(
i
n
r

q
(
r − v⊥
Ωi

sin ζ
)
v⊥
Ωi

cos ζ
)

exp
(
in


dx {q′(r − (v⊥/Ωi) sin ζ)θk(x − (v⊥/Ωi) sin ζ) − q′(r)θk(x)}
)

exp
(
in


− v⊥r
ΩiqR2 cos ζ − η ′{q(r − (v⊥/Ωi) sin ζ) − q(r)}

)
φωn

(
η − v⊥
Ωir

cos ζ ; x − v⊥
Ωi

sin ζ, θk

(
x − v⊥
Ωi

sin ζ
))
. (42)

As it is commonly done for the quasi-neutrality equation (5), the transverse direction to the mag-
netic field (i.e., b⊥) in the differential term of Equation (23) is approximated by the transverse
direction to eϕ, i.e., the poloidal cross-section of the torus, which belongs to e⊥ϕ. Using this approxi-
mation, the field-aligned coordinates and the ballooning-eikonal representation (see Sec. III C 1 and
Sec. III C 2) Equation (23) becomes

Qωn(ω, x, η,η − θk, θ ′k, ∂x, ∂η)φ1ωn = 2π
Ωi

qi


µb∈C

Aµb(Jµw+µbωn − Jµw
−
µbωn), (43)

where

Qωn =


− 1
rR

∂xrR
ni0

ΩiB
∂x + inq′(η − θk) ni0

ΩiB
∂x −

1
r 2R

∂ηR
ni0

ΩiB
∂η +

eτni0

kBTi0
+

ni0

ΩiB

(
n2q2

r 2 + n2q′2(η − θk)2
)

in
(
q

r 2

ni0

ΩiB
+ q′(η − θk) 1

rR
∂x

(
rR

ni0

ΩiB

)
+

q

r 2R
∂η

(
R

ni0

ΩiB

)
+

ni0

ΩiB
(q′′(η − θk) − q′θ′k)

)
. (44)

Introducing for all (µ,b) ∈ C, the perturbed Hamiltonian h±
µbωn

, which is defined as

h±µbωn = a±µbw
±
µbωn +

qi
mi
Jµφ1ωn,

the system for the perturbation (39)-(43) is recast as

L±µbωn
*
,

h±
µbωn

a±
µb

+
-
+M±

µbωnJµφ1ωn −
qi
mi
L±µbωn

*
,

Jµφ1ωn

a±
µb

+
-
= 0, (45)



Qωn + 2π

Ωi

qi


µb∈C

AµbJµ *
,

1
a+
µb

− 1
a−
µb

+
-
Jµ



φ1ωn = 2π

Ωi

qi


µb∈C

AµbJµ *
,

h+
µbωn

a+
µb

−
h−
µbωn

a−
µb

+
-
.

(46)

IV. ASYMPTOTIC ANALYSIS

In this section we perform an asymptotic analysis of the system (45) and (46), by taking
advantage of the anisotropy between the parallel and the transverse directions. This, in turn, leads
to a reduction of the two-dimensional integro-differential equations (45) and (46) into a sequence
of one-dimensional integral equations coupled to a one-dimensional non-self-adjoint Schrödinger
equation. In Sec. IV A, using the definition of scales and of the ordering of Sec. II D, we perform
the asymptotic expansions in the small parameter ϵγ (γ ∈]0,1[). This requires expansions in power
of ϵγ of not only the electric potential but also the linearized integro-differential operator and the
eigenvalues. We next recast the zeroth-order problem, arising from the asymptotic analysis, into a
sequence of one-dimensional integral equations using Proposition 2 of Sec. IV B. In Sec. IV C,
we solve the first-order problem through Propositions 3–5. This leads to the determination of the
ballooning angle. In Sec. IV D, we then rewrite the second-order problem as a one-dimensional
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Schrödinger equation using Proposition 6. In Sec. IV F, we give an algorithm, based on the asymp-
totic analysis, to solve the eigenvalue problem for the two-dimensional integro-differential gyrowa-
terbag operator. In order to simplify calculations, at first, we consider the particular case where
there is no gyroaverage operator, i.e., we set Jµ = 1 in (45) and (46). In Sec. IV E we establish
Proposition 7 which allows us to handle the general case of (45) and (46).

A. Asymptotic expansion

We now assume that we have two scales of variation in the poloidal direction, one fast and
the other slow; and three scales of variation in the radial direction, one fast, a second slow, and
a third intermediate length scale. The fast poloidal scale of length order 1/(nq) is represented by
the term “nqη” in the eikonal of the ballooning representation (see Sec. III C 2), while the slow
poloidal scale of length order 1 is associated to the η-variation of the envelope φ1ωn. Since we
assume θk = O(1), the fast radial scale, of length order d = 1/(nq′) and which can be interpreted as
the typical distance between two rational magnetic flux surfaces, is taken into account in the eikonal
term (35) of the ballooning representation (see Sec. III C 2). The slow radial scale, of length order
a and which is the scale of variation of the density ni0 and the temperature Ti0, is associated to
the x-variation of the envelope φ1ωn. The eigenmode envelope radial scales which are amenable to
our asymptotic expansion are scales intermediate between the two aforementioned ones. For this
we assume a radial variation on a length scale of order n−σa with 0 < σ < 1. In order to take into
account this scale of variation, which gives the radial extension of the searched eigenmodes, we
perform the following asymptotic expansion of θk:

θk(x) = θk0(x) + θk1(x) + θk2(x) + · · ·, (47)

where for all l ∈ N

θkl = O(ϵ lγ), and ∂νxθkl/θkl = θ
(ν)
kl
/θkl = O(ϵ−νσ/aν), (48)

with γ = 1 − σ. Let us note that the high-order terms of the expansion (47) also contain the slow
radial scale of length order a.

Remark 10. Let us notice that according to Ref. 77, it is equivalent to use the eikonal asymp-
totic expansion (47) and (48) or the two-scale asymptotic expansion of the envelope φ1ωn(x, y),
where the second radial variable y = ϵ−σx should reproduce the intermediate scale of variation of
length order n−σa of the searched eigenmodes.

To clarify the idea, we shall consider γ = 1/2, 1/3, . . . . We then have the asymptotic expan-
sions in powers of the small parameter ϵγ for the other quantities (hereafter we include the relevant
powers of ϵγ in the definition of the expansion terms)

φ1ωn = φ10ωn + φ11ωn + φ12ωn + · · ·, (49)
w±µbωn = w

±
0µbωn + w

±
1µbωn + w

±
2µbωn + · · ·, (50)

h±µbωn = h±0µbωn + h±1µbωn + h±2µbωn + · · ·, (51)
ω = ω0 + ω1 + ω2 + · · ·. (52)

Now we have to obtain an asymptotic expansion of the differential operatorsL±
µbωn

,M±
µbωn

, andQωn.
For this purpose, we dimensionalize them by using the length and time scales defined in Sec. II D. We
then introduce dimensional variables, dimensional unknowns, and known quantities to make appear
only the dimensional small parameters defined in Sec. II D. This straightforward but cumbersome and
lengthy stage is omitted and we give directly the result. After gathering all the terms of same order by
using the scale ordering of Sec. II D (particularly ϵ⊥ ≃ 1 and ϵω ≃ ϵϵa), we obtain for the operators
L±

µbωn
,M±

µbωn
, and Qωn the following asymptotic expansions in powers of ϵγ:

L±µbωn = L
±
0µbωn + L

±
1µbωn + L

±
2µbωn + · · ·, (53)

M±
µbωn =M

±
0µbωn +M

±
1µbωn +M

±
2µbωn + · · ·, (54)

Qωn = Q0ωn + Q1ωn + Q2ωn + . . . , (55)
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where the second-order terms are of order ϵmin(1,2γ). The operators involved in (53)-(55) are defined
by

L±0µbωn(ω0, θk0) = −iω0 + in *
,

µ

qi
+

a±
µb

Ωi

+
-

bϕ
R

(
q′(η − θk0) sin η + q

cos η
r

)
+

bϕ
qR

(∂ηa±µb + a±µb∂η) − 2
a±
µb

Ωi

bϕ
R

(
sin η∂xa±µb −

cos η
r

∂ηa±µb
)
, (56)

L±1µbωn(ω1, θk1) = −inq′ *
,

µ

qi
+

a±
µb

Ωi

+
-

bϕ
R

sin ηθk1 − iω1

= (θk1∂θk0 + ω1∂ω0)L±0µbωn, (57)

L±2µbωn(ω2, θk2) = (θk2∂θk0 + ω2∂ω0)L±0µbωn − *
,

µ

qi
+

a±
µb

Ωi

+
-

bϕ
R

( cos η
r

∂η + sin η∂x
)

= (θk2∂θk0 + ω2∂ω0)L±0µbωn +
i
n
∂qL±0µbωn∂η −

i
nq′

∂θk0L
±
0µbωn∂x, (58)

M±
0µbωn(θk0) = inbϕ


1

rB

(
q∂xa±µb − q′(η − θk0)∂ηa±µb

)
+

qi
mi

a±
µb

Ωi

1
R

(
q′(η − θk) sin η + q

cos η
r

)
+

qi
mi

bϕ
qR

∂η, (59)

M±
1µbωn(θk1) = inq′

bϕ
B

(
1
r
∂ηa±µb −

sin η
R

a±µb

)
θk1

= (θk1∂θk0 + ω1∂ω0)M±
0µbωn, (60)

M±
2µbωn(θk2) = (θk2∂θk0 + ω2∂ω0)M±

0µbωn −
qi
mi

a±
µb

Ωi

bϕ
R

( cos η
r

∂η + sin η∂x
)

+
bϕ
rB

(
∂ηa±µb∂x − ∂xa±µb∂η

)
= (θk2∂θk0 + ω2∂ω0)M±

0µbωn +
i
n
∂qM±

0µbωn∂η −
i

nq′
∂θk0M

±
0µbωn∂x, (61)

Q0ωn =
eτni0

kBTi0
+

ni0

ΩiB

(
n2q2

r2 + n2q′2(η − θk0)2
)
, (62)

Q1ωn = −2
ni0

ΩiB
(nq′)2(η − θk0)θk1 − inq′

ni0

ΩiB
∂xθk0

= θk1∂θk0Q0ωn −
i
2

1
nq′

∂xθk0∂
2
θk0
Q0ωn, (63)

Q2ωn = −inq′
ni0

ΩiB
∂xθk1 +

ni0

ΩiB
(nq′)2 �θ2

k1 − 2(η − θk0)θk2
�

+ in(η − θk0) 1
r R

∂x

(
r Rq′

ni0

ΩiB
·
)
+ inq

1
r2R

∂η

(
R

ni0

ΩiB
·
)
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= θk2∂θk0Q0ωn −
(
−1

2
θ2
k1 +

i
2

1
nq′

∂xθk1

)
∂2
θk0
Q0ωn

+ in(η − θk0) 1
r R

∂x

(
r Rq′

ni0

ΩiB
·
)
+ inq

1
r2R

∂η

(
R

ni0

ΩiB
·
)
. (64)

Let us now make the following important remark.

Remark 11. In (58) and (61) terms that are at least of second order in ϵ2γ fall into two groups:
if they involve radial or poloidal derivatives, they are of order ϵ; if they do not, they are of order ϵ2γ.
Upon choosing γ = 1/2 all the terms must be taken into account in defining the second-order group.
On the contrary, for γ < 1/2 only the terms without poloidal or radial derivatives are needed, so
that partial derivatives with respect to the variables x and η drop out. The same applies to (64).

Substituting the asymptotic expansions (49) and (51) and (53)-(55) into (45)-(46) with Jµ = 1,
we get, at the zeroth order, the system

L±0µbωn
*
,

h±0µbωn

a±
µb

+
-
+M±

0µbωnφ10ωn −
qi
mi
L±0µbωn

*
,

φ10ωn

a±
µb

+
-
= 0, (65)



Q0ωn + 2π

Ωi

qi


µb∈C

Aµb
*
,

1
a+
µb

− 1
a−
µb

+
-



φ10ωn = 2π

Ωi

qi


µb∈C

Aµb
*
,

h+0µbωn

a+
µb

−
h−0µbωn

a−
µb

+
-
, (66)

at the first order,

L±0µbωn
*
,

h±1µbωn

a±
µb

+
-
+M±0µbωnφ11ωn −

qi
mi
L±0µbωn

*
,

φ11ωn

a±
µb

+
-

+ L±1µbωn
*
,

h±0µbωn

a±
µb

+
-
+M±1µbωnφ10ωn −

qi
mi
L±1µbωn

*
,

φ10ωn

a±
µb

+
-
= 0, (67)



Q0ωn + 2π

Ωi

qi


µb∈C

Aµb
*
,

1
a+
µb

− 1
a−
µb

+
-



φ11ωn

+Q1ωnφ10ωn = 2π
Ωi

qi


µb∈C

Aµb
*
,

h+1µbωn

a+
µb

−
h−1µbωn

a−
µb

+
-
, (68)

and at the second order,

L±0µbωn
*
,

h±2µbωn

a±
µb

+
-
+M±0µbωnφ12ωn −

qi
mi
L±0µbωn

*
,

φ12ωn

a±
µb

+
-
+ L±1µbωn

*
,

h±1µbωn

a±
µb

+
-
+M±1µbωnφ11ωn

− qi
mi
L±1µbωn

*
,

φ11ωn

a±
µb

+
-
+ L±2µbωn

*
,

h±0µbωn

a±
µb

+
-
+M±2µbωnφ10ωn −

qi
mi
L±2µbωn

*
,

φ10ωn

a±
µb

+
-
= 0, (69)



Q0ωn + 2π

Ωi

qi


µb∈C

Aµb
*
,

1
a+
µb

− 1
a−
µb

+
-



φ12ωn + Q1ωnφ11ωn + Q2ωnφ10ωn

= 2π
Ωi

qi


µb∈C

Aµb
*
,

h+2µbωn

a+
µb

−
h−2µbωn

a−
µb

+
-
. (70)

Before solving successively the three previous systems, we define the following new quantities:

ω±dµb = n *.
,

µ

qi
+

a±
2

µb

Ωi

+/
-

bϕ
R

(
q′(η − θk0) sin η + q

cos η
r

)
,
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ω±∗µb =
Te0

e
n
B

bϕ
a±
µb




1
r

(
q∂xa±µb − q′(η − θk0)∂ηa±µb

)
+

a±
µb

R

(
q′(η − θk) sin η + q

cos η
r

)

,

ω±�µb = −2
a±
µb

Ωi

bϕ
R

(
sin η∂xa±µb −

cos η
r

∂ηa±µb
)
,

Ω
±
∗µb = ω

±
∗µb +

qi
mi

Te0

e
1

|a±
µb
|2 (ω0 − ω±dµb + iω±�µb).

In the case of symmetric equilibrium contours, i.e., a±
µb
(r, θ) = ±aµb(r, θ), the previous definitions

simplify: ω±
dµb
= ωdµb, ω±∗µb = ω∗µb, ω±�µb = ω�µb, and Ω±∗µb = Ω∗µb.

B. The zeroth-order system

In this section we recast the system (65) and (66) as an integral equation for the potential φ10ωn,
given by the following proposition.

Proposition 2. The zeroth-order system (65) and (66) is equivalent to the integral equation

L◦Cωnφ10ωn = 0, (71)

where

L◦Cωn = Q◦ωn + L◦Oωn + L
◦
Cωn.

Here, the operators Q◦ωn, L◦Oωn
, and L◦Cωn are defined by

Q◦ωn = Q0ωn + 2π
Ωi

qi


µb∈C

Aµb
*
,

1
a+
µb

− 1
a−
µb

+
-
, L◦Oωn =


µb∈O

L◦Oµbωn,

L◦Cωn =

µb∈C

L◦Cµbωn,

L◦Oµbωnψ = i2π
Ωi

qi

Aµb

aµb

 +∞

−∞
dη

(
e

Te0

qR
bϕ
Ω∗µbaµbψ

)
(η) exp

�
−i sign(η − η)Iµb(η,η)� ,

L◦Cµbωnψ =

ℓ∈Z
−2π
Ωi

qi

Aµb

aµb

21[θ−,ℓ
Lµb

,θ+,ℓ
Lµb

](η)
sinIµb(θ−,ℓLµb

, θ+,ℓ
Lµb

)



 θ+,ℓ
Lµb

η

dη
(

e
Te0

qR
bϕ
Ω∗µbaµbψ

)
(η) cosIµb(θ+,ℓLµb

,η) cosIµb(θ−,ℓLµb
, η)

+

 η

θ−,ℓ
Lµb

dη
(

e
Te0

qR
bϕ
Ω∗µbaµbψ

)
(η) cosIµb(θ−,ℓLµb

,η) cosIµb(θ+,ℓLµb
, η)



,

where

Iµb(η,η) =
 η

η

dη qR
bϕaµb

(ω0 − ωdµb + iω�µb)

and θ±,ℓ
Lµb

(r) = ±θLµb(r) + 2πℓ.

Proof. We distinguish the case of open contours (the set O) and closed contours (the set C). Let
us first deal with the set O. Integration of Equation (65) in η-variable gives

h±0µbωn(η) = h±0µbωn(η0) exp *
,
i
 η

η0

dη qR
bϕa±

µb

(ω0 − ω±dµb + iω±�µb)+
-

− i
 η

η0

dη
(

e
Te0

qR
bϕ
Ω
±
∗µba±µbφ10ωn

)
(η) exp *

,
i
 η

η
dη qR

bϕa±
µb

(ω0 − ω±dµb + iω±�µb)+
-
. (72)
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Since here we consider open contours and η ∈ R, it is natural to take the following boundary condi-
tions: w±0µbωn

(±∞) = 0 for the contours and φ10ωn(±∞) = 0 for the potential. As a consequence, we
get h±0µbωn

(±∞) = 0 for all (µ,b) ∈ O. Moreover from Sec. III B, we have seen that if we assume
that the “initial” or boundary condition a±

µb
(r,0) is symmetric — so that a±

µb
(r,0) = ±aµb(r,0),

with aµb(r,0) ≥ 0 — then the contours a±
µb
(r, θ) also satisfy this property. Therefore we get

a±
µb
(r, θ) = ±aµb(r, θ), ω±dµb = ωdµb, ω±∗µb = ω∗µb, ω±�µb = ω�µb, and Ω±∗µb = Ω∗µb. Consequently,

for all (µ,b) ∈ O, we obtain

h±0µbωn(η) = ∓i
 η

∓∞
dη

(
e

Te0

qR
bϕ
Ω∗µbaµbφ10ωn

)
(η) exp

�
−i sign(η − η)Iµb(η,η)� , (73)

where

Iµb(η,η) =
 η

η

dη qR
bϕaµb

(ω0 − ωdµb + iω�µb).

Let us now deal with closed contours. As it has been shown for equilibrium contours {a±
µb
}(µ,b)∈C

(see Sec. III B), it is natural to assume that for all (µ,b) ∈ C, the perturbation contours w+0µbωn

and w−0µbωn
close by meeting to each other at two angles θ1

Lµb
(r) and θ2

Lµb
(r) where they vanish,

and thus form a multi-valued (double-valued function) closed contour. Even if it is not necessary,
we can assume that the limit angles θ1

Lµb
(r) and θ2

Lµb
(r) of the perturbation contours are the same

as those of the corresponding equilibrium contours, i.e., θ2
Lµb

(r) = θ+,ℓ
Lµb

(r) = θLµb(r) + 2πℓ, and

θ1
Lµb

(r) = θ−,ℓ
Lµb

(r) = −θLµb(r) + 2πℓ, with ℓ ∈ Z, θLµb(r) B |θ±
Lµb

(r)| and θ±
Lµb

(r) given by (30).
In order that the contours connect each other, the boundary conditions for the contours belonging to
the set C, should be w+0µbωn

(θ1
Lµb

) = w−0µbωn
(θ1

Lµb
) and w+0µbωn

(θ2
Lµb

) = w−0µbωn
(θ2

Lµb
). Assuming

now that φ10ωn is continuous, we obtain the boundary conditions

h+0µbωn(θ1
Lµb) = h−0µbωn(θ1

Lµb), and h+0µbωn(θ2
Lµb) = h−0µbωn(θ2

Lµb), ∀(µ,b) ∈ C.
By taking (η0 = θ

1
Lµb

, η = θ2
Lµb

) for h−0µbωn
defined by (72), (η0 = θ

2
Lµb

, η = θ1
Lµb

) for h+0µbωn

defined by (72), and using the previous boundary conditions we obtain the 2 × 2 linear system

h+0µbωn(θkLµb) − h+0µbωn(θ jLµb) exp
((−1) jIµb(θ jLµb, θkLµb)

)
= (−1)ki

 θk
Lµb

θ
j
Lµb

dη
(

e
Te0

qR
bϕ
Ω∗µbaµbφ10ωn

)
(η) exp

((−1)ki
(
Iµb(θ jLµb, η) − Iµb(θ jLµb, θkLµb)

))
,

with ( j, k) ∈ {(1,2), (2,1)}. Solving the previous linear system gives

h0µbωn(θ1
Lµb) B h±0µbωn(θ1

Lµb)

= sin−1Iµb(θ1
Lµb, θ

2
Lµb)

 θ2
Lµb

θ1
Lµb

dη
(

e
Te0

qR
bϕ
Ω∗µbaµbφ10ωn

)
(η) cosIµb(θ2

Lµb, η), (74)

which finally leads to

h±0µbωn(η) = exp
(
±iIµb(θ1

Lµb, η)
) 

∓i

 η

θ1
Lµb

dη
(

e
Te0

qR
bϕ
Ω∗µbaµbφ10ωn

)
(η) exp

(
∓iIµb(θ1

Lµb,η)
)

+ sin−1Iµb(θ1
Lµb, θ

2
Lµb)

 θ2
Lµb

θ1
Lµb

dη
(

e
Te0

qR
bϕ
Ω∗µbaµbφ10ωn

)
(η) cosIµb(θ2

Lµb, η)


. (75)

Substituting (73) and (75) into the quasi-neutrality equation (66), we obtain Proposition 2. �

Remark 12. Further, we will discuss the question of the well-posedness of the integral Equation
(71). Let us note that this one-dimensional integral equation depends parametrically on the radius
through the x-variable. The solution of the integral Equation (71) gives the geometric structure of
the eigenmode in the poloidal direction or along a magnetic field line, locally in radius.
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In the integral Equation (71) the map [xmin, xmax] ∋ x −→ θk0(x) ∈ R remains unknown. It
will actually be determined by solving the first-order problem (67) and (68), a matter handled in
Sec. IV C. The angle θk0(x), called the ballooning angle, represents for each radius, the angle at
which is centered the poloidal envelope of the eigenmode φ10ωn. We will see that the ballooning
angle can be taken independent of the radius.

C. The first-order system

In this section we solve the system (67) and (68) and determine the map [xmin, xmax] ∋ x −→
θk0(x) ∈ R. We first recast the system (67) and (68) in a suitable form given by the following
proposition.

Proposition 3. The system (67) and (68) is equivalent to

L◦Cωnφ11ωn +

(
θk1∂θk0L

◦
Cωn + ω1∂ω0L

◦
Cωn −

i
2

1
nq′

∂xθk0∂
2
θk0
Q0ωn

)
φ10ωn = 0. (76)

Proof. Let us first deal with the set O of open contours. For this, let us introduce the following
definitions:

αµb = −i
�
θk1∂θk0 + ω1∂ω0

�
L0µbωn = −nq′ *

,

µ

qi
+

a2
µb

Ωi

+
-

bϕ
R
θk1 sin η − ω1,

βµb = −i
�
θk1∂θk0 + ω1∂ω0

�
M0µbωn = nq′

bϕ
B

(
1
r
∂ηaµb −

sin η
R

aµb

)
θk1,

γµb =
e

Te0

qR
bϕ
Ω∗µbaµb,

Kµb(η,η) = exp
�
−i sign(η − η)Iµb(η,η)� .

Following the same ideas for dealing with the zeroth-order system, integration of (67) with respect
to η-variable gives, for open contours, i.e., for all (µ,b) ∈ O,

h±1µbωn(η) = −i
 η

∓∞
dη

(
±γµbφ11ωn +

qR
bϕ


±
αµb

aµb
h±0µbωn

+


±βµb ∓

qi
mi

αµb

aµb


φ10ωn

)
(η)Kµb(η,η). (77)

Using (73), (77) and Fubini’s theorem to permutate the order of integrations, we obtain

(h+1µbωn + h−1µbωn)(η) = −i
 +∞

−∞
dη

(
γµbφ11ωn +

qR
bϕ


βµb −

qi
mi

αµb

aµb


φ10ωn

)
(η)Kµb(η,η)

−i
 +∞

−∞
dη (γµbφ10ωn)(η) sign(η − η)Kµb(η,η)

 η

η
dη

(
qR
bϕ

αµb

aµb

)
(η)


. (78)

Let us now deal with closed contours. Using (74), we obtain

h1µbωn(θ1
Lµb) B h±1µbωn(θ1

Lµb) = sin−1Iµb(θ1
Lµb, θ

2
Lµb)



 θ2
Lµb

θ1
Lµb

dη (γµbφ11ωn)(η) cosIµb(θ2
Lµb, η)

+

 θ2
Lµb

θ1
Lµb

dη
(

qR
bϕ


βµb −

qi
mi

αµb

aµb


φ10ωn

)
(η) cosIµb(θ2

Lµb, η)

+

 θ2
Lµb

θ1
Lµb

dη
(

qR
bϕ

αµb

aµb

)
(η)




cosIµb(θ1
Lµb

, θ2
Lµb

)
sinIµb(θ1

Lµb
, θ2

Lµb
)
 θ2

Lµb

θ1
Lµb

dη (γµbφ10ωn)(η) cosIµb(θ2
Lµb,η)

−
 η

θ1
Lµb

dη (γµbφ10ωn)(η) sinIµb(θ2
Lµb,η)





, (79)
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which leads to

h±1µbωn(η) = h±0µbωn(θ1
Lµb) exp

(
±iIµb(θ1

Lµb, η)
)
− i

 η

θ1
Lµb

dη
�
±γµbφ11ωn

+
qR
bϕ


±
αµb

aµb
h±0µbωn ±


βµb −

qi
mi

αµb

aµb


φ10ωn

)
(η) exp

�
∓iIµb(η,η)� . (80)

Using (74) and (75) and (79) and (80), we get

(h+1µbωn + h−1µbωn)(η) = 2

h1µbωn(θ1

Lµb) cosIµb(θ1
Lµb, η)

−
 η

θ1
Lµb

dη
(
γµbφ11ωn +


βµb −

qi
mi

αµb

aµb


φ10ωn

)
(η) sinIµb(η,η)

+ h0µbωn(θ1
Lµb)

 η

θ1
Lµb

dη
(

qR
bϕ

αµb

aµb

)
(η) sinIµb(θ1

Lµb,η)

−
 η

θ1
Lµb

dη
(

qR
bϕ

αµb

aµb

)
(η)

 η

θ1
Lµb

dη (γµbφ10ωn)(η) cosIµb(η,η)

. (81)

Substituting expressions (78) and (81) into the quasi-neutrality equation (68), we obtain the desired
integral equation. We now recast this integral equation in a more compact form by observing the
following identities:

qR
bϕ

αµb

aµb
=
�
θk1∂θk0 + ω1∂ω0

�
∂ηIµb(η,η0), ∀η0 ∈ R, (82)

βµb −
qi
mi

αµb

aµb
=

bϕ
qR

�
θk1∂θk0 + ω1∂ω0

�
γµb. (83)

Using (82) and (83), the right hand side of (78) can be recast as

− 2π
Ωi

qi


µb∈O

Aµb

aµb
(h+1µbωn + h−1µbωn) =

�
θk1∂θk0L

◦
Oωn + ω1∂ω0L

◦
Oωn

�
φ10ωn. (84)

Using Fubini’s theorem to permutate the order of integrations, we get

−
 θ2

Lµb

θ1
Lµb

dη
�
θk1∂θk0 + ω1∂ω0

�
∂ηIµb(η,η0)

 η

θ1
Lµb

dη (γµbφ10ωn)(η) sinIµb(θ2
Lµb,η)

=

 θ2
Lµb

θ1
Lµb

dη (γµbφ10ωn)(η) �θk1∂θk0 + ω1∂ω0

�
cosIµb(θ2

Lµb, η),

so that (82) and (83) and the previous formula allow us to recast the right hand side of (81) as

−2π
Ωi

qi


µb∈C

Aµb

aµb
(h+1µbωn + h−1µbωn) =

�
θk1∂θk0L

◦
Cωn + ω1∂ω0L

◦
Cωn

�
φ10ωn.

Finally, using (63) and (84) and the previous equation, the system (67) and (68) can be rewritten as
(76) of Proposition 3. �

The operator L◦
Cωn

is non-self-adjoint. We denote by L◦⋆
Cωn

the dual operator of L◦
Cωn

, deter-
mined through the Hermitian scalar product in L2(Rη), i.e., ⟨ f , g⟩L2 =


R f (η)g⋆(η)dη with (·)⋆ the

transposed conjugate. More precisely, we have

⟨L◦Cωnϕ,ψ⟩L2 = ⟨ϕ,L◦⋆Cωnψ⟩L2, ∀ϕ, ψ ∈ L2(Rη).
We then define φ10ωn as the solution of the equation L◦⋆

Cωn
φ10ωn = 0. Let us now consider the

equation

H(ω0, θk0(x), x) =

φ10ωn,L◦Cωnφ10ωn


L2 = 0. (85)
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The function of two variables Hω0(θk0, x), defined for x ∈ [xmin, xmax] = [rmin − r0,rmax − r0], θk0 ∈
R/2πZ and ω0 ∈ C, can be viewed as a Hamiltonian in the phase-space (θk0, x), which depends
parametrically on ω0 and where the variables (θk0, x) are conjugate variables. The equation for the
characteristic curves in the two-dimensional (θk0, x)-phase-space is given by the Hamilton equations

dθk0

dτ
=
∂Hω0

∂x
,

dx
dτ
= −

∂Hω0

∂θk0
,

(
dHω0

dτ
= 0

)
, (86)

where x ∈ [xmin, xmax], θk0 ∈ R/2πZ, ω0 ∈ C, and τ ∈ R+.
For such a one-dimensional autonomous Hamiltonian, i.e., with one degree of freedom, we

know that the system is integrable. It is clear that, qualitatively, the determination of the function
θk0(x) will depend on the topology of the phase portrait associated to this dynamical system. The
numerical studies reported in the companion paper24 indicate that, typically, the phase portrait has
the same topology as the standard nonlinear pendulum, usually called cat’s eyes (see Fig. 4). It is
of interest to find general conditions ensuring such a topology. This is the goal of the following
proposition. We have used p0 to denote a generic radial profile, which can be, for example, the
density ni0, one of the temperatures Ti0 and Te0, the radial profiles a◦

µb
of the contours, or the safety

factor q.

Proposition 4. Let p0 denote a radial profile in C2
b
([rmin,rmax]). Suppose that

(i) there exists a unique point xc ∈ ]xmin, xmax[ such that

(∂xHω0)(θk0, xc) = 0, ∀θk0 ∈ R/2πZ,

(ii) at the critical points of Hω0 where ∂2
θk0

Hω0 and ∂2
xHω0 have the same sign, the following

stability condition holds:

���∂
2
θk0,x

Hω0
���
2
<
���∂

2
θk0

Hω0
���
�
∂2
xHω0

�
.

Then, the topology of the integral curves of the Hamiltonian vector field (∂xHω0,−∂θk0Hω0)T in
phase-space are those of the classical nonlinear pendulum. In other words the phase-space con-
tains an alternating sequence of X-points (saddle hyperbolic fixed points) and O-points (center or
elliptic fixed points) along the line x = xc. Moreover, the characteristic curves in phase-space are
periodic and of two different topologies: the first one, called rotation, corresponds to open trajec-
tories (passing orbits), while the second one, called oscillation (or sometimes vibration or libra-
tion), corresponds to closed trajectories (trapped orbits). The periodic separatrix curves connect
the various X-points and separate rotations from oscillations.

Proof. First, using the regularity assumptions of Proposition 4, we have Hω0(θk0, x) ∈
C2
b
((R/2πZ) × [xmin, xmax]). Therefore, using the Cauchy–Lipschitz–Picard theorem, we obtain

existence and uniqueness of the characteristic curves defined by the ordinary differential

FIG. 4. Cat’s eye picture.
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equations (86). Let us now find the fixed point of the force field F B (∂xHω0,−∂θk0Hω0)T , i.e., the
critical point of the Hamiltonian Hω0. Since the kernel of integral operator (71) is 2π-periodic in
θk0, it is straightforward to prove that Hω0 is also 2π-periodic in θk0 (see Remark 19). Therefore,
there exists an infinite sequence of isolated points {θk0c, i}i∈N such that, for all x ∈ [xmin, xmax],

(∂θk0Hω0)(θk0c, i, x) = 0 and sign
((∂2

θk0
Hω0)(θk0c, i, x)

)
= (−1)i, i ∈ N. (87)

This sequence corresponds to the alternating sequence of maxima and minima of Hω0 in the
variable θk0. Using the above and assumption (i) of Proposition 4, the only critical points are the
sequence {(θk0c, i, xc)}i∈N. To determine the nature of these critical points, we need to study the
eigenvalues of the gradient matrix ∇F at these critical points. It is straightforward to show that

∇F(θk0c, i, xc) = *.
,

∂2
θk0,x

Hω0, −∂2
θk0

Hω0

∂2
xHω0, −∂

2
θk0,x

Hω0

+/
-

and

det(∇F − λI) = λ2 − (∂2
θk0,x

Hω0)2 + ∂2
θk0

Hω0∂
2
xHω0. (88)

Therefore, the eigenvalues λ of ∇F(θk0c, i, xc) satisfy λ2 = (∂2
θk0,x

Hω0)2 − ∂2
θk0

Hω0∂
2
xHω0. On the

one hand, if (∂2
θk0,x

Hω0)2 ≥ ∂2
θk0

Hω0∂
2
xHω0, we have a saddle hyperbolic fixed point. If ∂2

xHω0

(θk0c, i, xc) < 0 (resp. ∂2
xHω0(θk0c, i, xc) > 0), then the latter inequality is satisfied at even (respec-

tively, odd) points of the sequence {(θk0c, i, xc)}i∈N. On the other hand, if (∂2
θk0,x

Hω0)2 < ∂2
θk0

Hω0

∂2
xHω0, we have a center, that is, an elliptic fixed point. If ∂2

xHω0(θk0c, i, xc) < 0 (resp. ∂2
xHω0(θk0c, i, xc) > 0), then the latter inequality is satisfied at odd (resp. even) points of the sequence

{(θk0c, i, xc)}i∈N, provided assumption (ii) holds. Therefore, we obtain an alternating sequence of
X-points (saddle hyperbolic fixed points) and O-points (elliptic fixed points) along the line x = xc.
From this follows the rest of the stated results, which concludes the proof. �

Now, restricting the phase-space to a period in θk0, we obtain a periodic (θk0, x)-patch (see
Fig. 4). The points z = (θk0, x) = (θk0, x(θk0)) on an orbit are two-valued functions of θk0, while
conversely the points z = (θk0, x) = (θk0(x), x) of the same orbit are two-valued functions of x.
Therefore, there are two points of view to describe the problem.

The first one is to view ω0 as a global parameter and θk0(x;ω0) as a function of x, which
depends parametrically on ω0: for a given magnetic flux surface x = x∗, we search two branches
θ±
k0,ω0

(x∗) such that H(ω0, θ
+
k0(x∗;ω0), x∗) =H(ω0, θ

−
k0(x∗;ω0), x∗). The second one is to view θk0

as a global parameter and ω0(x; θk0) as a function of x, which depends parametrically on θk0: for
a given θk0 we search two magnetic flux surfaces x1 and x2 such that ω0(x1; θk0) = ω0(x2; θk0) =
constant. Let us consider the first point of view, which means that we search the characteristic
curves of the phase-space constituted by the set of points (θk0(x;ω0), x)ω0 such that H(ω0, θk0
(x;ω0), x) = 0; each orbit being associated to a unique value of ω0. Supposing that the trajectories
are regular enough, the implicit function theorem implies that the function θk0(x;ω0) is implic-
itly defined by (85), as long as ∂θk0H , 0. Taking the derivative of (85) with respect to x, we
then find that ∂xθk0 = −∂xH/∂θk0H. Furthermore, validity of the eikonal representation (35) and
(47) requires the condition |∂xθk0/(nq′θ2

k0)| ≪ 1 to be satisfied. Nevertheless, from orbit topol-
ogy in phase-space, for a periodic patch (see Fig. 4), we know that there exist two points xTi,
i ∈ {1,2}, called turning points, such that ∂θk0H(ω0, θk0(xTi;ω0), xTi) = 0 and |∂xθk0(xTi;ω0)| = ∞
(or ∂θk0x(θk0,T) = 0), and where θk0,T = θk0(xT2;ω0) = θk0(xT1;ω0).

To avoid the turning points problem at zeroth order, we assume that ∂xθk0(x) = 0. Thus θk0 =

constant, and then we adopt the second point of view according to which θk0 is a global parameter.
Actually, the problem of dealing with the turning points is just postponed to the next order in the
expansion of θk, i.e., for θk1(x). Therefore the dispersion equation H(ω0, θk0, x) = 0 can be inter-
preted as follows: we look for the local frequency ω0(x; θk0) such that H(ω0(x; θk0), θk0, x) = 0. As
a consequence ω0 is a function of x which depends parametrically on θk0 and is implicitly defined
by H(ω0(x; θk0), θk0, x) = 0. The equation ω0(x; θk0) = constant should allow us to construct the
phase-space orbits described by Hamilton’s equations (86).
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Within the second point of view let us show that the eigenvalue ω0 reaches an extremum at
the turning points θk0,T and that the first-order correction ω1 to the eigenfrequency vanishes by the
following proposition.

Proposition 5. Let us suppose that assumptions of Proposition 4 are satisfied. Let φ10ωn and
φ10ωn be, respectively, the solution of the problem L◦

Cωn
φ10ωn = 0 and the adjoint problem L◦⋆

Cωn

φ10ωn = 0. We assume that
φ10ωn, ∂ω0L

◦
Cωnφ10ωn


L2 , 0, ∀θk0 ∈ R/2πZ, ∀x ∈ [xmin, xmax]. (89)

Then,

(i) there exists a value of θk0, called a turning point and noted θk0,T , such that
∂ω0

∂θk0
(x; θk0,T) = 0, ∀x ∈ [xmin, xmax], (90)

i.e., the eigenvalue ω0 reaches an extremum at the turning points θk0,T ,
(ii) the eigenvalue ω0 reaches an extremum at x = xc, i.e.,

∂ω0

∂x
(xc; θk0) = 0, ∀θk0 ∈ R/2πZ, (91)

(iii) at the turning point θk0 = θk0,T we get, for the first-order system (76), the solution

ω1 = 0, (92)
φ11ωn = θk1∂θk0φ10ωn + g1(x)φ10ωn, (93)

h±1µbωn = θk1∂θk0h
±
0µbωn + g1(x)h±0µbωn, (94)

with g1(x) an arbitrary function.

Remark 13. Even if condition (90) seems to restrict the search of the eigenvalues to a subset of
the spectrum, it is actually not the case. Keeping in mind the topology of the characteristic curves
in phase-space (the integrable cat’s eye picture, see Fig. 4), the equation θk0 = θk0,T corresponds
to the line passing through the O-point. Therefore we can deduce two important conclusions. Along
this line (of equation θk0 = θk0,T), if x is varying in its range, then ω0 describes all the eigenvalues
of the spectrum. Moreover the line θk0 = θk0,T , corresponds to the value of θk0 where the radial
extension of ω0 is maximum. As a consequence, it will select the eigenmodes for which the radial
extension is maximum. Indeed, the radial extension of ω0 will fix the radial extension of the poten-
tial function involved in the one-dimensional Schrödinger equation, which will determine the radial
envelope of the eigenmode. Therefore, condition (90) allows us to recover all the eigenvalues of the
spectrum, but only yields the eigenmodes of maximum radial extension.

Remark 14. The conditions (90) and (91) express that ω0 reaches an extremal value (which
should be a maximum in the case of an instability) at the point (xc, θk0,T). From θ-symmetry of the
equilibrium and since Toroidal-ITG instability has maximum amplitude on the low-field side, we
expect θk0,T to be close to the origin. Moreover we expect that xc is located in the vicinity of the
maximum of density and temperature gradients (r = r0 by usual assumption), i.e., close to the origin
(in the radial variable x).

Proof of Proposition 5. Let us start with first item (i) of Proposition 5. We first notice that at the
turning point θk0,T , we have the identity

φ10ωn, ∂θk0L
◦
Cωnφ10ωn


L2 =

∂H

∂θk0
−


∂θk0

φ10ωn,L◦Cωnφ10ωn


L2 −


φ10ωn,L◦Cωn∂θk0φ10ωn


L2

= 0.

Differentiating now (71) with respect to θk0, and taking the Hermitian product with φ10ωn, and using
the previous identity, we get

∂ω0

∂θk0


φ10ωn, ∂ω0L

◦
Cωnφ10ωn


L2 = 0.

Using assumption (89) we finally obtain (90).
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Let us continue with the second item (ii). Using assumption (i) of Proposition 4, we have, at the
point x = xc,
φ10ωn, ∂xL◦Cωnφ10ωn


L2 =

∂H

∂x
−


∂xφ10ωn,L◦Cωnφ10ωn


L2 −


φ10ωn,L◦Cωn∂xφ10ωn


L2 = 0. (95)

Differentiating (71) with respect to x, and taking the Hermitian product with φ10ωn, and using (95)
we obtain, at the point x = xc,

∂ω0

∂x


φ10ωn, ∂ω0L

◦
Cωnφ10ωn


L2 = 0,

which shows item (ii), under assumption (89).
It now remains to prove the third item (iii). Until now, we have described the fast and slow

variations in the (θ,ϕ)-variables and fast variation in the r-variable. We now want to solve for the
intermediate scale of variation of length order n−σa in the radial direction, which corresponds to the
radial extension of the eigenmode. Since we are interested in the eigenmodes of maximum radial
extension, we fix θk0 = θk0,T . Therefore, we restrict our problem to finding the spectrum of the
integral operator L◦

Cωn
for which (90) is satisfied. Taking the Hermitian product of (76) with φ10ωn,

and using 
φ10ωn, ∂θk0L

◦
Cωnφ10ωn


L2 +

∂ω0

∂θk0


φ10ωn, ∂ω0L

◦
Cωnφ10ωn


L2 = 0,

we obtain(
ω1 − θk1

∂ω0

∂θk0

) 
φ10ωn, ∂ω0L

◦
Cωnφ10ωn


L2 −

i
2

1
nq′

∂xθk0∂
2
θk0
Q0ωn


φ10ωn, φ10ωn


L2 = 0.

Using (89) and (90), the previous equation leads to (92).
Let us now establish formula (93). Differentiating (71) with respect to θk0 and using (90), we

get

∂θk0L
◦
Cωnφ10ωn = −L◦Cωn∂θk0φ10ωn. (96)

From (76), since ω1 = 0 and ∂xθk0 = 0, we get

L◦Cωnφ11ωn + θk1∂θk0L
◦
Cωnφ10ωn = 0.

Using (96), we can solve the previous equation to obtain (93) with g1(x) an arbitrary function. It
now remains to establish (94). Let us first do this for open contours and next for closed contours.
Using (82) and (83) and (92) and (93), and taking the θk0-derivative of (72), we obtain

θk1∂θk0h
±
0µbωn = ∓i

 η

∓∞
dη

(
qR
bϕ


βµb −

qi
mi

αµb

aµb


φ10ωn + γµbφ11ωn

)
(η)Kµb(η,η)

∓ i
 η

∓∞
dη (γµbφ10ωn)(η)Kµb(η,η) [−i sign(η − η)]

 η

η
dη

(
qR
bϕ

αµb

aµb

)
(η).

Using Fubini’s theorem to permutate the order of integrations, in the second term on the right-hand
side of the previous equation, we get the relation (94) for open contours. Let us now deal with
closed contours by following the same method that we used for open contours. Differentiating (80)
with respect to θk0, using (82) and (83) and (92) and (93) and Fubini’s theorem to permutate the
order of η-integrations in some double integrals, we obtain

θk1∂θk0h
±
0µbωn = θk1∂θk0h

±
0µbωn(θ1

Lµb) exp
(
±iIµb(θ1

Lµb, η)
)

∓ i
 η

θ1
Lµb

dη
(
qR

bϕ
βµbφ10ωn + γµbφ11ωn +

qR

bϕ

αµb

aµb


h±0µbωn −

qi

mi
φ10ωn

)
(η) exp

�
∓iIµb(η, η)� .

(97)

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  192.54.176.194

On: Wed, 24 Aug 2016 14:37:57



081518-32 N. Besse and D. Coulette J. Math. Phys. 57, 081518 (2016)

Now, the θk0-derivative of the right-hand side of (74) gives

θk1∂θk0h
±
0µbωn(θ1

Lµb)

= θk1



−

cosIµb(θ1
Lµb

, θ2
Lµb

)
sinIµb(θ1

Lµb
, θ2

Lµb
) ∂θk0Iµb(θ1

Lµb, θ
2
Lµb)

 θ2
Lµb

θ1
Lµb

dη (γµbφ10ωn)(η) cosIµb(θ2
Lµb,η)

+ sin−1Iµb(θ1
Lµb, θ

2
Lµb)

 θ2
Lµb

θ1
Lµb

dη
(
γµb∂θk0φ10ωn +

qR
bϕθk1


βµb −

qi
mi

αµb

aµb


φ10ωn

)
(η)

cosIµb(θ2
Lµb,η) +

�
γµbφ10ωn

� (η)∂θk0


cosIµb(θ2

Lµb,η)



. (98)

Using Fubini’s theorem to permutate the order of η-integrations in some double integrals, we get
that

 θ2
Lµb

θ1
Lµb

dη
�
γµbφ10ωn

� (η) ∂θk0


cosIµb(θ2

Lµb,η)


= −
 θ2

Lµb

θ1
Lµb

dη ∂θk0∂ηIµb(η,η0)
 η

θ1
Lµb

dη
�
γµbφ10ωn

� (η) sinIµb(θ2
Lµb,η).

Inserting the last expression into (98), we get θk1∂θk0h
±
0µbωn

(θ1
Lµb

) = h±1µbωn
(θ1

Lµb
) which together

with (97) implies (94) for closed contours. �

We are now ready to solve the second-order problem to determine θk1 and thus obtain the radial
envelope of the eigenmode.

D. The second-order system

In this section we solve the system (69) and (70), which leads to the determination of the
complex function [qmin,qmax] ∋ q −→ θk1(q) ∈ C satisfying a Riccati equation or equivalently, of
the complex amplitude

A1(q) = exp
(
in
 q

q0

dq̃ θk1(q̃)
)

A1(q0) = exp
(
in
 q

q0

dq̃Θk1

)
A1(q0),

satisfying a Schrödinger equation. With the definitionΘk1 = −(i/n)∂q (see Remark 9 of Sec. III C 2),
we have the following.

Proposition 6. Let 1/γ > 2. Then the system (69) and (70) is equivalent to solving the non-self-
adjoint Schrödinger equation

*
,
−Θ2

k1 +
ω − ω0
1
2∂

2
θk0
ω0

+
-

A1 = 0, (99)

for the complex amplitude A1 or equivalently the Riccati equation

i
n
∂qθk1 − θ2

k1 +
ω − ω0
1
2∂

2
θk0
ω0
= 0, (100)

for the complex function θk1.

Proof. Here, we restrict our problem to the determination of the radial envelope of the eigen-
mode whose scale of variation is of length order n−σa, with σ = 1 − γ and 1/γ > 2. The calculation
is tedious, so for simplicity, we only give the full derivation for the set of open contours. For the set
of closed contours calculations are similar, and lead to the same result as for open contours. Before
doing so, let us introduce the following notation:

ξµb = −i
�
θk2∂θk0 + ω2∂ω0

�
L0µbωn,
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ζµb = −i
�
θk2∂θk0 + ω2∂ω0

�
M0µbωn,

γµb =
e

Te0

qR
bϕ
Ω∗µbaµb,

Kµb(η,η) = exp
�
−i sign(η − η)Iµb(η,η)� .

Following the same method that we used for dealing with the zeroth- and first-order systems and
integrating (69) with respect to the η-variable, we obtain, for open contours,

h±2µbωn = −i
 η

∓∞
dη

(
±γµbφ12ωn ±

qR
bϕ


αµb

aµb
(θk1∂θk0 + g1) + ξµb

aµb


h±0µbωn

+

(
βµb −

qi
mi

αµb

aµb

)
(θk1∂θk0 + g1) + ζµb − qi

mi

ξµb

aµb


φ10ωn

)
(η)Kµb(η,η), (101)

where we have used (93) and (94). Using (101), we get

h+2µbωn + h−2µbωn = −i
 +∞

−∞
dη

(
γµbφ12ωn +

(
βµb −

qi
mi

αµb

aµb

)
(θk1∂θk0 + g1)

+ ζµb −
qi
mi

ξµb

aµb


φ10ωn

)
(η)Kµb(η,η) − i(X+µb + X−µb), (102)

where

X±µb = ±
 η

∓∞
dη

(
qR
bϕ

1
aµb

�
αµb(θk1∂θk0 + g1) + ξµb� h±0µbωn

)
(η)Kµb(η,η)

= ∓i
 η

∓∞
dη

 η

∓∞
dη


Kµb(η,η)Kµb(η,η)

(
qR
bϕ

1
aµb

(αµbg1 + ξµb)
)
(η)(γµbφ10ωn)(η) +Kµb(η,η)(

qR
bϕ

αµb

aµb

)
(η) θk1

�
∂θk0(γµbφ10ωn)(η) − i sign(η − η)(γµbφ10ωn)(η)∂θk0Iµb(η,η)

	
. (103)

Using now Fubini’s theorem to permutate the order of η-integrations in the double integral, (103)
becomes

X±µb = ∓i
 η

∓∞
dη

�
g1γµbφ10ωn + θk1∂θk0[γµbφ10ωn]� (η) sign(η − η)Kµb(η,η)

 η

η
dη

(
qR
bϕ

αµb

aµb

)
(η)

+ (γµbφ10ωn)(η) sign(η − η)Kµb(η,η)
 η

η
dη

(
qR
bϕ

ξµb

aµb

)
(η)


+ Y±µb, (104)

where, by (82), we have

Y±µb = ∓
 η

∓∞
dη θk1(γµbφ10ωn)(η) sign(η − η)Kµb(η,η)

 η

η
dη ∂θk0Iµb(η,η)

(
qR
bϕ

αµb

aµb

)
(η)

= ∓
 η

∓∞
dη θ2

k1(γµbφ10ωn)(η)Kµb(η,η)
 η

η
dη ∂θk0Iµb(η,η)∂η∂θk0Iµb(η,η)

= ∓
 η

∓∞
dη

θ2
k1

2
(γµbφ10ωn)(η)Kµb(η,η)�∂θk0Iµb(η,η)

�2
.

Substituting the previous equation into (104) and thus into (103), using (82) and (92), and in
addition noting that

ξµb =
bϕaµb

qR
�
θk2∂θk0 + ω2∂ω0

�
∂ηIµb(η,η0), ∀η0 ∈ R,

ζµb =
bϕ
qR

�
θk2∂θk0 + ω2∂ω0

�
γµb +

qi
mi

ξµb

aµb
,

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  192.54.176.194

On: Wed, 24 Aug 2016 14:37:57



081518-34 N. Besse and D. Coulette J. Math. Phys. 57, 081518 (2016)

we find that (102) becomes:

h+2µbωn + h−2µbωn = −i
 +∞

−∞
dη

�
γµbφ12ωn +

�
θk1∂θk0γµb [θk1∂θk0 + g1]

+
�
θk2∂θk0 + ω2∂ω0

�
γµb

	
φ10ωn

� (η)Kµb(η,η) − i
 +∞

−∞
dη

�
g1(γµbφ10ωn)(η)

+ θk1∂θk0(γµbφ10ωn)(η)� {−i sign(η − η)}Kµb(η,η)
 η

η
dη θk1∂θk0∂ηIµb(η,η0)

− i
 +∞

−∞
dη (γµbφ10ωn)(η)Kµb(η,η){−i sign(η − η)}

 η

η
dη

�
θk2∂θk0 + ω2∂ω0

�
∂ηIµb(η,η0)

+ i
 +∞

−∞
dη

θ2
k1

2
(γµbφ10ωn)(η)Kµb(η,η)�∂θk0Iµb(η,η)

�2
,

which after integration leads to

h+2µbωn + h−2µbωn = −i
 +∞

−∞
dη

 �
γµbφ12ωn

� (η)Kµb(η,η)
+ φ10ωn(η) �θk2∂θk0 + ω2∂ω0

� �
γµb(η)Kµb(η,η)	 + φ11ωn(η)θk1∂θk0

�
γµb(η)Kµb(η,η)	



− i
 +∞

−∞
dη θ2

k1


(∂θk0γµbφ10ωn)(η)∂θk0Kµb(η,η) − 1

2
(γµbφ10ωn)(η)Kµb(η,η)�∂θk0Iµb(η,η)

	2

.

(105)

Using now the fact that

∂2
θk0
γµb = 0, and ∂2

θk0
Kµb(η,η) = −Kµb(η,η)�∂θk0Iµb(η,η)

	2 (since ∂2
θk0
Iµb(η,η) = 0),

Equation (105) can be recast as

h+2µbωn + h−2µbωn =

− i
 +∞

−∞
dη

�
γµbφ12ωn

� (η)Kµb(η,η) − i
 +∞

−∞
dη φ10ωn(η) �θk2∂θk0 + ω2∂ω0

� �
γµb(η)Kµb(η,η)	

− i
 +∞

−∞
dη φ11ωn(η)θk1∂θk0

�
γµb(η)Kµb(η,η)	 − i

 +∞

−∞
dη

θ2
k1

2
φ10ωn(η)∂2

θk0
{γµb(η)Kµb(η,η)},

from which we obtain, for open contours,

−2π
Ωi

qi


µb∈O

Aµb

aµb
(h+2µbωn + h−2µbωn) = −L◦Oωnφ12ωn

− (θk2∂θk0 + ω2∂ω0)L◦Oωnφ10ωn − θk1∂θk0L
◦
Oωnφ11ωn −

θ2
k1

2
∂2
θk0
L◦Oωnφ10ωn.

Following the same calculations developed for open contours, we obtain for closed contours

− 2π
Ωi

qi


µb∈C

Aµb

aµb
(h+2µbωn + h−2µbωn) = −L◦Cωnφ12ωn

− (θk2∂θk0 + ω2∂ω0)L◦Cωnφ10ωn − θk1∂θk0L
◦
Cωnφ11ωn −

θ2
k1

2
∂2
θk0
L◦Cωnφ10ωn.

Substituting the last two equations into (70), we obtain

Q◦ωnφ12ωn + Q11ωnφ11ωn + Q12ωnφ10ωn + L◦O∪Cωnφ12ωn

+ (θk2∂θk0 + ω2∂ω0)L◦O∪Cωnφ10ωn + θk1∂θk0L
◦
O∪Cωnφ11ωn +

1
2
θ2
k1∂

2
θk0
L◦O∪Cωnφ10ωn = 0. (106)
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Observing that

Θ
2
k1A1 = A1

(
θ2
k1 −

i
n
∂qθk1

)
,

(see Remark 9 of Sec. III C 2) and using (63) and (64), we find that (106) is equivalent to(
∂θk0L

◦
Cωn

�
φ10ωnΘk2 + ∂θk0φ10ωnΘ

2
k1 + g1φ10ωnΘk1

	
+

1
2
∂2
θk0
L◦Cωnφ10ωnΘ

2
k1

+ L◦Cωnφ12ωn + ω2∂ω0L
◦
Cωnφ10ωn

)
A1 = 0. (107)

Differentiating twice (71) with respect to θk0 and using (90), we get

∂θk0L
◦
Cωn∂θk0φ10ωn +

1
2
∂2
θk0
L◦Cωnφ10ωn = −

1
2
*
,

∂2ω0

∂θ2
k0

∂ω0L
◦
Cωnφ10ωn + L◦Cωn∂

2
θk0
φ10ωn

+
-
.

Substituting the previous equation and (96) into (107), we obtain

*
,
L◦Cωnφ12ωn + ω2∂ω0L

◦
Cωnφ10ωn − L◦Cωn∂θk0φ10ωng1Θk1 − L◦Cωn∂θk0φ10ωnΘk2

−1
2




∂2ω0

∂θ2
k0

∂ω0L
◦
Cωnφ10ωn + L◦Cωn∂

2
θk0
φ10ωn



Θ

2
k1
+
-

A1 = 0.

Taking the Hermitian product of the last expression with φ10ωn, using (52) and (92) to see that
ω2 = ω − ω0 + O(ϵ3γ), and taking into account the condition (89), we finally obtain the Schrödinger
equation (99) or the Riccati equation (100). �

So far we have assumed for simplicity the gyroaverage operator to be the identity. We now turn
to the more general case of a non-trivial gyroaverage operator.

Before summarizing the three stages of the asymptotic analysis done above to design an algo-
rithm for computing the eigenmodes, we present in Sec. IV E how to extend the previous asymptotic
analysis to the case including the gyroaverage operator.

E. Asymptotic analysis including a non-trivial gyroaverage operator

In this section we extend the previous asymptotic analysis to the case where we keep the
gyroaverage operator Jµ (see (42)) in Equations (65)-(70).

Proposition 7. Let 1/γ > 2. Then propositions 2–5 and 6 remain valid if we replace the linear
operator L◦

Cωn
by the gyroaveraged linear operator



L◦

Cωn

�
,which is defined by


L◦Cωn

�
=


Q◦ωn

�
+


L◦Oωn

�
+


L◦Cωn

�
,

where


Q◦ωn

�
= Q0ωn + 2π

Ωi

qi


µb∈C

AµbJ0µ *
,

1
a+
µb

− 1
a−
µb

+
-
J0µ,



L◦Oωn

�
=


µb∈O

J0µL◦OµbωnJ0µ,


L◦Cωn

�
=


µb∈C

J0µL◦CµbωnJ0µ,

J0µ = J0

( |n|q
r

v⊥
Ωi


1 + s2(η − θk0)2

)
.

Here, s = q′r/q denotes the shear parameter, and J0 the Bessel function of first kind of order zero.

Proof. The expansion of the gyroaverage operator Jµ (given by (42)) in powers of ϵγ is

Jµ = Jµ(θk0) + (θk − θk0)∂θk0Jµ(θk0) + 1
2
(θk − θk0)2∂2

θk0
Jµ(θk0) + . . .

= Jµ(θk0) + θk1∂θk0Jµ(θk0) +
(
θk2∂θk0Jµ(θk0) + 1

2
θ2
k1∂

2
θk0
Jµ(θk0)

)
+ O(ϵ3γ). (108)
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We also have to perform the asymptotic expansion of Jµ(θk0). Using the scale ordering of Sec. II D
and the gyroaverage operator (42), we obtain

Jµ(θk0)ψ(η, x) = 1
2π

 2π

0
dζ exp(iα(ζ))ψ (η − (v⊥/[Ωir]) cos ζ, x − (v⊥/Ωi) sin ζ) , (109)

where we can make the decomposition α(ζ) = α0(ζ) + R(ζ), with α0(ζ) = O(1), R(ζ) = O(ϵ),
α0(ζ) = nq

r
v⊥
Ωi

(cos ζ + s(η − θk0) sin ζ) ,
and s = q′r/q. Therefore, from (109) we obtain

Jµ(θk0)ψ(η, x) = 1
2π

 2π

0
dζ exp(iα0(ζ))ψ(η, x) + O(ϵ).

Defining tan(β) = s(η − θk0), the last equation becomes

Jµ(θk0) = 1
2π

 2π

0
dζ exp(iα0(ζ)) + O(ϵ)

=
1

2π

 2π

0
dζ exp

(
i
nq
r
v⊥
Ωi


1 + s2(η − θk0)2 cos(ζ − β)

)
+ O(ϵ)

= J0

( |n|q
r

v⊥
Ωi


1 + s2(η − θk0)2

)
+ O(ϵ)

= J0µ + O(ϵ),
where J0 is the Bessel function of first kind of order zero. Let us remember that to be consistent
with the previous asymptotic analysis we can drop all the terms smaller than order ϵ2γ with γ < 1/2.
Therefore the asymptotic expansion (108) is still valid if we replace Jµ(θk0) by J0µ in (108). Let us
now introduce the following notation:

Φ10ωn = J0µφ10ωn,

Φ11ωn = J0µφ11ωn + θk1∂θk0J0µφ10ωn,

Φ12ωn = J0µφ12ωn + θk1∂θk0J0µφ11ωn +

(
θk2∂θk0J0µ +

1
2
θ2
k1∂

2
θk0
J0µ

)
φ10ωn,

and for j ∈ {0,1,2}, h±
jµbωn

[Φ1 jωn] = w±jµbωn
[Φ1 jωn] + (qi/mi)Φ1 jωn. The bracket notation is used

to emphasize that for j ∈ {0,1,2}, the perturbed Hamiltonians h±
jµbωn

[Φ1 jωn] are functionals of
Φ1 jωn which are obtained by solving respectively (65), (67), and (69). Substituting the asymptotic
expansions (49)-(51), (53)-(55), and (108) into (45) and (46), we get, at the zeroth order, the system

L±0µbωn
*
,

h±0µbωn

a±
µb

+
-
+M±

0µbωnΦ10ωn −
qi
mi
L±0µbωn

*
,

Φ10ωn

a±
µb

+
-
= 0, (110)

*.
,
Q0ωn + 2π

Ωi

qi


µb∈C

AµbJ0µ




1
a+
µb

− 1
a−
µb



J0µ

+/
-
φ10ωn

= 2π
Ωi

qi


µb∈C

AµbJ0µ *
,

h+0µbωn

a+
µb

−
h−0µbωn

a−
µb

+
-
, (111)

at the first order,

L±0µbωn
*
,

h±1µbωn

a±
µb

+
-
+M±

0µbωnΦ11ωn −
qi
mi
L±0µbωn

*
,

Φ11ωn

a±
µb

+
-

+ L±1µbωn
*
,

h±0µbωn

a±
µb

+
-
+M±

1µbωnΦ10ωn −
qi
mi
L±1µbωn

*
,

Φ10ωn

a±
µb

+
-
= 0, (112)
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*.
,
Q0ωn + 2π

Ωi

qi


µb∈C

AµbJ0µ




1
a+
µb

− 1
a−
µb



J0µ

+/
-
φ11ωn

+
*.
,
Q1ωn + 2π

Ωi

qi
θk1


µb∈C

Aµb


∂θk0J0µ




1
a+
µb

− 1
a−
µb



J0µ + J0µ




1
a+
µb

− 1
a−
µb



∂θk0J0µ


+/
-
φ10ωn

= 2π
Ωi

qi


µb∈C

AµbJ0µ *
,

h+1µbωn

a+
µb

−
h−1µbωn

a−
µb

+
-
+ 2π

Ωi

qi
θk1


µb∈C

Aµb∂θk0J0µ *
,

h+0µbωn

a+
µb

−
h−0µbωn

a−
µb

+
-
,

(113)

and at the second order,

L±0µbωn
*
,

h±2µbωn

a±
µb

+
-
+M±

0µbωnΦ12ωn −
qi
mi
L±0µbωn

*
,

Φ12ωn

a±
µb

+
-
+ L±1µbωn

*
,

h±1µbωn

a±
µb

+
-
+M±

1µbωnΦ11ωn

− qi
mi
L±1µbωn

*
,

Φ11ωn

a±
µb

+
-
+ L±2µbωn

*
,

h±0µbωn

a±
µb

+
-
+M±

2µbωnΦ10ωn −
qi
mi
L±2µbωn

*
,

Φ10ωn

a±
µb

+
-
= 0, (114)

*.
,
Q0ωn + 2π

Ωi

qi


µb∈C

AµbJ0µ




1
a+
µb

− 1
a−
µb



J0µ

+/
-
φ12ωn

+
*.
,
Q1ωn + 2π

Ωi

qi
θk1


µb∈C

Aµb


∂θk0J0µ




1
a+
µb

− 1
a−
µb



J0µ + J0µ




1
a+
µb

− 1
a−
µb



∂θk0J0µ


+/
-
φ11ωn

+
*.
,
Q2ωn + 2π

Ωi

qi
θk2


µb∈C

Aµb


∂θk0J0µ




1
a+
µb

− 1
a−
µb



J0µ + J0µ




1
a+
µb

− 1
a−
µb



∂θk0J0µ



+ 2π
Ωi

qi

θ2
k1

2


µb∈C

Aµb


∂2
θk0
J0µ




1
a+
µb

− 1
a−
µb



J0µ + J0µ




1
a+
µb

− 1
a−
µb



∂2
θk0
J0µ

+ 2∂θk0J0µ




1
a+
µb

− 1
a−
µb



∂θk0J0µ


+/
-
φ10ωn =

2π
Ωi

qi


µb∈C

AµbJ0µ *
,

h+2µbωn

a+
µb

−
h−2µbωn

a−
µb

+
-
+ 2π

Ωi

qi
θk1


µb∈C

Aµb∂θk0J0µ *
,

h+1µbωn

a+
µb

−
h−1µbωn

a−
µb

+
-

+ 2π
Ωi

qi


µb∈C

Aµb

(
θk2∂θk0J0µ +

1
2
θ2
k1∂

2
θk0
J0µ

)
*
,

h+0µbωn

a+
µb

−
h−0µbωn

a−
µb

+
-
. (115)

We observe that (110), (112) and (114) have respectively the same structure as (65), (67), and (69).
The only differences come from the potential function. Therefore, by solving (110), (112), and
(114), we obtain the same results (73), (75), (77), (80), and (101), provided we replace φ1 jωn by
Φ1 jωn for j ∈ {0,1,2}. From (73), (75), (77), (80), and (101), and observing that h±

jµbωn
[Φ1 jωn] are

linear functionals of Φ1 jωn for j ∈ {0,1,2}, we obtain, after some algebra,

h±0µbωn[Φ10ωn] = h±0µbωn[J0µφ10ωn], (116)

h±1µbωn[Φ11ωn] = h±1µbωn[J0µφ11ωn] + θk1h±0µbωn[∂θk0J0µφ10ωn], (117)

h±2µbωn[Φ12ωn] = h±2µbωn[J0µφ12ωn] + θk1h±1µbωn[∂θk0J0µφ11ωn]

+ θk2h±0µbωn[∂θk0J0µφ10ωn] + 1
2
θ2
k1h±0µbωn[∂2

θk0
J0µφ10ωn]. (118)
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Substituting (116) into (111), the zeroth-order integral equation becomes


L◦Cωn

�
φ10ωn = 0, with



L◦Cωn

�
=


Q◦ωn

�
+


L◦Oωn

�
+


L◦Cωn

�
.

The operators


Q◦ωn

�
,


L◦Oωn

�
, and



L◦Cωn

�
are defined by



Q◦ωn

�
= Q0ωn + 2π

Ωi

qi


µb∈C

AµbJ0µ *
,

1
a+
µb

− 1
a−
µb

+
-
J0µ,



L◦Oωn

�
=


µb∈O

J0µL◦OµbωnJ0µ,


L◦Cωn

�
=


µb∈C

J0µL◦CµbωnJ0µ.

Substituting (116) and (117) into (113), the first-order equation becomes, after some algebra,



L◦Cωn

�
φ11ωn +

(
θk1∂θk0



L◦Cωn

�
+ ω1∂ω0



L◦Cωn

�
− i

2
1

nq′
∂xθk0∂

2
θk0
Q0ωn

)
φ10ωn = 0.

Since the previous equation has the same structure as (76), all the conclusions inferred from solving
(76) in Sec. IV C remain valid and identical. Substituting (116)-(118) into (115), the second-order
equation becomes, after some algebra,

(
∂θk0



L◦Cωn

� �
φ10ωnΘk2 + ∂θk0φ10ωnΘ

2
k1 + g1φ10ωnΘk1

	
+

1
2
∂2
θk0



L◦Cωn

�
φ10ωnΘ

2
k1

+


L◦Cωn

�
φ12ωn + ω2∂ω0



L◦Cωn

�
φ10ωn

)
A1 = 0.

Since the last equation has the same structure as (107), all the conclusions inferred from solving
(107) in Sec. IV D also remain valid and identical. Particularly, we obtain the same Schrödinger
equation (99) or Riccati equation (100). �

F. An algorithm for solving the eigenvalue problem

We now summarize the results of the zeroth-, first-, and second-order problems of the above
asymptotic analysis in order to design an algorithm for solving the eigenvalue problem.

(a) First for any fixed value q∗ ∈ [qmin,qmax], we have to solve the eigenvalue problem associated
to the one-dimensional integral operator of Proposition 7, i.e.,



L◦Cωn

�
φ10ωn = 0, (119)

for different values of the parameter θk0 to reconstruct the local eigenfrequency ω0(q∗, θk0).
Knowing ω0(q∗, θk0), we can determine the value of the turning point θk0,T for which
∂θk0ω0(q∗, θk0,T) = 0. From the θ-symmetry of the equilibrium and given that the toroidal-
ITG instability has maximum amplitude on the low-field side, we may expect θk0,T to be
close to the origin, thus limiting our search.

(b) Once the turning point θk0,T is known for every value q ∈ [qmin,qmax], we have to solve the
eigenvalue problem (119) to reconstruct the local eigenfrequency ω0(q, θk0,T) and get the
eigenfunction φ10ωn which gives the slow poloidal θ-envelope of the eigenmode.

(c) Once the local eigenfrequency ω0(q, θk0,T) is obtained, we can solve (numerically) the
non-self-adjoint Schrödinger equation (99): this consists of finding Sn, i.e., the set of ω ∈ C
such that the kernel of (99) is non-trivial or empty. The set Sn constitutes the point spectrum
of our problem, while the associated eigenvectors give the slow radial q-envelope A1 of the
global eigenmode.

(d) Then, using the ballooning representation (36) (see Sec. III C 2), in which we replace φωn by
φ10ωn, and θk by θk0,T + θk1, or exp(in  dq θk) by exp(inqθk0,T)A1(q), we obtain the desired
three-dimensional eigenmode φ(t,r).

Finally the heart of the problem is to solve an eigenvalue problem for the one-dimensional linear
integral operator (119).
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V. SPECTRAL ANALYSIS

In this section, we perform the spectral analysis for the one-dimensional non-self-adjoint
Schrödinger-type operator and for the nested one-dimensional Fredholm-type integral operator with
a nonlinear dependency of the eigenparameter.

A. The schrödinger-type radial envelope equation

We aim at giving some general spectral properties of the Schrödinger equation (99) and to
present a particular resolution of (99) in the case of two closely spaced simple turning points under
some additional assumptions on the local eigenfrequency ω0. We consider the non-self-adjoint
Schrödinger equation (99), recast as the boundary value problem with homogeneous Dirichlet
conditions:

T(ω)A1 = 0, A1(qmin) = 0, A1(qmax) = 0. (120)

Here, we use the following notation:

T(ω) = ∂2

∂q2 − n2Q(q,ω), Q(q,ω) = − ω − ω0(q, θk0,T)
1
2∂

2
θk0
ω0(q, θk0,T)

∈ C, (121)

where qmax = q(rmax) and qmin = q(rmin).

1. General case

Let us first give some general spectral properties of the non-self-adjoint boundary value prob-
lem (120), which can also be seen as a non-self-adjoint Sturm-Liouville problem. We have the
following spectral theorem.

Theorem 1. Let us assume that the complex radial functions q −→ ω0(q, θk0,T) and q −→
∂2
θk0
ω0(q, θk0,T) are such that

1
∂2
θk0
ω0
,

ω0

∂2
θk0
ω0
∈ L1([qmin,qmax];C).

Let Ω be any open connected subset of C and let the toroidal number n ∈ Z be fixed. Then either

(i) T−1(ω) exists for no ω ∈ Ω and Ker T , {0}, ∀ω ∈ Ω.
(ii) T−1(ω) exists for all ω ∈ Ω and Ker T = {0}, ∀ω ∈ Ω.

(iii) T−1(ω) exists for all ω ∈ Ω\Sn where Sn is a discrete subset of Ω constituted of an (infinite
or finite) countable number of isolated points (i.e., a set which has no accumulation point
in Ω and contains a finite number of singular points — poles — in each compact subset of
Ω). In this case ω −→ T−1(ω) is a meromorphic operator-valued function in Ω, analytic in
Ω\Sn, and the residues at the poles are finite rank operators such that Ker T(ω) , {0} for
ω ∈ Sn. Therefore, if ω ∈ Sn, the boundary value problem (120) has at most two linearly
independent solutions which are not zero almost everywhere. More precisely, if ω∈ Sn and
A1 ∈ Ker T(ω) then A1 ∈ W 2,1 ∩W 1,∞([qmin,qmax];C) and dim Ker T(ω) = 1.

Proof. Under assumptions of Theorem 1, items (i)–(iii) follow from Lemma 3.2.1 to
Lemma 3.2.4 of Chapter 3 of Ref. 107. Particularly, the fact that dim Ker T(ω) = 1 comes from
Lemma 3.2.2 of Chapter 3 of Ref. 107 and the homogeneous Dirichlet boundary condition of the
problem (120). In addition, the meromorphic property of the operator-valued function ω −→ T−1(ω)
and the finite rank residues can be deduced from the Laurent series expansion of the Green function
of the non-self-adjoint boundary value problem (120) given by Theorem 3.8.1 of Chapter 3 of
Ref. 107. �

Remark 15. Contrary to the spectral theory of self-adjoint Schrödinger (or Sturm-Liouville)
operators, which is nowadays well understood and established, the non-self-adjoint theory (with
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complex-valued potential) is in its infancy and no general results concerning the asymptotic behav-
iour (for large n) of the spectrum of (120) are known.26,35

Remark 16. In the case where ∂2
θk0
ω0 ∈ R−∗ (negative real), the spectral analysis of the non-self-

adjoint Schrödinger (or Sturm-Liouville) operator (120) has been performed in Refs. 18, 85, and
107. Let us also point out the pioneering works of Sims93,32 and Glazman45 (§35 & §66) concerning
the spectral analysis of Schrödinger operators with complex potentials.

2. Case of two closely spaced simple turning points

Let us first introduce some notation. We set z = q − q0 with q0 = q(r0) and where r0 is a refer-
ence rational magnetic flux surface between rmin and rmax, say at the middle radius. We use the
notation ∂kqω

0
0 = ∂

k
qω0(q, θk0,T)|q=q0

, and ∂kq∂
2
θk0
ω0

0 = ∂
k
q∂

2
θk0
ω0(q, θk0,T)|q=q0

, for 0 ≤ k ≤ 3. In the
case of two closely spaced simple turning points we have the following

Theorem 2. Let us assume that

|z/q0| ≪ 1, ω0, ∂
2
θk0
ω0∈ C3([qmin,qmax],C),

∂qω
0
0 = 0, ω0

0 , 0, ∂2
qω

0
0 , 0, ∂2

θk0
ω0

0 , 0,
������
qk

0

∂kq∂
2
θk0
ω0

0

∂2
θk0
ω0

0

������
= O(|z/q0|3−k), k = 1,2.




(122)

Then the eigenvalue problem associated to the non-self-adjoint Schrödinger boundary value prob-
lem (120) reduces to the solution of the algebraic dispersion equation D(ω) = 0,where

D(ω) = U(a(n,ω0
0,ω),zmin)V (a(n,ω0

0,ω),zmax) −U(a(n,ω0
0,ω),zmax)V (a(n,ω0

0,ω),zmin). (123)

Here, the functions U(·, ·) and V (·, ·) are the linearly independent parabolic cylinder functions. We
also use the following definitions

zmin =
qmin − q0

z0
, zmax =

qmax − q0

z0
, a = a(n,ω0

0,ω) =
n(ω0

0 − ω)
(2∂2

qω
0
0∂

2
θk0
ω0

0)1/2
, z0 = *

,

1
2n2

∂2
θk0
ω0

0

∂2
qω

0
0

+
-

1/4

.

(124)

Proof. We first set Q(z) = Q(q0 + z) and A1(z) = A1(q0 + z). Using assumptions (122), and the
Taylor series expansion we obtain

Q(z) = ω0
0 − ω +

z2

2 ∂
2
qω

0
0

∂2
θk0
ω0

0

+ O(|z/q0|3).

Then, the non-self-adjoint boundary value problem (120) is approximated to third order, for small
z/q0, by

(∂2
z − Q)A1 = 0, A1(zmin) = 0, A1(zmax) = 0,

where zmin = qmin − q0 and zmax = qmax − q0. In the previous equation, making the change of vari-
ables z = z0z, where z0 , 0 is a complex constant given by (124), and setting A(z) = A1(z), we
finally obtain the following Weber equation:

∂2
z A −

(
a +
z2

4

)
A = 0, A(zmin) = 0, A(zmax) = 0, (125)

with zmin, zmax, and a given by (124). It is well known1 that a fundamental system of solutions for
the Weber equation (125) is formed by the two linearly independent parabolic cylinder functions
U(a,z) and V (a,z). Therefore a solution of the boundary value problem (125) is given by a linear
combination of the functions U(a,z) and V (a,z) for specific values of the global eigenvalue ω such
that the boundary conditions A(zmin) = 0 and A(zmax) = 0 are satisfied. Now, using the Wronskian
W{U(a,z),V (a,z)} = √2/π (see Ref. 1), and Lemma 3.2.2 of Chapter 3 of Ref. 107, we obtain that
the values ω, for which the boundary conditions of equation (125) are satisfied, are solutions of the
dispersion or characteristic equation D(ω) = 0, given by equation (123) of Theorem 2. �
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Remark 17. In order to find the solutions of the dispersion equation D(ω) = 0, we may use the
asymptotic approximations (see Ref. 1) of U(a,z) and V (a,z) since |zmin| = O(n1/2), |zmax| = O(n1/2)
(using (124)), and |a | = O(1) (see Remark 18) or perform directly a numerical resolution.

Remark 18. Actually, we may expect that ω − ω0
0 = O(1/n). Indeed, let us choose a symmetric

approximation of the functions U(a,z) and V (a,z) given, respectively, by exp(−z2/4) and exp(z2/4).
We then take A(z) ≃ exp(−sz2/4) where s = sign(Re (∂2

qω
0
0/∂

2
θk0
ω0

0)1/2) such that the radial envelope

approximation A1(q) ≃ exp(−sn(∂2
qω

0
0/∂

2
θk0
ω0

0)1/2/(2√2)(q − q0)2) has its modulus decreasing when
|q − q0| increases. Substituting the approximation A(z) ≃ exp(−sz2/4) into (125), we obtain

ω = ω0
0 +

1

2
√

2

s
n
(∂2

qω
0
0∂

2
θk0
ω0

0)1/2,

which means that ω − ω0
0 = O(1/n) and thus using (124), |a | = O(1). Let us now estimate how

close the two simple turning points {qTi}i=1,2 are. Since ω − ω0 = O(ϵ2γ) with γ < 1/2, using the
following Taylor expansion:

ω − ω0(qTi) = ω − ω0
0 + ω0(q0) − ω0(qTi) = O(1/n) + (q0 − qTi)∂qω0(qTi) + O((q0 − qTi)2),

we find that the two simple turning points are separated by a distance ∆q smaller than or equal to
n−νa with ν = 2γ < 1, if ∂qω0(qTi) , 0. This estimation must be compared with the radial extension
a priori estimate of the global eigenmode from the phase factor n


dq θk1 = O(1) of the eikonal

form (34). Since |θk1| = O(ϵγ), we get ∆q = O(n−σa) with σ = 1 − γ > 1/2. These estimations are
in good agreement and equal if we choose γ = 1/3 (ν = σ = 2/3). Taking γ = 1/3 leads to a radial
extension of the eigenmode of order n−2/3a.

B. The nested Fredholm-type integral operator

In this section we discuss the solution of the linear homogeneous Fredholm’s integral equa-
tion



L◦

Cωn

�
φ = 0, whose kernel depends nonlinearly on the eigenvalue parameter ω0. Although

the theory of linear Fredholm integral equations with linear eigenparameter dependence is well
known;37,63,84,19,62,65,64,66,94,95,83 in the case of a nonlinear eigenvalue parameter dependence, and
more generally for nonlinear eigenvalue problems, the theory is far from being complete despite a
lot of analytical97,68,52,53,36,103,104,86,87,25,34 and numerical91,57,51,101 developments. In order to use the
theory of the linear Fredholm’s integral equation with linear eigenparameter dependence, we may,
by means of some transformations, increase the dimension of the space of unknowns and convert
the nonlinear eigenvalue problem into a generalized (linear) eigenvalue problem. Using appropriate
changes of variables and taking into account only open contours, we are able to linearize the
nonlinear eigenvalue problem



L◦

Cωn

�
φ = 0 (see Remark 23). For closed contours, nonlinear terms

with respect to the eigenfrequency still remain, and it seems difficult to get rid of them. Another
point of view for considering the problem



L◦

Cωn

�
φ = 0 is the perturbation theory of linear opera-

tors depending continuously on a parameter, for instance, the eigenfrequency ω0.31,69 We first give
some properties of the integral operator, next consider the case of only open contours, and finally
deal with the case of both open and closed contours.

1. Basic properties of the integral operator

The integral equation


L◦

Cωn

�
φ = 0, satisfied by the electrical potential φ = φ10ωn, can be

rewritten as

φ(θ) =
 ∞

−∞
dη K(θ,η;ω0)φ(η) = Op(K)φ(θ) = �

Op(KO) + Op(KC)�φ(θ), (126)

where

K(θ,η;ω0) = KO(θ,η;ω0) + KC(θ,η;ω0) =

µb∈O

KOµb(θ,η;ω0) +

µb∈C

KCµb(θ,η;ω0).
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Here, the kernels KOµb and KCµb are defined by

KOµb(θ,η;ω0) = −i2π
Ωi

qi

Aµb

Q(θ)
J0µ(θ)
aµb(θ)

J0µ(η)
aµb(η)

(
e

Te0

qR
bϕ
Ω∗µb(ω0)a2

µb

)
(η)×

exp
�
i sign(η − θ)Iµb(θ,η;ω0)� , (127)

KCµb(θ,η;ω0) =

ℓ∈Z

2π
Ωi

qi

Aµb

Q(θ)
J0µ(θ)
aµb(θ)

J0µ(η)
aµb(η)

21[θ−,ℓ
Lµb

,θ+,ℓ
Lµb

](θ)
sinIµb(θ−,ℓLµb

, θ+,ℓ
Lµb

;ω0)
(

e
Te0

qR
bϕ
Ω∗µb(ω0)a2

µb

)
(η)

cosIµb(θ+,ℓLµb
, η;ω0) cosIµb(θ−,ℓLµb

, θ;ω0)1[θ,θ+,ℓ
Lµb

](η)

+ cosIµb(θ−,ℓLµb
, η;ω0) cosIµb(θ+,ℓLµb

, θ;ω0)1[θ−,ℓ
Lµb

,θ](η)

, (128)

where

Q(θ) = Q◦(θ) + 4π
Ωi(θ)

qi


µb∈C

Aµb

J2
0µ(θ)

aµb(θ) ,

Q◦(θ) = eτni0

kBTi0
+

ni0 n2

(ΩiB)(θ)
q2

r2

�
1 + s2(θ − θk0)2� ,

J0µ(θ) = J0

( |n|q
r

v⊥
Ωi(θ)


1 + s2(θ − θk0)2

)
,

Iµb(θ,η;ω0) =
 η

θ

dη [ω0 − ωdµb(η) + iω�µb(η)]
(

qR
bϕaµb

)
(η),

Ω
±
∗µb(η;ω0) =


ω∗µb(η)a2

µb(η) +
qi
mi

Te0

e
[ω0 − ωdµb(η) + iω�µb(η)]


1

a2
µb
(η) ,

ωdµb(η) = nbϕ
R(η)



µ

qi
+ *
,

a2
µb

Ωi

+
-
(η)




q′(η − θk0) sin η + q(η)cos η

r


,

ω∗µb(η) = nbϕTe0

e(Baµb)(η)


1
r
�(q∂xaµb)(η) − q′(η − θk0)∂ηaµb(η)�

+


q′(η − θk0) sin η + q(η)cos η

r

 ( aµb

R

)
(η)


,

ω�µb(η) = −2

sin η∂xaµb(η) − cos η

r
∂ηaµb(η)

 (
aµb

Ωi

bϕ
R

)
(η),

aµb(θ) = a◦µb


1 + Λµb(cos θ − 1), for θ ∈ ] − π,π[, if (µ,b) ∈ O,
or θ ∈ ] − θLµb, θLµb[, if (µ,b) ∈ C,

θ±,ℓ
Lµb
= ±θLµb + 2πℓ, ℓ ∈ Z, θLµb =

�
arccos

�
1 − Λµb

−1�� ,

Λµb =
2µB0

mia◦
2

µb

r
R0
.

Here, the quantities Ωi(θ) = qiB(θ)/mi, R(θ) = R0 + r cos θ, B(θ) = B0(1 + r/R0 cos θ)−1
1 + r2/[qR(θ)]2 = B0(1 − r/R0 cos θ) + O(ϵ2

a), bϕ = 1/


1 + r2/[qR(θ)]2 = 1 + O(ϵ2
a), q(θ) =

q[r2 + q2R(θ)2]/[qR(θ)]2 = q(r) + O(ϵ2
a), s = q′r/q, a◦

µb
= a◦

µb
(r), ni0 = ni0(r), Ti0 = Ti0(r), and

Te0 = Te0(r) are given quantities. We assume that ni0, Ti0 > 0, and that ni0(r), Ti0(r), q(r), and
s(r) are regular enough typically in the space Cm

b
([rmin,rmax]) with m ≥ 1. Let us now make two

important remarks.

Remark 19. First we can straightforwardly show that (i) the kernel K(θ,η;ω0) is 2π-periodic
in θk0; that is if we add 2π to θk0 and make the change of variables η = η ′ + 2π and θ = θ ′ + 2π,
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thanks to θ-periodicity of equilibrium quantities, we obtain the same kernel K in the variables η ′

and θ ′; (ii) the spectrum of the integral operator (126) is symmetric with respect to the sign of the
toroidal number n; that is, if we change n into −n, then we obtain the same integral operator (126)
where ω0 = ω

ℜ
0 + iωℑ0 and φ are changed, respectively, into −ωℜ0 + iωℑ0 and φ⋆ in (126).

Remark 20. If we choose the approximation B = B0R0/R + O(ϵ2
a), then we get ∂ηB = Br sin

η/R + O(ϵ2
a) and ∂xB = −B cos η/R + O(ϵ2

a). Using this approximation and the approximated
equilibrium contours (28), we obtain the formula

e
Te0
Ω∗µba2

µb =
qi
mi

(ω0 + iω�µb) + nbϕ
B
q

r
d
dr

*.
,

a◦
2

µb

2
+
µB(r,0)

mi

+/
-

(129)

=
qi
mi
ω0 +

nqbϕ
rB

(
1 − i

2r
nqR

sin η
)

d
dr

*.
,

a◦
2

µb

2
+
µB(r,0)

mi

+/
-
− i

2bϕ
R2B

µB
mi

sin 2η

whose r.h.s. is bounded with respect to the η-variable. Without this approximation (e/Te0)Ω∗µba2
µb

is linear in η and thus unbounded.

We now intend to study the spectral properties of the operator I − Op(K) defined by (126). For
this, we will state few lemmas, propositions, and theorems. Let us begin with the following lemma.

Lemma 1. Let us suppose that {a◦
µb
}µb∈C ∈ C1

b
([rmin,rmax]) are bounded from below and

above, i.e., there exist two constants a◦min > 0 and a◦max > 0 such that a◦min ≤ a◦
µb
≤ a◦max for all

(µ,b) ∈ C. Then,

1
aµb
∈ Lγ

loc(R), γ ∈ (0,2), ∀(µ,b) ∈ C, (130)

 θ+,ℓ
Lµb

θ−,ℓ
Lµb

dη
(

qR
bϕ

ω�µb

aµb

)
(η) = 0, ∀(µ,b) ∈ C, ∀ℓ ∈ Z, (131)

 η0+2π

η0

dη
(

qR
bϕ

ω�µb

aµb

)
(η) = 0, ∀(µ,b) ∈ O, ∀η0 ∈ R, (132)

and

������
exp *

,
− sign(η ′ − η)

 η′

η

dθ
(

qR
bϕ

ω�µb

aµb

)
(θ)+

-

������
≤ C < ∞, ∀η,η ′ ∈ R, ∀(µ,b) ∈ O. (133)

Proof. Since we have supposed that {a◦
µb
}µb∈C are continuous with respect to the r-variable,

bounded from below and above we get 2rminµminB0/(mia◦
2

maxR0) ≤ Λµb ≤ 2rmaxµmaxB0/(mia◦
2

minR0).
As a consequence, we obviously have, for all fixed r ∈ [rmin,rmax] and for all (µ,b) ∈ O, that
1/aµb ∈ L1

loc(Rθ). The only singular points are the limit angles θ±,ℓ
Lµb

where aµb vanishes, for all

(µ,b) ∈ C. For all (µ,b) ∈ C and for all fixed r ∈ [rmin,rmax], in the neighborhoodV(θ±,ℓ
Lµb

) of θ±,ℓ
Lµb

,
the closed contour aµb behaves as

1
aµb

=
θ≃θ±,ℓ

Lµb

1
a◦
µb

(
2Λµb − 1(±θ±,ℓ

Lµb
∓ θ) + O ((±θ±,ℓ

Lµb
∓ θ)2))−1/2

, (134)

which is an integrable algebraic singularity in θ provided that Λµb > 1/2. Hence 1/aµb ∈ Lγ
loc(Rθ)

for 0 < γ < 2, and for all (µ,b) ∈ C (130) is stated. Let us now look at the term qRω�µb/(aµbbϕ),
which can be written as(

qR
bϕ

ω�µb

aµb

)
(η) = −2q

Ωi


sin η∂xaµb(η) − cos η

r
∂ηaµb(η)


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= − q
Ωi

sin η
aµb(η)∂x

(
a2
µb(η) +

rµB0

R0mi/2
cos η

)
,

= − q
Ωi

sin η
aµb(η)

(
∂xa◦

2

µb +
µB0

R0mi/2
(2 cos η − 1)

)
.

From the previous equation, for all (µ,b) ∈ C, we observe that qRω�µb/(aµbbϕ) is odd with respect
to the η-variable and thus, by periodicity, we get (131). Now for all (µ,b) ∈ O, we observe that
qRω�µb/(aµbbϕ) is periodic with a period of at most 2π. Moreover, using the change of variables in
η given by u = a◦

2

µb
+

r µB0
R0mi/2 (cos η − 1), we obtain

 η′

η

dθ
(

qR
bϕ

ω�µb

aµb

)
(θ) = −2q

Ωi

R0

r

mia◦
2

µb
/2

µB0



(
a◦

2

µb +
rµB0

R0mi/2
(cos η ′ − 1)

)1/2
*
,

1
3r
− 2

∂xa◦
µb

a◦
µb

− 2
3R0

µB0

mia◦µb/2
(cos η ′ − 1)+

-

−
(
a◦

2

µb +
rµB0

R0mi/2
(cos η − 1)

)1/2
*
,

1
3r
− 2

∂xa◦
µb

a◦
µb

− 2
3R0

µB0

mia◦µb/2
(cos η − 1)+

-


= g(η ′) − g(η),

where η → g(η) is a 2π-periodic function. Therefore, we get (132) from which we deduce (133). �

2. Case of only open contours

We first consider the case of only open contours. The case of only open contours is interesting
in itself, since with only open contours, we can take into account the behaviour of both passing
particles (open trajectories) and some trapped particles (closed trajectories). The main theorems of
this section are Theorem 3 (for the spectrum in C+) and Theorem 4 (for the spectrum in C), which
are established by using Proposition 8 and Proposition 9.

We start with a proposition stating that the operator Op(KO) is a bounded linear Hilbert-
Schmidt operator in the Hilbert space L2(R). Let us recall that if a Hilbert-Schmidt operator is
compact — and thus behaves as a finite-dimensional operator — the converse is false. In particular,
the singular values of a Hilbert-Schmidt operator are square summable. Let us remark that for open
contours the parameter µ is non-negative. Let us also introduce two integers δ and σ, such that

δ =



0 if there exists a µ such that µ = 0,
1 if µ > 0 for all µ,

and

σ =



0 if the approximation (129) of Remark 20 is assumed,
1 if the approximation (129) of Remark 10 is not assumed.

Proposition 8. Under the assumptions of Lemma 1, for all values of ω0 in the upper half-
complex plane (Imω0 > 0), the operator Op(KO) is a Hilbert-Schmidt operator and thus compact
on L2(R). Defining C+ = C\{ω0 ∈ C | Imω0 ≤ 0}, we find that Op(KO)(ω0) : C+ −→ L(L2) is an
analytic operator-valued function such that Op(KO)(ω0) is compact for each ω0 ∈ C+.

Proof. Let us show that the operator Op(KO) belongs to the class of Hilbert-Schmidt operators
for all values of ω0 in the upper half-complex plane (Imω0 > 0), in other words that the kernel
KO ∈ L2(R × R), i.e.,

R


R

|KO(θ,η;ω0)|2dθdη < ∞, ∀ω0 such that Imω0 > 0.

From definition (127), taking into account Remark 20, and using (133) of Lemma 1, we can recast
KOµb as

KOµb(θ,η;ω0) = BOµb(θ,η;ω) (1 + |η |)σ
Q(θ)

J0µ(θ)
aµb(θ)

J0µ(η)
aµb(η) exp

(
iω0

�����

 η

θ

(
qR

bϕaµb

)
(η ′)dη ′

�����

)
,
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where BOµb(θ,η;ω0) ∈ L∞(Rη × Rθ). Using the property 0 < aµb < ∞ for (µ,b) ∈ O, and (133) we
obtain that, for all (µ,b) ∈ O, there exists a constant C = C(µ,b,ω0) such that

|KOµb(θ,η;ω0)|2 ≤ C
(1 + |η |)2σ
(1 + |θ |2)2 |J0µ(θ)|2|J0µ(η)|2 exp

(
2iω0

�����

 η

θ

(
qR

bϕaµb

)
(η ′)dη ′

�����

)
. (135)

Using the change of variables η̃ = η − θ into (135), and the asymptotic property J0µ(η) = O(1/
 |η |)

as η → ±∞, we then obtain that there exist two constants C1 = C1(µ,b,ω0) and C2 = C2(µ,b) such
that

|KOµb(θ,η;ω0)|2 ≤ C1(1 + |θ |2)−2−δ/2(1 + |η̃ + θ |2)σ−δ/2 exp (−C2Im ω0|η̃ |) .
Hence |KO(θ,η;ω0)|2 ∈ L1(Rη × Rθ) as long as Imω0 > 0, which concludes the proof. From expres-
sion (127), analyticity of Op(KO)(ω0) with respect to ω0 is obvious since functionals of ω0 involve
only products of polynomials and exponential of ω0. �

Remark 21. The operator Op(KO) belongs to the trace class, i.e., Tr (Op(KO)) < ∞, since the
kernel KO is such that |KO(η,η;ω0)| ∈ L1(Rη). L1-integrability of the kernel KO results from the
fact that J0µ(η) = O(1/

 |η |) as η → ±∞, if 1 + δ − σ > 0. Therefore, the classical Fredholm the-
ory37,63,84,19,62,65,64,66,97,94,46,48,95,83 (the so-called 1st, 2nd, and 3rd theorems of Fredholm) applies
to the operator Op(KO). Eigenvalues of the operator I − Op(KO) are the zeros of the Fredholm
determinant defined as a series of determinant of infinite matrices (which can be rewritten in term
of traces only of the operators Op(KO) and its higher iterates) while the eigenfunctions can be
computed using higher Fredholm minors. If δ = 0 (i.e., there exists a value of the parameter µ such
that µ = 0 or J0µ = 1: no gyroaveraging) and σ = 1, then the operator Op(KO) is no more in the
trace class. Nevertheless, the Fredholm theory still holds, provided the classical Fredholm determi-
nants are replaced by regularized ones. The latter are the so-called Hilbert-Carleman determinants
of infinite matrices, setting to zero the main diagonal terms (where otherwise would appear the
meaningless trace of the operator).63,19,62,94,95,31,47,48,50

As a consequence of Proposition 8, we get the analytic Fredholm theorem for the open-contour
operator in C+.

Theorem 3. Let us suppose that assumptions of Lemma 1 are satisfied. Let Ω be any open
connected subset of C+. Then either

(i) I − Op(KO) is nowhere invertible inΩ, or
(ii) the resolvent (I − Op(KO))−1 exists for all ω0 ∈ Ω\S, where S is a discrete subset of Ω

constituted of a countable number of isolated points (i.e., a set which has no limit points in
Ω, and contains a finite number of singular points — poles — in each compact subset of Ω).
In the latter case, the resolvent (I − Op(KO))−1 is meromorphic in Ω, analytic in Ω\S, and
the residues at the poles are finite rank operators (i.e., the invariant algebraic eigenspaces
are finite dimensional). If ω0 ∈ S, then the equations (I − Op(KO)(ω0))φ = 0, and (I −
Op(KO)⋆(ω0))ψ = 0 have the same number of linearly independent solutions; these are non-
zero in L2(R), and hence almost everywhere. Moreover, the poles of (I − Op(KO)(ω0, x))−1 in
the ω0-complex plane depend continuously on x and can appear and disappear only at the
boundary of Ω.

Proof. From Proposition 8 we infer that Op(KO)(ω0) : Ω −→ L(L2) is an analytic operator-
valued function, such that Op(KO)(ω0) is compact for each ω0 ∈ Ω. This, together with the an-
alytic Fredholm theorem such as Theorem VI.14 of Ref. 89 or Theorem 1 of Ref. 97 implies
Theorem 3. The last assertion of Theorem 3 is a consequence of Theorem 3 of Ref. 96 and the
fact that Op(KO)(ω0, x) is a family of compact operators jointly continuous in (ω0, x) for each
(ω0, x) ∈ Ω × [xmin, xmax]. �

We notice that Theorem 3 only asserts existence of eigenmodes for Imω0 > 0, which is the case
that interests us most; indeed we aim at characterizing the plasma micro-instabilities driven by den-
sity and temperature gradients. Nevertheless, we would like to extend the kernel K of the integral
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equation (126) to eigenfrequencies of the non-positive imaginary part. The only obstacle for this
comes from the divergent part of integral (126), associated to the kernel KO; indeed for Imω0 ≤ 0
the exponential term in (127) is not integrable. In order to extend Theorem 3, we need to make an
analytic continuation of the operator Op(KO), which is the purpose of the next proposition. We will
find that the analytic continuation of the kernel KO(ω0) with ω0 ∈ C+ to the half ω0-complex plane
C− is KO(ω⋆

0 ), where (·)⋆ denotes complex conjugation. If we consider only open contours, this
means that the spectrum will be symmetric with respect to the real axis, and that the eigenmodes
with eigenfrequency of negative imaginary part are the same as those with the eigenfrequency of
positive imaginary part, but for negative time. Here, the analytic continuation allows us to recover
time reversibility broken by the way boundary conditions were chosen. Indeed, in Sec. IV B, when
integrating the perturbed Hamiltonian h±0µbωn

(see (73)) for open contours, we have two possible
choices for the boundary conditions. The first choice, which has been done in Sec. IV B, consists of
taking η0 = −∞ (resp. η0 = +∞) for h+0µbωn

(resp. h−0µbωn
). Therefore, the kernel KO is integrable

only for ω0 ∈ C+. The second choice consists of taking η0 = +∞ (resp. η0 = −∞) for h+0µbωn
(resp.

h−0µbωn
). Therefore, the kernel KO is integrable only for ω0 ∈ C−. As a consequence, damped eigen-

modes, which must be seen as resonances or pseudo-eigenmodes, are described here by mixing of
real frequencies (as a sum of all eigenmodes with real eigenfrequency ω0). This is usual in waterbag
descriptions10 (where Landau damping is obtained as sums of plane waves with real frequencies)
and is reminiscent of the Van Kampen-Case resolution of the eigenvalue problem.105,20

Before dealing with analytic continuation, let us look at the case where the frequency ω0
is purely real. The kernel KO is then no more integrable because of the loss of the exponential
decay property. Nevertheless, using a well-suited change of unknowns, we can retrieve an integrable
kernel. For this purpose, we introduce the following Hilbert space:

L2
κ(R) =


f : η ∈ R −→ f (η) ∈ R, s.t. ∥ f ∥L2

κ(R) = ⟨ f , f ⟩1/2
L2
κ(R)

< ∞

,

where the scalar product ⟨·, ·⟩L2
κ(R) is defined by

⟨ f , g⟩L2
κ(R) =


R

f (η)g(η)κ2(η)dη.
Here, the weight function η −→ κ(η) is given by

κ(η) = (1 + |η |2)α, α ∈
(

1 − δ
4
+
σ

2
,
3 + δ

4

)
. (136)

Making the change of unknowns φκ = φκ, we can rewrite the integral equation (126) as

φκ(θ) =
 ∞

−∞
dηK (θ,η;ω0)φκ(η) = Op(K )φκ(θ),

where

K (θ,η;ω0) = KO(θ,η;ω0) +KC(θ,η;ω0) =

µb∈O

KOµb(θ,η;ω0) +

µb∈C

KCµb(θ,η;ω0)

and

KOµb(θ,η;ω0) = KOµb(θ,η;ω0) κ(θ)
κ(η) and KCµb(θ,η;ω0) = KCµb(θ,η;ω0) κ(θ)

κ(η) .
The extension to real frequency ω0 relies on the following lemma.

Lemma 2. Proposition 8 and Theorem 3 can be extended to purely real frequencies ω0. In other
words, the operator-valued function Op(KO)(ω0) : C+ ∪ R −→ L(L2

κ(R)) (respectively, Op(KO)(ω0)
: C+ ∪ R −→ L(L2(R))) constitutes a Hilbert-Schmidt family, hence a family of compact operators
on the Hilbert space L2

κ(R) (resp. L2(R)).

Proof. Using the previous new formulation and estimate (135), we observe that the kernel
KO ∈ L2(Rη × Rθ) for ω0 ∈ C+ ∪ R. The properties of the kernel KC will be studied later. Using
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the change of variables η̃ = η − θ in (135), and the asymptotic property J0µ(η) = O(1/
 |η |) as

η → ±∞, we find that there exist two constants C1 = C1(µ,b,ω0) and C2 = C2(µ,b) such that

|KOµb(θ,η;ω0)|2 ≤ C1(1 + |θ |2)−2−δ/2+2α(1 + |η̃ + θ |2)σ−δ/2−2α exp (−C2 Imω0|η̃ |) , (137)

and thus |KO(θ,η;ω0)|2 ∈ L1(Rη × Rθ) for ω0 ∈ C+ ∪ R, as long as (1 − δ)/4 + σ/2 < α < (3 +
δ)/4. �

Analytic continuation to the lower half-complex plane relies on the following proposition.

Proposition 9. Let us set C− = C\{ω0 ∈ C | Imω0 ≥ 0} and let ω⋆
0 be the complex conju-

gate of ω0. Then, for every ω0 ∈ C−, the operator Op(KO)(ω⋆
0 ) (resp. Op(KO)(ω⋆

0 )) constitutes
an analytic continuation of the operator Op(KO)(ω̃0) (resp. Op(KO)(ω̃0)) for ω̃0 ∈ C+. Moreover
Op(KO)(ω⋆

0 ) : C− −→ L(L2) (resp. Op(KO)(ω⋆
0 ) : C− −→ L(L2

κ)) is an analytic operator-valued
function such that Op(KO)(ω⋆

0 ) (resp. Op(KO)(ω⋆
0 )) is a Hilbert-Schmidt operator, hence compact

on L2(R) (resp. L2
κ(R)) for each ω0 ∈ C−.

Proof. To show that the operator Op(KO)(ω⋆
0 ) with ω0 ∈ C− is an analytic continuation of the

operator Op(KO)(ω0) with ω0 ∈ C+, we write the integral equation (126) (restricted to the kernel
KO) in new variables, with new unknowns. Let us define, for all (µ,b) ∈ O,

TOµb =
 π

−π
dη

(
qR

aµbbϕ

)
(η), and ωOµb =

2π
TOµb

.

Since {aµb > 0}(µ,b)∈O, we define the monotone and invertible change of variables

η ←→ θµb(η), θµb(η) = ωOµb
 η

0
dη ′

(
qR

aµbbϕ

)
(η ′).

Let us then define for all (µ,b) ∈ O,

Ωdµb = −
 η

0
dη ′

(
qR

aµbbϕ

)
(η ′)ωdµb(η ′), and Ω�µb = −

 η

0
dη ′

(
qR

aµbbϕ

)
(η ′)ω�µb(η ′).

Now we introduce the unknowns ψµb±(θµb) defined as

ψµb±(θµb) = Ψµb±(η(θµb))

B exp
�
∓i

�
Ωdµb(η(θµb)) − iΩ�µb(η(θµb))��

(
e

Te0
Ω∗µb(ω0)a2

µb

J0µ

κ
φκ

)
(η(θµb)). (138)

Let us suppose that ψµb± ∈ L2(Rθµb). Since J0µ(η) = O(1/
 |η |) as η → ±∞, and a2

µb
Ω∗µb(η) .

(1 + |η |2)σ/2 (see Remark 20), this is the case if either (1 + |η |2)σ/2−δ/4φ ∈ L2(Rη), or the Fourier
transform φ ∈ Hσ−δ/2(R). Therefore we can introduce the Fourier transform ψµb±(λ) of ψµb±(θµb)
defined by

ψµb±(λ) = 1
√

2π

 ∞

−∞
dθµb exp(−iλθµb)ψµb±(θµb). (139)

Roughly speaking, the analytical continuation away from the real axis of the functions ψ(λ) de-
pends on the decreasing and regularity properties of the function φ(η). If φ(η) is square summable
and exponentially decreasing at infinity then it is the same for ψ(θ) and thus its Fourier transform
ψ(λ) belongs to the Hardy space H2. We recall that the Hardy space H2 consists of functions which
are analytic in a strip of the complex plane containing the real axis, and which are square summable
on any line parallel to the real axis within this strip (see Theorem I of Ref. 80). Finally, we also
have Paley-Wiener type results that for a tempered distribution ψ on R to be the Fourier transform
of a compactly supported distribution (resp. C∞ function) ψ, it is necessary and sufficient for ψ to
be a C∞ function slowly growing at infinity (resp. rapidly decaying at infinity, i.e., belonging to S)
extendable to C as an entire function of exponential type (i.e., with some exponential growing prop-
erties as the imaginary part tends to infinity). We refer to the Paley-Wiener (-Schwartz) theorems
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in Refs. 42 and 41 for precise results. Using definitions (138) and (139), equations (65) become

h±0µbωn(η) = ∓i exp
�
∓i

�
−Ωdµb(η) + iΩ�µb(η)��

1
ωOµb

1
√

2π

 ∞

−∞
dλ ψµb±(λ) exp(iλθµb(η))

 0

∓∞
dη exp

(
i
(
λ ∓ ω0

ωOµb

)
η
)
.

Since Imω0 > 0, we can perform the η-integration in the latter equation and we obtain

φL
κ (η) = (Op(KO)(ω0)φκ) (η) = −


µb∈O

2π
Ωi

qi

Aµb

ωOµb

κ(η)
Q(η)

J0µ(η)
aµb(η)

1
√

2π

 ∞

−∞
dλ exp(iλθµb(η))




exp
�
i
�
Ωdµb(η) − iΩ�µb(η)��
λ − ω0/ωOµb

ψµb+(λ) − exp
�
−i

�
Ωdµb(η) − iΩ�µb(η)��
λ + ω0/ωOµb

ψµb−(λ)

. (140)

From definition (138) we observe that ψµb± depends on ω0, i.e., ψµb± = ψµb±(θµb;ω0 = ω
ℜ
0 + iωℑ0 ).

Let us set ψ⋆µb± = ψµb±(θµb;ω⋆
0 ) (resp. ψ⋆µb± using (139)) and ψℜµb± = ψµb±(θµb;ωℜ0 ) (resp.

ψℜµb± using (139)). Then, for Imω0 < 0, we define φR
κ as

φR
κ (η) =

�
Op(KO)(ω⋆

0 )φκ
� (η) = −


µb∈O

2π
Ωi

qi

Aµb

ωOµb

κ(η)
Q(η)

J0µ(η)
aµb(η)

1
√

2π

 ∞

−∞
dλ exp(iλθµb(η))




exp
�
i
�
Ωdµb(η) − iΩ�µb(η)��
λ − ω⋆

0 /ωOµb
ψ⋆µb+(λ) − exp

�
−i

�
Ωdµb(η) − iΩ�µb(η)��
λ + ω⋆

0 /ωOµb
ψ⋆µb−(λ)


. (141)

From (138) and (140) and (141), we obtain that (140) is analytic with respect to ω0 in C+ and (141)
is analytic with respect to ω0 in C−. Now using the Sokhotski-Plemelj formula,76 i.e.,

1
λ − ωℜ0 /ωOµb ± i0+

= p.v. *
,

1
λ − ωℜ0 /ωOµb

+
-
∓ iπδ

(
λ − ωℜ0 /ωOµb

)
,

we obtain that the boundary values ofφL
κ as Imω0 → 0+andφR

κ as Imω0 → 0−are equal, i.e.,φL
κ (ωℜ0 ) =

φR
κ (ωℜ0 ). Therefore, from the principle of analytic continuation (see, for example, Ref. 79), φR

κ consti-
tutes the unique analytic continuation inC−of the functionφL

κ analytic inC+. Let us note that the bound-
ary values of φL

κ (as Imω0 → 0+) or φR
κ (as Imω0 → 0−) involve the Hilbert integral (with singular

Cauchy kernel)

p.v.

R

f (y)
y − x

dy,

which defines a bounded operator from Lp into itself, with 1 < p < ∞ (see for instance Part II,
Chapter XI, Section 7 of Ref. 31, or Chapter V of Ref. 102). Therefore, the boundary values
of φL

κ and φR
κ on the real axis of the ω0-complex plane are well defined and equal in L2(R) as

long as (1 + |η |2)σ/2−δ/4φ ∈ L2(R). Assuming (1 + |η |2)1/2(σ−δ/2+1/2+ε)φ ∈ L2(Rη), with ε > 0, or
equivalently the Fourier transform φ ∈ Hσ−δ/2+1/2+ε(R), we obtain that the boundary values of φL

κ

and φR
κ on the real axis of the ω0-complex plane are equal in H1/2+ε(R). Therefore, using contin-

uous Sobolev embeddings theorem, the boundary values of φL
κ and φR

κ on the real axis are equal
in the space of continuous functions. Finally, assuming that φκ is square summable and rapidly
decreasing (or compactly supported), we find that boundary values of φL

κ and φR
κ on the real axis

of the ω0-complex plane are well defined and equal in the space of infinitely differentiable func-
tions. Moreover, following the proof of Proposition 8, we obtain that Op(KO)(ω⋆

0 ) : C− −→ L(L2)
(resp. Op(KO)(ω⋆

0 ) : C− −→ L(L2
κ)) is an analytic operator-valued function such that Op(KO)(ω⋆

0 )
(respectively, Op(KO)(ω⋆

0 )) is a Hilbert-Schmidt operator; it is thus compact on L2(R) (respectively,
L2
κ(R)) for each ω0 ∈ C−; which ends the proof. �

We can now state the analytic Fredholm theorem for the open-contour operator in C.
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Theorem 4. Let us suppose that assumptions of Lemma 1 are satisfied. Let Ω be any open
connected subset of C, and Op(KO) be the analytic extended operator obtained in Proposition 9.
Then either

(i) I − Op(KO) is nowhere invertible inΩ, or
(ii) the resolvent (I − Op(KO))−1 exists for all ω0 ∈ Ω\S, where S is a discrete subset of
Ω constituted of a countable number of isolated points. In the latter case the resolvent
(I − Op(KO))−1 extends to an operator-valued function in ω0, which is analytic in Ω\S,
meromorphic in Ω, and such that the residues at the poles are finite rank operators. If
ω0 ∈ S, then the equations (I − Op(KO)(ω0))φ = 0 and (I − Op(KO)⋆(ω0))ψ = 0 have the
same number of linearly independent solutions; these are non-zero in L2(R) and hence
almost everywhere. Moreover the poles of (I − Op(KO)(ω0, x))−1 in the ω0-complex plane,
depend continuously on x and can appear and disappear only at the boundary of Ω.

Proof. From Propositions 8 and 9 we find that Op(KO)(ω0) : Ω −→ L(L2) is an analytic
operator-valued function such that Op(KO)(ω0) is compact for each ω0 ∈ Ω. This, together with
the analytic Fredholm theorem such as Theorem VI.14 of Ref. 89 or Theorem 1 of Ref. 97, im-
plies Theorem 4. The last assertion of Theorem 4 is a consequence of Theorem 3 of Ref. 96 and
the fact that Op(K )(ω0, x) is a family of compact operators jointly continuous in (ω0, x) for each
(ω0, x) ∈ Ω × [xmin, xmax]. �

Remark 22. A theorem similar to Theorem 4 can be stated for the analytical continuation of the
operator-valued function I − Op(KO)(ω0) : Ω −→ L(L2

κ(R)), in the Hilbert space L2
κ(R).

Remark 23. Let us note that the transformation, introduced in the proof of Proposition 9 can
be used to transform the eigenvalue problem with nonlinear eigenparameter ω0 dependence, into
an eigenvalue problem (for instance, a generalized eigenvalue problem of higher dimension) with
linear eigenparameter ω0 dependence. This strategy seems to work only for open contours. We
can also use similar Fourier transforms for closed contours, but the nonlinear trigonometric terms
sinIµb(θ−,ℓLµb

, θ+,ℓ
Lµb

;ω0) in KC (128) cannot really disappear.
Let us recover the generalized eigenvalue problem (linear in ω0) for open contours, i.e., for

all (µ,b) ∈ O. We consider only the case for which ω0 ∈ C+, but obviously we can recover this
reformulation straightforwardly for ω0 ∈ C−. Taking (140), multiplying it by

ωOµ′b′√
2π

exp
�
∓i

�
Ωdµ′b′(η) − iΩ�µ′b′(η)� exp

�
−iξθµ′b′(η)��

(
e

Te0

qR
bϕ
Ω∗µ′b′(ω0)a2

µ′b′
J0µ′

κ

)
(η),

and integrating the result with respect to η, we obtain

ψµ′b′±(ξ) = −
 ∞

−∞
dλ


µb∈O


R

dη
Ωi

qi

Aµb

Q(η)
J0µ(η)
aµb(η)

ωOµ′b′

ωOµb
exp

�
∓i

�
Ωdµ′b′(η) − iΩ�µ′b′(η)��(

e
Te0

qR
bϕ
Ω∗µ′b′(ω0)a2

µ′b′J0µ′

)
(η) exp(i[λθµb(η) − ξθµ′b′(η)])




exp
�
i
�
Ωdµb(η) − iΩ�µb(η)��
λ − ω0/ωOµb

ψµb+(λ) − exp
�
−i

�
Ωdµb(η) − iΩ�µb(η)��
λ + ω0/ωOµb

ψµb−(λ)

. (142)

Let us define the set O = O × {+,−} and the index ℓ = (µ,b,α), where (µ,b) ∈ O and α ∈ {+,−}.
Let us introduce the unknowns Ψµb±(λ) = ψµb±(λ)/(λ ∓ ω0/ωOµb), and the unknown vector Ψ =
(Ψℓ)T

ℓ∈ O
. Finally, we define the diagonal matrix Ω O = Diag({−αω−1

Oµb}(µ,b,α)∈ O). Since in (142) the
term Ω∗µ′b′(ω0) is linear in ω0, we can recast the eigenvalue problem (126) with nonlinear eigenpa-
rameter dependence as the following generalized eigenvalue problem, with linear dependence in the
eigenparameter ω0:

AΨ − ω0BΨ = 0.
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Here,A and B are linear operators written as follows:

(AΨ)(ξ) = ξ I OΨ(ξ) −

R

dλKA(ξ, λ)Ψ(λ), (BΨ)(ξ) = Ω OΨ(ξ) −

R

dλKB(ξ, λ)Ψ(λ),

where the matrix-valued kernels KA and KB are independent of ω0 and whose exact expressions
can be easily inferred from (142).

3. Case of open and closed contours

In this section we consider both open and closed contours. The main results of this section
are Theorem 5 (with hypothesis (H) and the spectrum in C\Σ, where Σ is a subset of the real
axis defined by (143)), Theorem 6 (without hypothesis (H) and the spectrum in C+) and Theo-
rem 7 (without hypothesis (H) and the spectrum in C\Σ), which are established using Proposi-
tions 10 and 11.

Let us deal with the operator Op(KC), associated to closed contours. We remark that for closed
contours the parameter µ is positive. From (128), we observe that the kernel KC is singular in
ω0 when sinIµb(−θLµb, θLµb;ω0) = sinIµb(θ−,ℓLµb

, θ+,ℓ
Lµb

;ω0) for all ℓ ∈ Z, vanishes. By (131), this
happens whenever

ω0 = ω̄Cdµb +

(
l +

1
2

)
ωCµb, ∀l ∈ Z, (µ,b) ∈ C.

Here we have set, for all (µ,b) ∈ C,

TCµb =
 θLµb

−θLµb

dη
(

qR
aµbbϕ

)
(η), ωCµb =

2π
TCµb

,

ω̄Cdµb =
1

TCµb

 θLµb

−θLµb

dη ωdµb(η)
(

qR
aµbbϕ

)
(η).

We define the set Σ by

Σ =


ω0 ∈ R |ω0 = ω̄Cdµb +

(
l +

1
2

)
ωCµb, ∀l ∈ Z, (µ,b) ∈ C


. (143)

We note that this set Σ depends on the radial variable x, i.e., Σ = Σ(x). Since the set Σ contains the
poles of the kernel KC, the operator Op(KC)(ω0) : C −→ L(L2) is a meromorphic operator-valued
function of C. Let us fix ω0 ∈ C, say a regular point of analyticity of the meromorphic operator-
valued function Op(KC)(ω0) : C −→ L(L2). When we look at the integral operator I − Op(KC) (see
(128)) we observe that roughly speaking the integral operator is weakly singular with an alge-
braic singularity of power minus one-half due to the equilibrium closed contours (see (134)). This
suggests that the operator should be compact on some well-suited Hilbert spaces (see Ref. 71 or
section 9.5 of Ref. 33). In addition, the semi-separable structure of the kernel suggests that the
operator is a Hilbert-Schmidt operator in some relevant Hilbert spaces (see Chapter IX49). In order
to prove such properties, let us introduce the Hilbert space

L2
ϱ(R) =


f : η ∈ R −→ f (η) ∈ R, s.t. ∥ f ∥L2

ϱ(R) = ⟨ f , f ⟩1/2
L2
ϱ(R)

< ∞

,

where the scalar product ⟨·, ·⟩L2
ϱ(R) is defined by

⟨ f , g⟩L2
ϱ(R) =


R

f (η)g(η)ϱ2(η)dη.
Here, the weight function ϱ is given by

ϱ = κϖ, with ϖ =
*.
,


µb∈C

Aµb

J2
0µ

aµb

+/
-

β

∈ Lγ
loc(R), β ∈ (0,1), γ ∈ (0,2/β),
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and κ is given by (136). Making the change of unknowns φϱ = φϱ, we can recast the integral
equation (126) as

φϱ(θ) =
 ∞

−∞
dη G(θ,η;ω0)φϱ(η) = Op(G)φϱ(θ),

where

G(θ,η;ω0) = GO(θ,η;ω0) + GC(θ,η;ω0) =

µb∈O

GOµb(θ,η;ω0) +

µb∈C

GCµb(θ,η;ω0),

and

GOµb(θ,η;ω0) = KOµb(θ,η;ω0) ϱ(θ)
ϱ(η) , and GCµb(θ,η;ω0) = KCµb(θ,η;ω0) ϱ(θ)

ϱ(η) . (144)

If for every µ such that (µ,b) ∈ C, the zeros of the map θ −→ J0µ(θ) are different from the limit
angles {θ±,ℓ

Lµb
}µb∈C, ℓ∈Z, we can show that Op(G)(ω0) : C −→ L(L2) is a meromorphic operator-

valued function of C where the coefficients of the Laurent series of Op(G)(ω0) are trace class and
Hilbert-Schmidt, hence compact operators on L2(R). This feature relies on a specific behaviour of
the denominator Q, which remains unexploited until now. This nice property fails if for every µ such
that (µ,b) ∈ C, the zeros of the map θ −→ J0µ(θ) coincide with the limit angles {θ±,ℓ

Lµb
}µb∈C, ℓ∈Z,

because the zeros of J2
0µ are of order larger than one-half and thus cancel those of aµb. Therefore we

make the following hypothesis.

Assumption H. For every µ such that (µ,b) ∈ C, the roots of the map θ −→ J0µ(θ), do not
belong to the set {θ±,ℓ

Lµb
}µb∈C, ℓ∈Z.

Under this assumption we obtain the following proposition.

Proposition 10. Let us assume hypothesis (H) and assumptions of Lemma 1. Then Op(G)(ω0) :
C\Σ −→ L(L2) (resp. Op(K)(ω0) : C\Σ −→ L(L2

ϱ)) is an analytic operator-valued function such
that Op(G)(ω0) (resp. Op(K)(ω0)) is Hilbert-Schmidt, hence compact on L2(R) (resp. L2

ϱ(R)) for
each ω0 ∈ C\Σ. Moreover, Op(G)(ω0) : C −→ L(L2) (resp. Op(K)(ω0) : C −→ L(L2

ϱ)) is a mero-
morphic operator-valued function of C where the coefficients of the Laurent series of Op(G)(ω0)
(resp. Op(K)(ω0)) — in particular the residues at the simple poles Σ — are Hilbert-Schmidt, hence
compact operators on L2(R) (resp. L2

ϱ(R)).
Proof. Let us first show that the operator Op(GO) belongs to the class of Hilbert-Schmidt

operators with bounded trace for all values of ω0 in the upper half-complex plane C+ and the real
axis, i.e., that the kernel GO ∈ L2(R × R). Of course, we can extend it to the lower half-complex
plane C− by analytical continuation as has been done in Proposition 9. This requires that φ decay
rapidly enough at infinity. If we replace GOµb by KOµb, then estimate (137) for Imω0 ≥ 0, still
holds for all η, θ ∈ V(±∞) (the notationV(x) denotes a neighborhood of x). As a consequence, the
kernel |GOµb(θ,η;ω0)|2 is integrable in the neighborhood of infinity as long as (1 − δ/4) + σ/2 <
α < (3 + δ)/4, and thus we only need to check that for all (µ,b) ∈ O, GOµb ∈ L2

loc(R × R) in
the neighborhood of the limit angles {θ±,ℓ

Lµb
}µb∈C, ℓ∈Z. Under assumption (H), we obtain, for all

η ∈ V(θs′,ℓ′
Lµ′b′) and θ ∈ V(θs′′,ℓ′′

Lµ′′b′′),

|GOµb(θ,η)|2 . 1
ϖ(η)2

1
ϖ(θ)2/β−2 .

aβ
µ′b′(η)
J

2β
0µ′(η)

a1−β
µ′′b′′(θ)
J

2(1−β)
0µ′′ (θ)

∈ L1
(
V(θs′,ℓ′

Lµ′b′) ×V(θs′′,ℓ′′
Lµ′′b′′)

)
and thus the kernel GOµb ∈ L2(R × R), for all (µ,b) ∈ O. Let us note that the same kind of esti-
mates holds if some pairs of limit angles have identical values, since the corresponding equilibrium
closed contours have the same algebraic singularity of power minus one-half. By (135), it is also
clear that GOµb(η,η) ∈ L1(R × R) as 1 + δ − σ > 0, since the rescaling factor ϱ(θ)/ϱ(η) simplifies.
Moreover from (144), analyticity of Op(GO)(ω0) (resp. Op(KO)(ω0)) with respect to ω0 is obvious
since functionals of ω0 involve only products of polynomials and exponential of ω0. Therefore,
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Op(GO)(ω0) : D −→ L(L2) (resp. Op(KO)(ω0) : D −→ L(L2
ϱ)) forms an analytic operator-valued

function on any open connected subset D of C, such that the families of operators Op(GO)(ω0)
(resp. Op(KO)(ω0)) belong to the class of Hilbert-Schmidt operators in L2(R) (resp. L2

ϱ(R)) with
bounded trace provided 1 + δ − σ > 0, for all ω0 ∈ D.

Let us now consider the closed-contour kernels GCµb, for all (µ,b) ∈ C, where we use the
decomposition

GCµb =

ℓ∈Z
Gℓ
Cµb.

We first suppose that ω0 ∈ C\Σ. By Lemma 1, Remark 20, (144) and (128), the kernel Gℓ
Cµb can be

recast as

Gℓ
Cµb(θ,η;ω0) = (1 + |η |)σ

Q(θ)
ϱ(θ)
ϱ(η)

J0µ(θ)
aµb(θ)

J0µ(η)
aµb(η)BCµb(θ,η,ω0)1[θ−,ℓ

Lµb
,θ+,ℓ

Lµb
](θ)

cosIµb(θ+,ℓLµb
, η;ω0) cosIµb(θ−,ℓLµb

, θ;ω0)1[θ,θ+,ℓ
Lµb

](η) + cosIµb(θ−,ℓLµb
, η;ω0) cosIµb(θ+,ℓLµb

, θ;ω0)1[θ−,ℓ
Lµb

,θ](η)

,

where BCµb(θ,η,ω0) ∈ L∞(Rθ × Rη). Using Lemma 1, we observe that the term Iµb(θ,η;ω0) can be
written as

Iµb(θ,η;ω0) = i Imω0

 η

θ

dη
(

qR
bϕaµb

)
(η) + a(θ,η) + ib(θ,η),

where a, b ∈ R, and ∥b∥L∞(Rθ×Rη) < ∞. Therefore, for η ∈ [θ, θ+,ℓ
µb
] and θ ∈ [θ−,ℓ

Lµb
, θ+,ℓ

Lµb
], using

Lemma 1, we find that

cosIµb(θ+,ℓLµb
, η;ω0) ≤ C(∥b∥L∞(Rθ×Rη)) *.

,
exp *.

,
−Imω0

 η

θ+,ℓ
Lµb

dη
( qR

bϕaµb

)(η)+/
-

+ exp *.
,
Imω0

 η

θ+,ℓ
Lµb

dη
( qR

bϕaµb

)(η)+/
-

+/
-

≤ C(∥b∥L∞(Rθ×Rη)) *
,
1 + exp *

,
|Imω0|

 θ+,ℓ
Lµb

θ

dη
( qR

bϕaµb

)(η)+
-
+
-

≤ C(∥b∥L∞(Rθ×Rη)) *.
,
1 + exp *.

,
|Imω0|

 θ+,ℓ
Lµb

θ−,ℓ
Lµb

dη
( qR

bϕaµb

)(η)+/
-

+/
-

≤ C(∥b∥L∞(Rθ×Rη)) *
,
1 + exp *

,
|Imω0|

 θLµb

−θLµb

dη
( qR

bϕaµb

)(η)+
-
+
-

< ∞. (145)

In the same way as we have bounded cosIµb(θ+,ℓLµb
, η;ω0), we can bound cosIµb(θ−,ℓLµb

, θ;ω0),
cosIµb(θ−,ℓLµb

, η;ω0), and cosIµb(θ+,ℓLµb
, θ;ω0) with the same bound (145). Consequently, we obtain

|Gℓ
Cµb(θ,η;ω0)| ≤ C

(1 + |η |)σ
Q(θ)

ϱ(θ)
ϱ(η)

|J0µ(θ)|
aµb(θ)

|J0µ(η)|
aµb(η) 1[θ−,ℓ

Lµb
,θ+,ℓ

Lµb
](θ)1[θ−,ℓ

Lµb
,θ+,ℓ

Lµb
](η),

and thus, using the disjoint support property, we obtain


R


R

dθdη |GCµb |2 =

R


R

dθdη
������


ℓ∈Z
Gℓ
Cµb

������

2

=

ℓ∈Z


R


R

dθdη |Gℓ
Cµb |2

≤

ℓ∈Z

 θ+,ℓ
Lµb

θ−,ℓ
Lµb

dθ
 θ+,ℓ

Lµb

θ−,ℓ
Lµb

dη |GCµb |2 ≤

R


R

dθdη |GCµb |2,
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where

GCµb(θ,η) = C
(1 + |η |)σ

Q(θ)
ϱ(θ)
ϱ(η)

|J0µ(θ)|
aµb(θ)

|J0µ(η)|
aµb(η) .

For η, θ ∈ V(±∞), using the previous equation, we get |GCµb | . (1 + |θ |)−2+2α−1/2(1 + |η |)σ−2α−1/2

∈ L2(Rθ × Rη) as long as σ/2 < α < 1. We now get for all η ∈ V(θs′,ℓ′
Lµ′b′) and θ ∈ V(θs′′,ℓ′′

Lµ′′b′′),

|GCµb(θ,η)| . |J0µ(θ)|
aµb(θ)

|J0µ(η)|
aµb(η)

1
ϖ1/β−1(θ)ϖ(η) = Γµb(θ)Πµb(η).

Let us first look at Πµb(η). If (µ′,b′) , (µ,b), then for all η ∈ V(θs′,ℓ′
Lµ′b′), we have Πµb(η) .

(aµ′b′/|J0µ′|2)β. Under hypothesis (H) and the condition β > 0, we then get Πµb ∈ L2(V(θs′,ℓ′
Lµ′b′)).

Otherwise, if (µ′,b′) = (µ,b), then for all η ∈ V(θs′,ℓ′
Lµ′b′), we have Πµb(η) . 1/a1−β

µ′b′/|J0µ′|2β−1. Un-

der hypothesis (H) and the condition β > 0, we then get Πµb ∈ L2(V(θs′,ℓ′
Lµ′b′)). Let us note that

the same type of estimates can be obtained if some pairs of limit angles have identical values,
since the corresponding equilibrium closed contours have the same algebraic singularity of po-
wer minus one-half. Now, let us look at Γµb(θ). If (µ′′,b′′) , (µ,b) then for all θ ∈ V(θs′′,ℓ′′

Lµ′′b′′),
we have Γµb(θ) . (aµ′′b′′/|J0µ′′|2)1−β. Under the condition β < 1 and hypothesis (H), we then
get Γµb ∈ L2(V(θs′′,ℓ′′

Lµ′′b′′)). Otherwise, if (µ′′,b′′) = (µ,b), then for all θ ∈ V(θs′′,ℓ′′
Lµ′′b′′), we have

Γµb(θ) . 1/aβ
µ′′b′′/|J0µ′′|1−2β. Under the condition β < 1 and hypothesis (H), we then get Γµb ∈

L2(V(θs′′,ℓ′′
Lµ′′b′′)). Let us note that the same type of estimates can be established if some pairs

of limit angles have identical values, since the corresponding equilibrium closed contours have
the same algebraic singularity of power minus one-half. Moreover for all η ∈ V(θs,ℓ

Lµb
), we have

|GCµb(η,η)| . 1/aµb ∈ L1(V(θs,ℓ
Lµb

)), while for all η ∈ V(±∞), |GCµb(η,η)| . 1/(1 + |η |2) ∈ L1

(V(±∞)). Therefore, we infer that ∀ω0 ∈ C\Σ, the operator-valued function ω0 −→ Op(GC)(ω0)
(resp. ω0 −→ Op(KC)(ω0)) constitutes analytic families of Hilbert-Schmidt operators in L2(R)
(resp. L2

ϱ(R)) with bounded trace. Using the Taylor expansion of the sinus functions sinIµb(θ−,ℓLµb
,

θ−,ℓ
Lµb

;ω0) around a point ω ∈ Σ, we obtain the Laurent series expansion of the ω0-operator-valued
functions Op(GC)(ω0) and Op(KC)(ω0). For example, we have

Op(GC)(ω0) = Op(GC−1)(ω)(ω0 − ω)−1 +

∞
k=0

Op(GCk)(ω)(ω0 − ω)k . (146)

From the above analysis, we can show that the terms {Op(GCk)(ω)}k≥−1, (resp. {Op(KCk)(ω)}k≥−1)
of the Laurent series constitute families of Hilbert-Schmidt operators in L2(R) (resp. L2

ϱ(R)) with
bounded trace. Therefore, Op(G)(ω0) : D −→ L(L2) (resp. Op(K)(ω0) : D −→ L(L2

ϱ)) are mero-
morphic operator-valued function on any open connected subset D of C where the coefficients of
the Laurent series of Op(G)(ω0) (resp. Op(K)(ω0)) — in particular the residues at the simple poles
Σ— are Hilbert-Schmidt, hence compact operators on L2(R) (resp. L2

ϱ(R)). �

As a consequence of Proposition 10, we obtain the following analytic Fredholm theorem for the
open-and-closed-contour operator in C\Σ.

Theorem 5. Let us suppose that assumptions of Lemma 1 and hypothesis (H) are satisfied. Let
Ω be any open connected subset of C\Σ. Then either

(i) I − Op(G) is nowhere invertible inΩ, or
(ii) the resolvent (I − Op(G))−1 exists for all ω0 ∈ Ω\S, where S is a discrete subset of Ω

constituted of a countable number of isolated points. In the latter case the resolvent (I −
Op(G))−1 extends to an operator-valued function in ω0 which is analytic in Ω\S, meromor-
phic in Ω, and the residues at the poles ω0 ∈ S are finite rank operators. If ω0 ∈ S, then
the equations (I − Op(G)(ω0))φ = 0, and (I − Op(G)⋆(ω0))ψ = 0 have the same number of
linearly independent solutions; these are non-zero in L2(R) and hence almost everywhere.
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Proof. From Proposition 10, we obtain that Op(G)(ω0) : Ω −→ L(L2) is an analytic operator-
valued function such that Op(G)(ω0) is compact for each ω0 ∈ Ω. This, together with the analytic
Fredholm theorem such as Theorem VI.14 of Ref. 89 or Theorem 1 of Ref. 97, implies Theorem 5.

�

Remark 24. A theorem similar to Theorem 5 can be stated for the operator-valued function
I − Op(K)(ω0) : Ω −→ L(L2

ϱ(R)), in the Hilbert space L2
ϱ(R). Therefore, the poloidal envelope

φ10ωn of the eigenmode belongs to L2
ϱ(R), which means that the map θ −→ φ10ωn(θ) decays rapidly

enough at infinity and integrable singularity is not ruled out.

Remark 25. Let us note that the operators Op(KC) and Op(GC) have semi-separable ker-
nels (see Chapter IX49) but not-separable or degenerate kernels,89,69,95 i.e., they are not defined
through a sum of finite number of product of functions of θ alone by functions of η alone.
Then the operator Op(GC−1) in the Laurent series (146) or the associated operator Op(KC−1) has
semi-separable kernels. Therefore the ranges of the operators Op(GC−1) and Op(KC−1) are not in
general finite dimensional (see Chapter IX49). Consequently, we cannot use the meromorphic Fred-
holm theorem (see Theorem XIII.13 in Ref. 88 or Theorem 2 in Ref. 97) to extend the resolvents
ω0 −→ (I − Op(G)(ω0))−1 and ω0 −→ (I − Op(K)(ω0))−1 to operator-valued functions in ω0 that
are analytic inΩ\S and meromorphic inΩ, where nowΩ is any open connected subset of C.

Actually, we can remove the assumption (H) and prove that meromorphic operator families
C ∋ ω0 −→ Op(KC)(ω0) are still compact but not Hilbert-Schmidt, in some Hilbert spaces. More
precisely, we have the following proposition.

Proposition 11. Let us assume hypothesis of Lemma 1. Then, Op(KC)(ω0) : C\Σ −→ L(L2) is
an analytic operator-valued function such that Op(KC)(ω0) is compact on L2(R) for each ω0 ∈ C\Σ.
Moreover Op(KC)(ω0) : C −→ L(L2) is a meromorphic operator-valued function of C where the
coefficients of the Laurent series of Op(KC)(ω0) — in particular the residues at the simple poles Σ
— are compact operators on L2(R).

Proof. Let us note that the operator Op(KC) can be written as

Op(KC) = Op *.
,


µb∈C


ℓ∈Z
Kℓ
Cµb

+/
-
=


µb∈C


ℓ∈Z

Op
(
Kℓ
Cµb

)
,

with

Kℓ
Cµb(θ,η;ω0) = (1 + |η |)σ

Q(θ)
J0µ(θ)
aµb(θ)

J0µ(η)
aµb(η)BCµb(θ,η,ω0)1[θ−,ℓ

Lµb
,θ+,ℓ

Lµb
](θ)

cosIµb(θ+,ℓLµb
, η;ω0) cosIµb(θ−,ℓLµb

, θ;ω0)1[θ,θ+,ℓ
Lµb

](η) + cosIµb(θ−,ℓLµb
, η;ω0) cosIµb(θ+,ℓLµb

, θ;ω0)1[θ−,ℓ
Lµb

,θ](η)

.

For every ω0 ∈ C\Σ, we have BCµb(θ,η,ω0) ∈ L∞(Rθ × Rη). Therefore, using the same type of
estimate as (145), obtained in the proof of Proposition 10, we find that

∥Op(KC)φ∥L2(R) =










µb∈C


ℓ∈Z

Op
(
Kℓ
Cµb

)
φ








L2(R)
≤


µb∈C


ℓ∈Z




Op
(
Kℓ
Cµb

)
φ



L2(R)

≤

µb∈C


ℓ∈Z




Op
(���Kℓ

Cµb
���
) |φ|


L2(R) ≤


µb∈C


ℓ∈Z




T
ℓ
Bµb ◦ T ℓ

Cµb |φ|


L2(R)

=

µb∈C


ℓ∈Z




T
ℓ
Bµb ◦ T ℓ

Cµb |φ|


L2([θ−,ℓ
Lµb

,θ+,ℓ
Lµb

]), (147)

where T ℓ
Bµb

is the multiplication operator

T ℓ
Bµbϕ =

|J0µ(θ)|
aµb(θ)

1
Q(θ)1[θ−,ℓ

Lµb
,θ+,ℓ

Lµb
](θ)ϕ(θ) = m(θ)ϕ(θ),
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and T ℓ
Cµb

is the weakly singular operator

T ℓ
Cµbϕ =

 θ+,ℓ
Lµb

θ−,ℓ
Lµb

dη
|J0µ(η)|
aµb(η) |BCµb(θ,η,ω0)|(1 + |η |)σ1[θ−,ℓ

Lµb
,θ+,ℓ

Lµb
](η)ϕ(η).

Let us first show that m = |J0µ |a−1
µb

Q−1 ∈ Lp ∩ L∞(Rθ) with p ≥ 1. Indeed for θ ∈ V(±∞), we have
m . C/(1 + |θ |2). In the sequel of the proof, C will denote a generic constant which will change
from line to line. Let us now suppose that θ ∈ V(θL), where θL is any limit angle belonging to the
set {θ±,ℓ

Lµb
}µb∈C, ℓ∈Z. Indeed, since the zeros of Bessel function of first kind of zeroth order J0 are of

order greater than one-half, if θL is a zero of J0µ, then there is no singularity at θL. If however θL is
not a zero of J0µ, then the algebraic singularity of order minus one-half of a−1

µb
at θL (see (134)) is

compensated by Q. Therefore m ∈ Lp ∩ L∞(Rθ), with p ≥ 1. Since m ∈ Lp ∩ L∞(Rθ), with p ≥ 1,
the operator T ℓ

Bµb
is a bounded operator in L2(R). Moreover we easily get the estimate




T
ℓ
Bµbϕ




L2(R) =



T

ℓ
Bµbϕ




L2([θ−,ℓ
Lµb

,θ+,ℓ
Lµb

])

≤ C(1 + |θ−,ℓ
Lµb

|2)−1∥ϕ∥
L2([θ−,ℓ

Lµb
,θ+,ℓ

Lµb
]) (148)

≤ C(1 + |θ−,ℓ
Lµb

|2)−1∥ϕ∥L2(R).

Now, we can recast the operator T ℓ
Cµb

as

T ℓ
Cµbϕ =

 θ+,ℓ
Lµb

θ−,ℓ
Lµb

dη
K(η,θ,ω0)

aµb(η) ϕ(η),

where the kernel K(η,θ,ω0), jointly continuous in the variable η and θ, is such that

∥K ∥
L∞([θ−,ℓ

Lµb
,θ+,ℓ

Lµb
]) ≤ C(1 + |θ+,ℓ

Lµb
|2)σ/2, (149)

for every ω0 ∈ C\Σ. At the neighborhood of the limit angles θ±,ℓ
Lµb

, using (134), we have the estimate

1
aµb(η) ≃ w

(���η − θ±,ℓLµb
���
)
,

where the weight function w :]0,+∞[ −→ R represents the weak singularity, i.e., w is continuous
and satisfies |w(η)| ≤ Cη−1/2. The power minus one-half comes from the integrable algebraic singu-
larity of order minus one-half of the closed contours {aµb}(µ,b)∈C (see (134)). The following is well
known (see Ref. 71 or Section 9.5 of Ref. 33 and Exercises 9.19 to 9.22 of Ref. 33): let T be an
integral operator with weak singularity, that is, defined by

(Tϕ)(t) =

Γ

ν(|t − τ |)B(t, τ)ϕ(τ),

where the kernel B is continuous and bounded on Γ × Γ, and where the continuous weight function
ν :]0,+∞[−→ R satisfies |ν(t)| ≤ Mt−s with 0 ≤ s < 1, then T is a continuous endomorphism of
Lp(Γ) for 1 ≤ p ≤ ∞, and a compact endomorphism of Lp(Γ) whenever, 1 < p < ∞, with Γ any
compact set of R . Therefore, the operator T ℓ

Cµb
is a continuous and compact endomorphism on

L2([θ−,ℓ
Lµb

, θ+,ℓ
Lµb

]). Moreover, using (149), we get




T
ℓ
Cµbϕ




L2([θ−,ℓ
Lµb

,θ+,ℓ
Lµb

]) ≤ C(1 + |θ+,ℓ
Lµb

|2)σ/2








 θ+,ℓ
Lµb

θ−,ℓ
Lµb

dη
ϕ(η)

aµb(η)






L2([θ−,ℓ

Lµb
,θ+,ℓ

Lµb
])

≤ C(1 + |θ+,ℓ
Lµb

|2)σ/2∥ϕ∥
L2([θ−,ℓ

Lµb
,θ+,ℓ

Lµb
])

≤ C(1 + |θ+,ℓ
Lµb

|2)σ/2∥ϕ∥L2(R).
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Therefore, using the previous estimate, (148) and the Cauchy-Schwarz inequality, we obtain


µb∈C


ℓ∈Z




T
ℓ
Bµb ◦ T ℓ

Cµb |φ|


L2([θ−,ℓ
Lµb

,θ+,ℓ
Lµb

]) ≤ C

µb∈C


ℓ∈Z

(1 + |θ+,ℓ
Lµb

|2)σ/2

(1 + |θ−,ℓ
Lµb

|2) ∥φ∥
L2([θ−,ℓ

Lµb
,θ+,ℓ

Lµb
])

≤ C

µb∈C

*.
,


ℓ∈Z

�
1 + |θ+,ℓ

Lµb
|2�σ

�
1 + |θ−,ℓ

Lµb
|2�2

+/
-

1/2

*
,


ℓ∈Z

∥φ∥2
L2([θ−,ℓ

Lµb
,θ+,ℓ

Lµb
])
+
-

1/2

≤ C∥φ∥L2(R),

because the cardinality of the set C is finite and


ℓ∈Z

�
1 + |θ+,ℓ

Lµb
|2�σ

�
1 + |θ−,ℓ

Lµb
|2�2
≤ C


ℓ∈Z

1
1 + |ℓ|2 < ∞.

Since T ℓ
Bµb

is a bounded operator from L2([θ−,ℓ
Lµb

, θ+,ℓ
Lµb

]) onto L2(R) and T ℓ
Cµb

is a compact operator

from L2(R) onto L2([θ−,ℓ
Lµb

, θ+,ℓ
Lµb

]) then T ℓ
Bµb
◦ T ℓ

Cµb
is compact on L2(R). Moreover, since

µb∈C


ℓ∈Z




T
ℓ
Bµb ◦ T ℓ

Cµb



L(L2(R)) =


µb∈C


ℓ∈Z




T
ℓ
Bµb ◦ T ℓ

Cµb



L(L2([θ−,ℓ

Lµb
,θ+,ℓ

Lµb
])) < ∞,

the operator


µb∈C


ℓ∈ZT ℓ
Bµb
◦ T ℓ

Cµb
is compact on L2(R). Finally, using (147), we have

∥Op(KC)∥L(L2(R)) ≤










µb∈C


ℓ∈Z

T ℓ
Bµb ◦ T ℓ

Cµb








L(L2(R))
< ∞,

and thus Op(KC) is compact on L2(R). The end of the Proposition 11 can be proven as has been
done for Proposition 10. �

As a consequence, we obtain the following results: Theorem 6 for the spectrum in C+ and
without assumption (H); Theorem 7 for the spectrum in C\Σ and without assumption (H).

Theorem 6. Let us suppose that assumptions of Lemma 1 are satisfied. Let Ω be any open
connected subset of C+. Then either

(i) I − Op(K) is nowhere invertible inΩ, or
(ii) the resolvent (I − Op(K))−1 exists for all ω0 ∈ Ω\S, where S is a discrete subset of Ω

constituted of a countable number of isolated points. In the latter case the resolvent (I −
Op(K))−1 is meromorphic in Ω, analytic in Ω\S, and the residues at the poles are finite rank
operators. If ω0 ∈ S, then the equations (I − Op(K)(ω0))φ = 0, and (I − Op(K)⋆(ω0))ψ = 0
have the same number of linearly independent solutions; these are not zero in L2(R) and
hence almost everywhere. Moreover the poles of (I − Op(K)(ω0, x))−1 in the ω0-complex
plane, depend continuously on x and can appear and disappear only at the boundary
of Ω.

Proof. From Propositions 8 and 11, we find that Op(K)(ω0) : Ω −→ L(L2) is an analytic
operator-valued function such that Op(K)(ω0) is compact for each ω0 ∈ Ω. This, together with
the analytic Fredholm theorem such as Theorem VI.14 of Ref. 89, implies Theorem 6. The last
assertion of Theorem 6 is a consequence of Theorem 3 of Ref. 96 and the fact that Op(K)(ω0, x) is a
family of compact operator jointly continuous in (ω0, x) for each (ω0, x) ∈ Ω × [xmin, xmax]. �

Theorem 7. Let us suppose that assumptions of Lemma 1 are satisfied. Let Ω be any open
connected subset of C\Σ. Then either

(i) I − Op(K ) is nowhere invertible inΩ, or
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(ii) the resolvent (I − Op(K ))−1 exists for all ω0 ∈ Ω\S, where S is a discrete subset of Ω
constituted of a countable number of isolated points. In the latter case the resolvent (I −
Op(K ))−1 extends to an operator-valued function in ω0 that is analytic in Ω\S, meromor-
phic in Ω, and the residues at the poles ω0 ∈ S are finite rank operators. If ω0 ∈ S, then the
equations (I − Op(K )(ω0))φ = 0, (I − Op(K )⋆(ω0))ψ = 0 have the same number of linearly
independent solutions; these are non-zero in L2(R) and hence almost everywhere.

Proof. First we show that Op(K )(ω0) : Ω −→ L(L2) is an analytic operator-valued function
such that Op(K )(ω0) is compact for each ω0 ∈ Ω. This follows on the one hand from Proposi-
tions 8 and 9, and on the other hand from Proposition 11, where we can substitute KC to KC by
keeping a similar proof. This, together with the analytic Fredholm theorem such as Theorem VI.14
of Ref. 89, implies Theorem 7. �

Remark 26. A theorem similar to Theorem 7 can be stated for the operator-valued function
I − Op(K)(ω0) : Ω −→ L(L2

κ(R)), in the Hilbert space L2
κ(R).
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APPENDIX A: GLOSSARY OF MAIN NOTATION

r : Coordinates of three-dimensional physical space.
v∥, ξ∥ : Parallel velocity coordinates.

(r, v∥), (r, ξ∥) : Four-dimensional phase-space.
(er, eθ, eϕ) : Toroidal vector basis.

(r, θ,ϕ) : toroidal coordinates.
(x,η,α) : Field-aligned coordinates.

q(r ) : Safety factor q = rbϕ/(Rbθ); here, q(r0) rational⇔ r0 is a rational
magnetic flux surface.

r0 : Constant radius denoting a reference rational magnetic flux surface.
r, x, q : Radial variables, x = r −r0.

[rmin, rmax] : Radial domain.
[xmin, xmax] : Radial domain.
[qmin,qmax] : Radial domain.

s(r ) : Shear parameter s = q′r/q.
a : Minor radius of the torus.
R0 : Major radius of the torus.
R : R= (R0+r cosθ)(cosθer −sinθeθ) radius vector.
R : Euclidean norm of R.
B : Magnetic field.
B : Euclidean norm of B.

Bθ, Bϕ : Respectively, the poloidal and toroidal component of the magnetic field B.
A : Vector potential, B=∇×A.
b : Unit vector tangent to the magnetic field line.

bθ, bϕ : Respectively, the poloidal and toroidal component of the vector b.
B∥ : B∥ =b ·B, parallel component of the magnetic field B.
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∂∥ : ∂∥ = b ·∇, parallel gradient.
∇⊥ : ∇⊥= (I −b ⊗b)∇=−b× (b×∇), perpendicular gradient.
κ : κ =b ·∇b=−b×∇×b, curvature vector.
qi : Ion charge.
mi : Ion mass.

vth, i : Ion thermal velocity.
Ti0 : Ion temperature.
ni0 : Ion density.
Ωi : Ωi = qB/m, ion cyclotron frequency.
ρi : ρi = vth, i/Ωi ion Larmor radius.
v⊥ : Modulus of perpendicular velocity.
µ : µ =miv

2
⊥/(2B), magnetic moment, adiabatic invariant, label, index.

b : Contour (or bag) index.
ω : Time frequency, global eigenfrequency.
n : Toroidal wavenumber.
m : Poloidal wavenumber.
k∥ : k⊥≃ 1/(qR0), parallel wavenumber.
k⊥ : k⊥≃ n/a, perpendicular wavenumber.
γ : γ ∈ (0,1).
ϵ : Small parameter, ϵ = 1/n.

ϵa : Small parameter, ϵa = a/R0.
ϵk : Small parameter, ϵk = k∥/k⊥.
ϵω : Small parameter, ϵω =ω/Ωi.
ρ⋆ : Small parameter, ρ⋆= ρi/a.

O, C, C : Set of respectively open, closed, and all contours.
J0 : Bessel function of first kind of order zero.

Jµ, Jµ, J0µ : Gyroaverage operators.
θk(x), θk1(x), θk0, θk0,T : Ballooning angles.

Θk : Θk =−i/n∂q =−i/(q′n)∂x, radial differential operator.
θLµb, θ±

Lµb
, θ±,ℓ

Lµb
: Limit angles, θ±,ℓ

Lµb
=±θLµb(r )+2πℓ.

Aµb : Constant bag height.
v±
µb

, ξ±
µb

: Three-dimensional contours (level lines) of the four-dimensional phase-space
(r, v∥), and (r, ξ∥), respectively.

a±
µb

, a◦
µb

: Equilibrium contours.
w±

µb
, w±

µbωn
: First-order perturbation of the contours.

φ0 : Equilibrium electrical potential.
φ1, φ1ωn : First-order perturbation of the electrical potential.

H±
µb

: Hamiltonian associated to the equilibrium contours, H±
µb
= a±

2

µb
/2+ µB/mi.

h±
µbωn

: Hamiltonian associated to the first-order perturbation,
h±
µbωn

= w±
µbωn

a±
µb
+qiJµφ1ωn/mi.

ω0(x, θk0) : Local eigenfrequency.
L◦

Cωn


: Linear integral operator of zeroth order.

KO, KO, GO : Kernels of integral operator for open contours.
KC, KC, GC : Kernels of integral operator for closed contours.

f , fµ : Gyrokinetic distribution function in the variables (r, v∥).
f, fµ : Gyrokinetic distribution function in the variables (r, ξ∥).

F= (Fr,Fv∥) : Four-dimensional force vector-field in the variables (r, v∥).
F= (Fr,Fξ∥) : Four-dimensional force vector-field in the variables (r, ξ∥).

H : Hamiltonian, H =miv
2
∥/2+ µB+qiJµφ.

B∗ : B∗=B+miv∥∇×b/qi.
B∗∥ : B∗∥ =B∗ ·b.
Υ : Heaviside function.
L2 : Hilbert space of square summable function.
L2
κ : Hilbert space of function g , such that gκ is square summable with

κ(η)= (1+ |η |2)α, α ∈ ([1−δ]/4+σ/2, [3+δ]/4), σ ∈ {0,1}, δ ∈ {0,1}.
L2
ϱ : Hilbert space of function g , such that g ϱ is square summable with

ϱ = κϖ, ϖ = (µb∈CAµbJ
2
0µ/aµb)β ∈ Lγ

loc(R), β ∈ (0,1), γ ∈ (0,2/β).
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APPENDIX B: RIGOROUS DERIVATION OF THE GYROKINETIC-WATERBAG EQUATIONS

As pointed out in Remark 2, of Sec. II B 2, the variables (r, ξ ∥) are well suited for applying the
waterbag reduction concept. Here,

ξ ∥ =

 v∥
dv∥J(r, v∥), (B1)

and J(r, v∥) = B · b + v∥(mi/qi)b · ∇ × b. Let us thus rewrite the gyrokinetic-Vlasov equation (3)
in this new set of variables. We introduce the new distribution function f = f(t,r, ξ ∥, µ) such that
f(t,r, ξ ∥, µ) = f (t,r, v∥, µ). Using the change of variables (r, ξ ∥)↔ (r, v∥) and the chain rule, we
easily get the transformations

(∇r, ∂v∥) −→ (∇r + ∇rξ ∥∂ξ∥, ∂v∥ξ ∥∂ξ∥), (∇r, ∂ξ∥) −→ (∇r + ∇rv∥∂v∥, ∂ξ∥v∥∂v∥).
This leads to the new gyrokinetic-Vlasov equation for f,

∂tf +Fr · ∇rf +Fξ∥∂ξ∥f = 0, (B2)

with

Fr = Fr, Fξ∥ = Fr · ∇rξ ∥ + Fv∥∂v∥ξ ∥.

It can be easily checked that the new force vector-field F = (Fr,Fξ∥) is divergence-free, i.e., ∇r,ξ∥ ·
F = ∇r ·Fr + ∂ξ∥Fξ∥ = 0. Therefore the flow (r, ξ ∥) −→ (R(t),Ξ∥(t)) generated by the force vector-
fieldF (solution of dtR = Fr, dtΞ∥ = Fξ∥, with the initial conditions (R(0),Ξ∥(0)) = (r, ξ ∥)) defines a
volume-preserving map, i.e., the following Liouville theorem:

d
dt


Ω(t)

drdξ ∥ = 0

is satisfied. Here, Ω(t) is the image of any bounded phase-space volume element Ω(0) from the
Lagrangian flow (R(t),Ξ∥(t)) induced by the force fieldF.

Therefore, for every adiabatic invariant µ, we can consider 2N non-closed single-valued con-
tours {ξ±

µb
(t,r)}b≤N of the (r, ξ ∥)-phase space ordered such that ... < ξ−

µ b+1 < ξ−
µb
< · · · ≤ 0 ≤

· · · < ξ+
µb
< ξ+

µ b+1 < · · · , and strictly positive real numbers {Aµb}b≤N , called the bag heights.
From the Liouville theorem in the phase-space (r, ξ ∥), we know that for every couple (µ,b),

d
dt


Aµb(ξ+µb − ξ−µb)dr = 0.

We observe that the distribution f reads

f(t,r, ξ ∥, µ) =

R+
fν(t,r, ξ ∥)δν(µ)m(dν),

where m is a probability measure on R+ and where the smooth functions fµ still satisfy the
gyrokinetic-Vlasov equation (B2). We can now take for fµ the waterbag distribution function,

fµ(t,r, ξ ∥) =
N
b=1

Aµb

(
Υ

(
ξ+µb(t,r) − ξ ∥

)
− Υ

(
ξ−µb(t,r) − ξ ∥

))
. (B3)

As long as the contours ξ±
µb

are smooth, single-valued, and do not cross, the function (B3) is an
exact weak solution of the gyrokinetic-Vlasov equation (B2) in the sense of distribution theory, if
and only if the following gyrowaterbag equations in advective form are satisfied:

∂tξ
±
µb +Fr(r, ξ±µb) · ∇ξ±µb = Fξ∥(r, ξ±µb). (B4)

Furthermore (B1) is equivalent to

ξ ∥(r, v∥) = v∥B∥(1 + Λ∥v∥), where Λ∥ =
mi

qi

b.∇ × b
2B∥

.

Solving the previous quadratic equation, we obtain the solution,

v∥(r, ξ ∥) = −1 +


1 + 4ξ ∥Λ∥/B∥
2Λ∥

,
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which leads to the definition of the new contours v±
µb

of the phase-space (r, v∥) as

v±µb B v∥(r, ξ±µb), ⇐⇒ ξ±µb = v
±
µbB∥(1 + Λ∥v±µb).

Using the previous definition in (B4), we get, after some algebra,

∂tξ
±
µb + ∇ ·

(
1

miqi

(
qiA + miv∥(r, ξ±µb)b

)
× ∇H (r, v∥(r, ξ±µb))

)
= 0.

This is exactly the gyrokinetic-waterbag equations (15) of Sec. II B 2 and thus definitely ensures the
validity of the gyrokinetic-waterbag equations (15).

Remark 27. Using |b.∇ × b| ≃ 1/R (see formula (19) of Sec. II C), we find that ξ ∥Λ∥/B∥ =
O(ϵω) ≪ 1 and thus, at first order in ϵω (see Sec. II D for the definition of ϵω), we obtain
v∥ = ξ ∥/B∥ + O(ϵω), which leads to

v±µb =
ξ±
µb

B∥
+ O(ϵω).

APPENDIX C: LINEARIZATION OF THE GYROKINETIC-WATERBAG EQUATIONS

Here, we explain in detail how to obtain the linearized gyrowaterbag equations (20) and (22) of
Sec. III A from the nonlinear gyrowaterbag equation (15) of Sec. II B 2. Using the decomposition

φ(t,r) = φ0(r, θ) + φ1(t,r), (|φ1| ≪ 1),
v±µb(t,r) = a±µb(r, θ) + w±µb(t,r), (|w±µb | ≪ 1),

as an (r, θ)-dependent equilibrium plus a (t,r)-dependent small perturbation, we obtain at zeroth
order (with respect to the perturbation terms) the equation for the steady equilibrium state

a±µb


1 +

a±
µb

Ωi
b · ∇ × b


b · ∇a±µb +

*.
,

µ

qi

b × ∇B
B

+
a±

2

µb

Ωi
b × κ+/

-
· ∇a±µb

+
µ

mi
∇B · *

,
b

1 +

a±
µb

Ωi
b · ∇ × b


+

a±
µb

Ωi
b × κ+

-

+
qi
mi
∇Jµφ0 · *

,


1 +

a±
µb

Ωi
b · ∇ × b


b +

a±
µb

Ωi
b × κ + 1

Ωi
∇a±µb × b+

-
= 0,

and at first order the equation for the unsteady small perturbation

∂t *
,
w±µb


1 +

a±
µb

Ωi
b · ∇ × b


+
-
+

qi
mi

b · ∇Jµφ1


1 +

a±
µb

Ωi
b · ∇ × b



+
b × ∇Jµφ1

B
· ∇a±µb +

qi
mi

a±
µb

Ωi
(b × κ) · ∇Jµφ1

+ a±µbb · ∇w±µb

1 +

a±
µb

Ωi
b · ∇ × b


+ w±µb

*.
,
b · ∇a±µb +

1
Ωi

(b · ∇ × b)b · ∇


a±
2

µb

2
+

µ

mi
B +

qi
mi
Jµφ0



+/
-

+
*.
,

a±
2

µb

Ωi
b × κ + µ

qi

b × ∇B
B

+
b × ∇Jµφ0

B
+/
-
· ∇w±µb + w

±
µb

*.
,

∇(a±2

µb
)

Ωi
+
µ

qi

∇B
B
+
∇Jµφ0

B
+/
-
· b × κ = 0.

Using the approximation (D3) and the same arguments as leading to (D6) in Appendix D, we obtain

b × ∇B/B ≃ b × κ,
a±
µb

Ωi
b · ∇ × b = O(ϵω), 1

Ωi
(b · ∇ × b)b · ∇ *.

,

a±
2

µb

2
+

µ

mi
B +

qi
mi
Jµφ0

+/
-
= O

(
b · ∇a±µbϵω

)
.
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Using these estimates, we may neglect the bracket terms (except the unit term) in the previous
equations and obtain the linearized Equations (20) and (22).

APPENDIX D: SOME APPROXIMATIONS RELATED TO THE TOROIDAL GEOMETRY

The magnetic field line is locally curved with a local radius-of-curvature vector Rc. The Eu-
clidean norm Rc = |Rc | is the radius of local curvature of the magnetic field line, while N = −Rc/Rc

is the unit vector in the direction of centrifugal force. Since any unit norm vector field satisfies
b · ∇b = −b × ∇ × b, we obtain

κ B
N
Rc
≡ b · ∇b = −b × ∇ × b = −b ×


1
B
∇ × B − B × ∇

(
1
B

)
=
µ0

B2 J × B +
∇⊥B

B
, (D1)

where we have used the Faraday law ∇ × B = µ0J. For a scalar-pressure equilibrium, we have
J × B = ∇P, where P is the plasma pressure. Thus, using (D1) and noting that b · ∇P = 0, we obtain

κ = µ0
∇P
B2 +

∇⊥B
B
=
µ0

B2∇⊥
(
P +

B2

2µ0

)
. (D2)

In a system with low β B 2µ0P/B2, i.e., for β of order ϵ2
a, we can use (D2), to determine the

magnetic field line curvature vector κ as

κ =
∇⊥B

B
+ O(ϵ2

a/a) ≃ ∇⊥B
B

. (D3)

By (D1), the approximation (D3) is equivalent to neglecting the diamagnetic current J⊥. Replacing
Rc by R, using definition of the magnetic field (18) (see Sec. II C), we obtain, after straightforward
calculations,

∇⊥B
B
= − R

R2 + O(ϵ2
a/a) and b × ∇B

B
= b × ∇⊥B

B
= −b × R

R2 + O(ϵ3
a/a). (D4)

Finally, using (D3) and (D4) we have

κ = − R
R2 + O(ϵ2

a/a) ≃ − R
R2 . (D5)

A low-β regime (i.e., β = ϵ2
a) means that the plasma pressure does not play an important role in

equilibria and instabilities. The low β approximation (D3) is commonly used in nonlinear gyroki-
netic simulations, such as the GYSELA code.54,40

Now, recalling that, by (19), we have |b.∇ × b| ≃ 1/R, we obtain

B∗∥
B
= 1 +

miv∥

qiB
b · ∇ × b = 1 + O

(
v∥

ΩiR

)
= 1 + O

(
k ∥v∥
Ωi

)
= 1 + O (ϵω) ≃ 1, (D6)

where ϵω = ω̄/Ωi ≪ 1 and ω̄ = k ∥vth, i. Approximation (D6) means that the Liouville theorem
∂tB∗∥ + ∇r · (B∗∥Fr) + ∂v∥(B∗∥F∥) = 0, which ensures the equivalence between the conservative and
advective forms of the Vlasov equation (3) and energy conservation is not exactly satisfied. Preser-
vation of the Liouville theorem is important for long-time nonlinear simulations. Indeed preserva-
tion of conservation laws in the nonlinear stage is crucial for numerical stability and for avoiding
spurious effects. Let us note that approximation (D6) is used in nonlinear gyrokinetic codes.54 In
addition, linearization of the gyrokinetic-Vlasov equations (which is the starting point for the eigen-
value problem analysis and for the microinstablilities study) already leads to the loss of all nonlinear
conservation laws. We observed, in Sections III B and III C, that solving equilibrium and first-order
equations allows recovering conservation laws of the Hamiltonian associated to the contours. This,
of course, only to relevant order. Let us note that approximation (D6) is commonly used in the study
of eigenvalue problems for the characterization of kinetic microinstabilities (e.g., Refs. 99 and 98).
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