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Cauchy invariants are now viewed as a powerful tool for investigating the Lagrangian
structure of three-dimensional (3D) ideal flow (Frisch & Zheligovsky, Commun.
Math. Phys., vol. 326, 2014, pp. 499–505; Podvigina et al., J. Comput. Phys.,
vol. 306, 2016, pp. 320–342). Looking at such invariants with the modern tools of
differential geometry and of geodesic flow on the space SDiff of volume-preserving
transformations (Arnold, Ann. Inst. Fourier, vol. 16, 1966, pp. 319–361), all manners
of generalisations are here derived. The Cauchy invariants equation and the Cauchy
formula, relating the vorticity and the Jacobian of the Lagrangian map, are shown to
be two expressions of this Lie-advection invariance, which are duals of each other
(specifically, Hodge dual). Actually, this is shown to be an instance of a general
result which holds for flow both in flat (Euclidean) space and in a curved Riemannian
space: any Lie-advection invariant p-form which is exact (i.e. is a differential of a
(p − 1)-form) has an associated Cauchy invariants equation and a Cauchy formula.
This constitutes a new fundamental result in linear transport theory, providing a
Lagrangian formulation of Lie advection for some classes of differential forms.
The result has a broad applicability: examples include the magnetohydrodynamics
(MHD) equations and various extensions thereof, discussed by Lingam et al. (Phys.
Lett. A, vol. 380, 2016, pp. 2400–2406), and include also the equations of Tao
(2016, arXiv:1606.08481 [math.AP]), Euler equations with modified Biot–Savart law,
displaying finite-time blow-up. Our main result is also used for new derivations, and
several new results, concerning local helicity-type invariants for fluids and MHD flow
in flat or curved spaces of arbitrary dimension.

Key words: general fluid mechanics, mathematical foundations, variational methods

1. Introduction
About half a century before the discovery of the integral invariant of velocity

circulation, Cauchy (1815) found a local form of this conservation law, now called
the Cauchy invariants, which constitutes the central topic of the present paper. The
somewhat tortuous history of the Cauchy invariants has been documented by Frisch
& Villone (2014). Starting in the 1960s, the Cauchy invariants were rediscovered by
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application of the Noether theorem, which relates continuous invariance groups and
conservation laws; at first this was done without attribution to Cauchy (Eckart 1960;
Salmon 1988; Padhye & Morrison 1996). But, eventually, near the end of the 20th
century, proper attribution was made (Abrashkin, Zen’kovich & Yakubovich 1996;
Zakharov & Kuznetsov 1997).

In recent years, there has been growing interest in Cauchy invariants because of
the development of new applications, such as analyticity in time of fluid-particle
trajectories (Frisch & Zheligovsky 2014; Zheligovsky & Frisch 2014; Rampf,
Villone & Frisch 2015; Besse & Frisch 2017, see also Constantin, Vicol & Wu
2015a; Constantin, Kukavica & Vicol 2015b), and the design of very accurate
semi-Lagrangian numerical schemes for fluid flow (Podvigina, Zheligovsky & Frisch
2016).

Our geometric approach to the Cauchy invariants will allow us to achieve two goals.
On the one hand to unify various vorticity results: as we shall see, the 3D Cauchy
invariants equation, as originally formulated, the Cauchy formula relating current
and initial vorticity, and Helmholtz’s result on conservation of vorticity flux may all
be viewed as expressing the geometrical conservation law of vorticity. On the other
hand it will allow us to extend the invariants into various directions: higher-order
Cauchy invariants, magnetohydrodynamics (MHD), flow in Euclidean spaces of any
dimension, and flow in curved spaces. Of course, flows of practical interest are
not restricted to flat space (Kuvshinov & Schep 1997; Marsden & Ratiu 1999).
Curved spaces appear not only in General Relativistic fluid dynamics (Weinberg
1972; Choquet-Bruhat 2008), but also for flows in the atmosphere and oceans of
planets (Sadourny, Arakawa & Mintz 1968), for studies of the energy inverse cascade
on negatively curved spaces (Falkovich & Gawedzki 2014, see also Arnold & Khesin
1998, Khesin & Misiolek 2012), and also for flows on curved biological membranes
(Seifert 1991; Ricca & Nipoti 2011; Liu & Ricca 2015). Moreover, recently, Gilbert
& Vanneste (2016) have used differential geometry tools such as pullback transport
to extend the generalised Lagrangian theory (GLM) of Andrews & McIntyre (1978)
to curved spaces. Hereafter, the notation 1D, 2D and 3D will refer to the usual one-,
two- and three-dimensional flat (Euclidean) spaces.

For carrying out this program our key tools will be differential geometry and, to a
lesser extent, variational methods.

In differential geometry we shall make use of Lie’s generalisation of advection
(transport). The Lie advection of a scalar quantity is just its invariance along
fluid-particle trajectories. But, here, we consider more general objects, such as vectors,
p-forms and tensors. For example, for our purpose, it is more convenient to consider
the vorticity as a 2-form (roughly an antisymmetric second-order tensor), rather than
as a vector field. These non-scalar objects live in vector spaces spanned by some
basis, and Lie advection requires taking into account the distortion of the underlying
vector space structure, which moves and deforms with the flow. The generalisation
of the particular (material) derivative to tensors is thus the Lie derivative.

As to variational (least-action) methods, an important advantage is that they are
applicable with very little change to both flat and curved spaces, provided one uses
Arnold’s formulation of ideal incompressible fluid flow as geodesics on the space
SDiff of volume-preserving smooth maps (Arnold 1966; Arnold & Khesin 1998).
Since the 1950s, to derive or rediscover the Cauchy invariants equation, a frequently
used approach has been via Noether’s theorem with the appropriate continuous
invariance group, namely the relabelling invariance in Lagrangian coordinates.
The latter can be viewed as a continuous counterpart of the permutation of Lagrangian
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labels if the fluids were constituted of a finite number of fluid elements; note
that continuous volume-preserving transformations may be approached by such
permutations (Lax 1971; Shnirelman 1985).

The outline of the paper is as follows. Section 2 is about Lie derivatives, an
extension to flow on manifolds of what is called in fluid mechanics the Lagrangian or
material derivative. We then prove a very general result about Lie-advection invariance
for exact p-forms of order p> 2, namely that there are generalised Cauchy invariants
equations (see Theorem 1), a very concrete Lagrangian expression of Lie-advection
invariance. This theorem is applicable both to linear transport theory, when the
advecting velocity is prescribed, and to nonlinear (or self-consistent) transport,
when the Lie-advected quantity (e.g., the vorticity) is coupled back to the velocity
(e.g., through the Biot–Savart law). Contrary to most modern derivations of Cauchy
invariants, our proof does not make use of Noether’s theorem. Actually, for the case
of linear transport, there may not even be a suitable continuous symmetry group to
ensure the existence of a Noether theorem. Section 2.4.1 is about generalised Cauchy
formulae, which are actually the Hodge duals of the Cauchy invariants equations.
Theorem 1 has a broad applicability, as exemplified in the subsequent sections.
Section 2.5.1 is about ideal incompressible MHD. Section 2.5.2 is about adiabatic and
barotropic compressible fluids. Section 2.5.3 is about barotropic ideal compressible
MHD. Section 2.5.4 is about extended ideal compressible MHD. Finally, § 2.5.5 is
about Tao’s recent modification of the 3D Euler equation allowing finite-time blow-up
and its geometric interpretation.

Then, in § 3, we turn to various applications in ordinary hydrodynamics. Problems
of helicities for hydrodynamics and MHD and their little-studied local variants are
presented in § 4. Concluding remarks and a discussion of various open problems are
found in § 5. There are two sets of appendices. Appendix A gives proofs of certain
technical questions, not found in the existing literature. Appendix B, ‘Differential
geometry in a nutshell’, has a different purpose: it is meant to provide an interface
between the fluid mechanics reader and the sometimes rather difficult literature
on differential geometry. Specifically, whenever we use a concept from differential
geometry that the reader may not be familiar with, e.g., a ‘pullback’, we give a
soft definition in simple language in the body of the text and we refer to a suitable
subsection of appendix B. There, the reader will find more precise definitions and,
whenever possible, short proofs of key results, together with precise references
(including sections or page numbers) to what, we believe, is particularly readable
specialised literature on the topic.

2. A general result about Lie-advection and Cauchy invariants
2.1. A few words about differential geometry

In the present paper we prefer not starting with a barrage of mathematical definitions
and we rather appeal to the reader’s intuition. For those hungry of precise definitions,
more elaborate, but still quite elementary, material and guides to the literature are
found in appendix B and its various subsections. For reasons explained in the
Introduction, we feel that it is essential not to restrict our discussion to flat spaces.
Otherwise we would have used a ‘half-way house’ approach where all the differential
geometry is expressed in the standard language of vector operations, as done, for
example in the paper of Larsson (1996).

The concept of a differentiable manifold M generalises to an arbitrary dimension d
that of a curve or a surface embedded in the 3D Euclidean space R3. To achieve this
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in an intrinsic fashion without directly using Cartesian coordinates, the most common
procedure makes use of collections of local charts, which are smooth bijections (one-
to-one correspondences) with pieces of Rd.

By taking infinitesimal increments near a point a ∈M, one obtains tangent vectors,
which are in the d-dimensional tangent space TMa, a generalisation of the tangent line
to a curve and the tangent plane to a surface. The union of all these tangent vectors⋃

a∈M TMa, denoted TM, is called the tangent bundle.
As for ordinary vector spaces, one can define the dual of the tangent bundle, noted

T∗M, which can be constructed through linear forms, called 1-forms or cotangent
vectors, acting on vectors of the tangent bundle TM. The set of all these cotangent
vectors is called the cotangent bundle, noted T∗M. Similarly, p-forms, where p is
an integer, are skew-symmetric p-linear forms over the tangent bundle TM. Note
that in a flat (Euclidean) space Rd with coordinates x = {xi}, where i = 1, . . . , d, a
1-form is simply an expression

∑
i ai(x) dxi, which depends linearly on the infinitesimal

increments dxi. It is also interesting to note that 1-forms were in common use in
fluid mechanics in the works of D’Alembert, Euler and Lagrange more than a century
before vectors were commonly used, say, in the lectures of Gibbs.

An important operator on p-forms is the exterior derivative, d, which linearly maps
p-forms to (p+ 1)-forms (see § B.8). An explicit definition of d is not very helpful
to build an intuitive feeling, but it is worth pointing out that the square of d is zero
or, in words, an exact form (a form that is the exterior derivative of another one) is
closed (its exterior derivative vanishes). Under certain conditions, to which we shall
come back, the converse is true.

2.2. Lie advection: an extension of the Lagrangian (material) derivative
In this section we present some standard mathematical concepts needed to introduce
our theorem on generalised Cauchy invariants, stated in the next section. For this,
we need to generalise the fluid mechanics concept of Lagrangian invariant, which
applies to a scalar quantity that does not change along fluid-particle trajectories. The
generalisation is called Lie-advection invariance (alternative terminologies found in the
literature are ‘Lie-transport’ and ‘Lie-dragging’).

First we introduce the pullback and pushforward operations, which arise naturally
when applying a change of variable, here, between Lagrangian and Eulerian
coordinates at a fixed time t (later, we shall let this dynamical time vary). The
Lagrangian variable (initial position of the fluid particle), denoted by a, is on a
manifold M (called here for concreteness Lagrangian), while the Eulerian variable
(current position of the fluid particle), denoted by x, is on a manifold N (called here
Eulerian). The sets M and N may or may not coincide. The Lagrangian map linking
a ∈M to x ∈N is defined as follows

ϕ : M→N
a 7→ x= ϕ(a).

}
(2.1)

The change of variable a→ x=ϕ(a) induces two operations that connect objects (such
as functions, vectors, forms and tensors), defined on M to corresponding ones, defined
on N. They are the pushforward operator, which sends objects defined on M to ones
defined on N and its inverse, the pullback operator. To define these transformations
precisely, it is convenient to consider successively the cases where these operators
act on real-valued functions (scalars), then on vectors, then on 1-forms, and finally
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416 N. Besse and U. Frisch

on more involved objects such as p-forms, obtainable from the former ones by linear
combinations of tensor products (see § B.2).

For the case of scalars, namely elements of F(M), the set of real-valued smooth
functions defined on M, the pullback is simply a change of variable from Eulerian
to Lagrangian variables and the pushforward is the converse. Specifically, the
pushforward of a function f : M → R on M is ϕ∗f = f ◦ ϕ−1, where the symbol
◦ denotes the usual composition of maps. Conversely, the pullback of a function
f :N→R on N is ϕ∗f = f ◦ ϕ.

Now, we turn to vector fields, denoted T 1
0 (M) on M, a subset of the tangent

bundle TM. (Why we use the notation T 1
0 (M) will become clear later.) At this point

we cannot just make a change of variable, because the Lagrangian and the Eulerian
vectors take values in different tangent spaces. But we can reinterpret tangent vectors
to a manifold in terms of differentials of scalar functions defined on that manifold.
To implement this, it is useful to consider a vector field X(a) on M as the generator
of a suitable flow on M. For this, we need an auxiliary time variable, denoted s, to
parametrise a family of smooth maps γs : M → M. Observe that the time s is not
related to the dynamical time t, which so far is held fixed. The maps satisfy the
following equations

γ̇s :=
dγs

ds
= X(γs), γ0(a)= a, a ∈M. (2.2a,b)

The pushforward of the vector field Y ∈ T 1
0 (N) (also called the differential of the map

ϕ or the tangent map) is now defined locally at the point a ∈M, as the linear map
ϕ∗ := Taϕ : TMa → TNϕ(a), obtained by simply identifying the resulting vector with
the tangent vector to the mapped curve. This is illustrated in figure 1. Translated into
equations it means that

ϕ∗X = ϕ∗

(
dγs

ds

)∣∣∣∣
s=0

:=

(
d
ds
ϕ ◦ γs

)∣∣∣∣
s=0

= Tϕ ◦ X ◦ ϕ−1, (2.3)

where T denotes the tangent map and is given locally by the Jacobian matrix
Jϕ = J(ϕ) = ∂ϕ/∂a. Recalling that ai denotes local coordinates on M and xi local
coordinates on N, in terms of these local coordinates, this formula is expressed
equivalently as

(ϕ∗X)i(x)=
∂ϕi

∂a j
(a)Xj(a)=

∂xi

∂a j
(a)Xj(a). (2.4)

To define the inverse operation, the pullback denoted ϕ∗, we just interchange ϕ and
ϕ−1. Thus we have ϕ∗= (ϕ−1)∗= (ϕ∗)−1 and ϕ∗= (ϕ−1)∗= (ϕ∗)

−1. It thus follows that
the pullback of a vector field Y ∈ T 1

0 (N) on N is

ϕ∗Y= (Tϕ)−1
◦Y ◦ϕ, or componentwise (ϕ∗Y)i(a)=

∂(ϕ−1)i

∂x j
(x)Y j(x)=

∂ai

∂x j
(x)Y j(x).

(2.5a,b)
Therefore we find that ϕ∗Y = (ϕ∗Y)i(a)(∂/∂ai) = Y i(x)(∂/∂xi) and ϕ∗X = (ϕ∗X)i(x)
(∂/∂xi)= Xi(a)(∂/∂ai). Notice that ϕ must be a diffeomorphism (one-to-one smooth
map) in order for the pullback and pushforward operations to make sense; the only
exception to this is the pullback of functions (and covariant tensors, see § B.4), since
the inverse map is then not needed. Thus vector fields can only be pulled back and
pushed forward by diffeomorphisms.
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Set of objects
defined on M

such as tensor fields, ...

Set of objects
defined on N

such as tensor fields, ...

M

N
X

a

FIGURE 1. (Colour online) The curve γs is the integral curve of a given vector field
X, while the curve ϕ ◦ γs is the integral curve of ϕ∗X. The pullback transformation ϕ∗

is a change of variables from Eulerian to Lagrangian coordinates, while the pushforward
transformation ϕ∗ is a change of variables from Lagrangian to Eulerian coordinates.

We can extend pullback and pushforward operations to linear forms on vector fields,
that is 1-forms or covectors. The set of such 1-forms fields on M is denoted by
T 0

1 (M) ⊂ T∗M (see §§ B.2 and B.7). In order to define the pullback of a 1-form
α ∈ T 0

1 (N), we introduce the linear map ϕ∗ : T∗Nϕ(a)→ T∗Ma, defined by

〈ϕ∗α, X〉 := 〈α, ϕ∗X〉, X ∈ T 1
0 (M), α ∈ T 0

1 (N), (2.6a−c)

where the duality bracket 〈·, ·〉 is the natural pairing between the spaces TMa and
T∗Ma or between the spaces TNϕ(a) and T∗Nϕ(a). The pushforward of a 1-form
β ∈ T 0

1 (M), is defined by changing ϕ to ϕ−1, i.e. ϕ∗ := (ϕ−1)∗. In terms of local
coordinates we have

(ϕ∗α)i(a)=
∂x j

∂ai
(a)αj(x), (ϕ∗β)i(x)=

∂a j

∂xi
(x)βj(a). (2.7a,b)

Therefore we find that ϕ∗α := (ϕ∗α)i(a) dai
= αi(x) dxi and ϕ∗β := (ϕ∗β)i(x) dxi

=

βi(a) dai.
Pullback and pushforward operations are easily generalised to tensor fields 2 ∈

T q
p (M), where T q

p (M) denotes the set of p-covariant and q-contravariant tensor fields
on M. Such generalisations follow naturally since a p-covariant and q-contravariant
tensor can be written as linear combinations of tensor products of p 1-forms and q
vectors (see § B.2).
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418 N. Besse and U. Frisch

In order to define the Lie derivative, we bring in the dynamical time t. For this, we
specialise to the case where the Lagrangian and the Eulerian points are on the same
manifold (with N =M) and we consider a time-dependent vector field vt, the velocity
field, taken in T 1

0 (M) for all t> 0. This velocity field is prescribed a priori and we do
not have to specify which dynamical equation it satisfies. We define a time-dependent
Lagrangian map ϕt in the usual fluid-mechanical sense as mapping the initial position
of a fluid particle, following the flow, to its position at time t, namely as the solution
of the ordinary differential equation (ODE)

ϕ̇t =
d
dt
ϕt = v(t, ϕt), ϕ0 = Identity. (2.8a,b)

From this equation, we also define a 2-time Lagrangian map ϕt,s with t > 0 and s> 0
as the map from the position of a fluid particle at time s to its position at time t.
Allowing the time to run backwards, we do not impose t > s. Obviously, we have
ϕt,0 = ϕt. Furthermore, we obviously have the group composition rule

ϕt,s = ϕt,τ ◦ ϕτ ,s ∀ t > 0, ∀ τ > 0, ∀ s > 0. (2.9)

In this dynamical setting, the pullback and pushforward operations consist
roughly in following a given tensor field, while taking into account the geometrical
deformation of the tensor basis, along the Lagrangian flow. This will naturally lead to
considering a derivative with respect to the Lagrangian flow, called the Lie derivative.
The Lie derivative of a structure (for instance a vector, a 1-form or a tensor field)
with respect to the time-dependent vector field vt measures the instantaneous rate of
geometrical variation of the structure (tensor basis) as it is transported and deformed
by the Lagrangian flow ϕt generated by vt.

Specifically, we first define the Lie derivative acting on a time-independent
tensor field 2 ∈ T q

p (M). To the Lagrangian map ϕτ ,t we associate its pullback
ϕ∗τ ,t, constructed just as earlier in this section, when the dynamical time was held
fixed. The Lie derivative with respect to vt is defined by

£vt2 :=

(
d

dτ
ϕ∗τ ,t2

)∣∣∣∣
τ=t

. (2.10)

Now, we turn to a time-dependent tensor field 2t ∈ T q
p (M) and we derive the Lie-

derivative theorem ∀t > 0. For this, we calculate the time derivative of ϕ∗t,s2t, using
the product rule for derivatives and obtain

d
dt
ϕ∗t,s2t =

d
dτ
ϕ∗τ ,s2τ

∣∣∣∣
τ=t

=
d

dτ
ϕ∗τ ,s2t

∣∣∣∣
τ=t

+ ϕ∗t,s
d

dτ
2τ

∣∣∣∣
τ=t

. (2.11)

Then, using the group composition rule (2.9), this equation becomes

d
dt
ϕ∗t,s2t =

d
dτ
(ϕτ ,t ◦ ϕt,s)

∗2t

∣∣∣∣
τ=t

+ ϕ∗t,s∂t2t. (2.12)

Using a property for the pullback of map composition (see § B.4), namely (ϕ ◦ψ)∗=
ψ∗ϕ∗, we obtain

d
dt
ϕ∗t,s2t =

d
dτ
ϕ∗t,sϕ

∗

τ ,t2t

∣∣∣∣
τ=t

+ ϕ∗t,s∂t2t = ϕ
∗

t,s
d

dτ
ϕ∗τ ,t2t

∣∣∣∣
τ=t

+ ϕ∗t,s∂t2t. (2.13)
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Geometric formulation of the Cauchy invariants in flat and curved spaces 419

Finally, using the definition of the Lie derivative (2.10), this equation leads to the
following formula, known as the Lie-derivative theorem:

d
dt
ϕ∗t,s2t = ϕ

∗

t,s(∂t2t + £vt2t), ∀t > 0, ∀s > 0. (2.14)

In this paper, a central role will be played by tensor fields that are Lie-advection
invariant (in short Lie invariant). A Lie-advection invariant tensor field 2t is such that
its Lagrangian pullback, i.e. its pullback to time t = 0, is equal to the initial tensor
field, that is

ϕ∗t 2t =20. (2.15)

In fluid mechanics terms, one then states that the tensor field 2t is frozen into the
flow ϕt. From the Lie-derivative theorem (2.14), we immediately find that this is
equivalent to having the tensor field 2t satisfying the equation

∂t2t + £vt2t = 0, (2.16)

which is called the Lie-advection equation. A tensor field 2t satisfying the
Lie-advection equation (2.16) is said to be Lie-advected by the flow of vt.

It is easily checked that when 2t is a scalar field (denoted θt) and when the
manifold reduces to an Euclidean space, equation (2.16) becomes just

∂tθt + v
i
t∂iθt = 0, (2.17)

where ∂i is the Eulerian derivative. Hence, in the scalar case, Lie-advection invariance
of θt is the same as stating that θt is a Lagrangian (material) invariant in the usual
fluid-mechanical sense. The advantage of the Lie-advection invariance formulation for
higher-order objects is that, e.g., in 3D the vorticity, when considered as a 2-form,
is then also Lie-advection invariant, as noticed for the first time (in 19th century
language) by Helmholtz (1858).

2.3. Generalised Cauchy invariants
In this section we state a general theorem about Lie-advection invariance using
differential geometry tools. The result is a natural generalisation of Cauchy invariants
that arises when we consider, in an Euclidean space Rd or on a d-dimensional
Riemannian manifold (M, g), a Lie-advected p-form with a crucial additional
constraint of exactness (or some generalisation). We recall that a d-dimensional
Riemannian manifold (M, g) is a differentiable manifold M of dimension d, together
with a 2-covariant tensor field, the metric tensor g, which associates to any point
a ∈M a 2-covariant tensor T 0

2 (M) (see §§ B.2 and B.3). The metric tensor g allows
one both to define a metric on M for measuring distances between two points on M,
and to define a suitable scalar product for vectors lying in a tangent space (see § B.3).

The main new result of the present section will be to show that, to each exact
Lie-advected p-form, corresponds a generalised Cauchy invariant. This is of course
a result with applications beyond hydrodynamics, but it is not just a rewriting of
Lie-advection invariance in Lagrangian coordinates: the Cauchy invariants formulation
requires an additional condition other than Lie-advection invariance. The method of
proving this is quite general but, of course, also applies to Euler flow in the ordinary
flat 3D space. In that case, we already have the original proof of Cauchy (1815),
which juggles with Eulerian and Lagrangian coordinates and thus has a flavour
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420 N. Besse and U. Frisch

of pullback–pushforward argument. In addition, we have all the relatively recent
derivations using Noether’s theorem in conjunction with a variational formulation of
the Euler equations and the relabelling invariance (see, e.g., Salmon 1988). What we
now present constitutes in a sense a third approach, rooted in differential geometry
and allowing generalisation to a variety of hydrodynamical and MHD problems,
discussed in §§ 2.5, 3 and 4.

Let Ω ⊂M be a bounded region of the d-dimensional Riemannian manifold (M, g).
We remind the reader that a p-form γ ∈3p(Ω) is exact if it is the exterior derivative
of a (p− 1)-form α ∈3p−1(Ω), that is

γ = dα, γ ∈3p(Ω), α ∈3p−1(Ω), (2.18a−c)

where d denotes the exterior derivative (see § B.8). We recall that a family of p-forms
γt ∈3

p(Ω), t> 0, are Lie-advected by the flow of vt if they satisfy the Lie-advection
equation

∂tγt + £vtγt = 0, on Ω ⊂M, with γ0 given. (2.19)

Here the vector field vt is the generator of the Lagrangian flow ϕt defined by (2.8).

THEOREM 1 (Generalised Cauchy invariants equation). For t > 0, let γt ∈ 3
p(Ω) be

a time-dependent family of exact p-forms (i.e. satisfying (2.18)) that are Lie-advected
(i.e. satisfy (2.19)); then we have the generalised Cauchy invariants equation

1
( p− 1)!

δ
i1...ip−1
j1...jp−1

dαi1...ip−1 ∧ dx j1 ∧ · · · ∧ dx jp−1 = γ0. (2.20)

Here, x = ϕt denotes Eulerian coordinates and δ
i1...ip
j1...jp the generalised Kronecker

symbol (see § B.6). Note that, henceforth, in connection with Cauchy invariants,
we use the singular for ‘equation’, since in modern writing a vector or a tensor is
considered a single object.

Proof. Since γ is Lie-advected, by the Lie-derivative theorem (2.14), we have ϕ∗t γ =
γ0. Then, we write ϕ∗t γ in terms of its component in the a-coordinates (see § B.4), to
obtain

γ0 = ϕ∗t γ

=

∑
i1<···<ip

(ϕ∗t γ )i1...ip dai1 ∧ · · · ∧ daip

=
1
p!
∂x j1

∂ai1
· · ·

∂x jp

∂aip
γj1...jp(x) dai1 ∧ · · · ∧ daip . (2.21)

Next, using the generalised Kronecker symbol δi1...ip
j1...jp , we obtain

γ = dα

= d
∑

i1<···<ip−1

αi1...ip−1(a)∧ dai1 ∧ · · · ∧ daip−1

=

∑
i1<···<ip−1

dαi1...ip−1 ∧ dai1 ∧ · · · ∧ daip−1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 b

ib
lio

th
eq

ue
, o

n 
25

 Ju
l 2

01
7 

at
 0

8:
34

:2
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
40

2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.402


Geometric formulation of the Cauchy invariants in flat and curved spaces 421

=

∑
i1<···<ip−1

∂

∂ak
αi1...ip−1 dak

∧ dai1 ∧ · · · ∧ daip−1

=

∑
i1<···<ip−1

δ
ki1...ip−1
j1...jp

∂

∂ak
αi1...ip−1 da j1 ∧ · · · ∧ da jp, (2.22)

from which we deduce

γl1...lp(x)= δ
ki1...ip−1
l1...lp

∂

∂xk
αi1...ip−1(x). (2.23)

Substituting (2.23) into (2.21) we obtain

γ0 =
1
p!
δ

jpj1...jp−1
l1...lp

∂xl1

∂ai1
· · ·

∂xlp

∂aip

∂

∂x jp
αj1...jp−1 dai1 ∧ · · · ∧ daip

=
1
p!
δ

jpj1...jp−1
l1...lp

∂xl1

∂ai1
· · ·

∂xlp

∂aip

∂ak

∂x jp

∂

∂ak
αj1...jp−1 dai1 ∧ · · · ∧ daip

=
1
p!
(−1)p−1δ

j1...jp
l1...lp

∂xl1

∂ai1
· · ·

∂xlp

∂aip

∂ak

∂x jp

∂

∂ak
αj1...jp−1 dai1 ∧ · · · ∧ daip . (2.24)

Using now the Laplace expansion of determinants, we may define recursively

δ
j1...jp
i1...ip =

∣∣∣∣∣∣∣∣
δ

j1
i1 · · · δ

j1
ip

...
. . .

...

δ
jp
i1 · · · δ

jp
ip

∣∣∣∣∣∣∣∣
=

p∑
k=1

(−1)p+kδ
jp
ik δ

j1...jk ...̂jp
i1...̂ik ...ip

, (2.25)

where the hat indicates an omitted index in the sequence. Using (2.25), equation (2.24)
becomes

γ0 =
1
p!

p∑
n=1

(−1)n−1δ
jp
ln δ

j1...jp−1

l1...̂ln...lp

∂xl1

∂ai1
· · ·

∂xlp

∂aip

∂ak

∂x jp

∂

∂ak
αj1...jp−1 dai1 ∧ · · · ∧ daip

=
1
p!

p∑
n=1

(−1)n−1δ
j1...jp−1

l1...̂ln...lp

∂xl1

∂ai1
· · ·

∂xlp

∂aip

∂ak

∂xln

∂

∂ak
αj1...jp−1 dai1 ∧ · · · ∧ daip

=
1
p!

p∑
n=1

(−1)n−1δ
j1...jp−1

l1...̂ln...lp

∂xl1

∂ai1
· · ·

∂̂xln

∂ain
· · ·

∂xlp

∂aip
δk

in

∂

∂ak
αj1...jp−1 dai1 ∧ · · · ∧ daip

=
1
p!

p∑
n=1

(−1)n−1δ
j1...jp−1

l1...̂ln...lp

∂xl1

∂ai1
· · ·

∂̂xln

∂ain
· · ·

∂xlp

∂aip

∂

∂ain
αj1...jp−1 dai1 ∧ · · · ∧ daip

=
1
p!

p∑
n=1

(−1)n−1δ
j1...jp−1

l1...̂ln...lp

(
∂xl1

∂ai1
dai1

)
∧ · · · ∧

(
∂

∂ain
αj1...jp−1 dain

)
∧ · · · ∧

(
∂xlp

∂aip
daip

)
=

1
p!

p∑
n=1

δ
j1...jp−1

l1...̂ln...lp
dαj1...jp−1 ∧ dxl1 ∧ · · · ∧ d̂xln ∧ · · · ∧ dxlp

=
1

(p− 1)!
δ

j1...jp−1
l1...lp−1

dαj1...jp−1 ∧ dxl1 ∧ · · · ∧ dxlp−1, (2.26)

which ends the proof.
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422 N. Besse and U. Frisch

Remark 1 (Sufficient conditions for exactness of differential forms). In Theorem 1
on the construction of generalised Cauchy invariants, we demand that the p-form γ

be exact. There are several ways to obtain such an exact p-form.

(i) In some problems a p-form γ appears naturally as the exterior differential of a
(p− 1)-form β ∈3p−1(Ω), i.e. γ = dβ. As we will see in later sections, this is
the case for the vorticity 2-form and the magnetic field 2-form.

(ii) When γt is Lie-advected and the initial condition γ0 is exact, it follows from
the commutation of the exterior derivative and the pushforward operator ϕt∗

(see § B.8), that γt is exact. Indeed ϕ∗t γ = γ0 implies that

γ = ϕt∗γ0 = ϕt∗ dα0 = d(ϕt∗α0). (2.27)

(iii) Let us introduce Zp(M; R), the subspace of 3p(M) constituted of all closed
p-forms and Bp(M; R), the subspace of Zp(M; R) constituted of all exact
p-forms. Obviously, we have Bp(M; R) ⊂ Zp(M; R) ⊂ 3p(M). Although Bp and
Zp are infinite-dimensional, in many cases their quotient space, called the pth
cohomology vector space and noted

Hp(M;R) :=
Zp(M;R)
Bp(M;R)

, (2.28)

is finite-dimensional. For example, this is the case when M is a compact finite-
dimensional manifold. The dimension of the vector space Hp is called the pth
Betti number, written bp = bp(M) and defined by bp(M) := dim Hp(M; R). Thus
the Betti number bp(M) is the maximum number of closed p-forms on M, such
that all linear combinations with non-vanishing coefficients are not exact. The
knowledge of the Betti numbers of a given manifold M for p> 1 yields an exact
quantitative answer to the question about exactness of a closed p-form:

a closed p-form is exact if and only if bp(M)= 0. (2.29)

Two closed forms are equivalent or cohomologous if they differ by an exact form,
and a closed p-form is exact if and only if it is cohomologous to zero. The values
of the Betti numbers are related to the topological properties of the manifold M
(e.g. homology, connectedness, curvature, etc.). For more details on cohomology
and homology we refer the reader to § B.13 and references therein.

(iv) By the Poincaré theorem (see, e.g., Abraham, Marsden & Ratiu (1998), Theorem
6.4.14), if the p-form γ is closed on Ω ⊂ M, i.e. dγ = 0 on Ω , then γ is
locally exact; that is, there exists a neighbourhood U⊂Ω about each point of Ω ,
on which γ|U = dα for some (p − 1)-form α ∈ 3p−1(U). The same result holds
globally on a contractible domain (Abraham et al. 1998, see Lemma 6.4.18). A
contractible domain is roughly one in which, for any given point, the whole
domain can be continuously shrunk into it (see § B.1). By the Poincaré lemma,
if M is a compact d-dimensional contractible manifold, all the Betti numbers
(for p > 1) vanish, i.e. b1(M) = · · · = bd(M) = 0, and b0(M) = 1. Contractibility
is, however, an excessively strong requirement to ensure that closeness implies
exactness. For differential forms of a given order p, the vanishing of the single
Betti number, bp(M)= 0 is actually sufficient to ensure this.
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Geometric formulation of the Cauchy invariants in flat and curved spaces 423

2.4. Alternative formulations and extensions of Theorem 1
Hereafter we discuss alternative representations of Theorem 1, which are local, such
as the generalised Cauchy formula, or global, such as the integral formulation of the
Cauchy invariants equations. We also give extensions of Theorem 1 for some non-
exact differential forms.

2.4.1. Generalised Cauchy formula
An important operation in differential geometry is the Hodge duality, which

associates to any p-form a Hodge dual (d− p)-form such that their exterior product is
the fundamental metric volume d-form µ=

√
g da1

∧ · · · ∧ dad, with
√

g=
√

det(gij)
(see § B.9). For example, in 3D the vorticity 2-form and the vorticity vector field
(as known since the work of Helmholtz (1858)) are Hodge duals of each other. It is
therefore of interest to rewrite the Cauchy invariants equation and its generalisations
in Hodge dual form. For example, as we shall see in the next section, this will give
us the Cauchy vorticity formula.

The generalised Cauchy invariants equation (2.20) has a corresponding generalised
Cauchy formula obtained by applying the Hodge dual operator, denoted ?, to (2.20),
that is

1
(p− 1)!

δ
i1...ip−1
j1...jp−1

? (dαi1...ip−1 ∧ dx j1 ∧ · · · ∧ dx jp−1)= ?γ0. (2.30)

This generalised Cauchy formula can be written in the covariant, contravariant or
mixed form, by using what is known in differential geometry as the raising–lowering
duality. We have already seen that the space T 1

0 (M) is the vector space of
1-contravariant vector fields, while T 0

1 (M), its dual, is the vector space of linear
forms on T 1

0 (M), i.e. the space of 1-covariant vector fields (also called covector or
1-form fields). We then introduce the index raising operator (·)] : T 0

1 (M)→ T 1
0 (M),

which in flat space transforms the differential of a function into its gradient vector.
In curved spaces α] denotes the 1-contravariant vector field obtained from the 1-form
field α, by using the index raising operation α] = (αi dai)] = (α])i∂i = gijαj∂i; that
is componentwise (α])i = gijαj. Conversely v[ is the 1-form field obtained from
the vector field by applying the index lowering operator (·)[ : T 1

0 (M) → T 0
1 (M)

according to the formula v[ = (vi∂i)
[
= (v[)i dxi

= gijv
j dxi; componentwise, this

is (v[)i = gijv
j (see § B.3). Therefore, to obtain (2.30) in the desired formulation

(covariant, contravariant or mixed form), it is required to successively apply as many
times as necessary the lowering and raising operators.

Remark 2. We observe that the generalised Cauchy invariants equation (i.e.
Theorem 1) requires only a structure of differentiable manifold, without the
Riemannian structure. In contrast, the generalised Cauchy formula (2.30) requires such
a Riemannian structure (see § B.3), because of the use of Hodge duality (see § B.9).

2.4.2. Space-integrated form of generalised Cauchy invariants equations
Since the generalised Cauchy invariant is an exact p-form, we can apply to it what

are known as the Hodge decomposition and/or the Stokes theorem. First we write the
generalised Cauchy invariant as an explicit exterior differential. We have indeed

1
(p− 1)!

δ
i1...ip−1
j1...jp−1

dαi1...ip−1 ∧ dx j1 ∧ · · · ∧ dx jp−1

=
1

(p− 1)!
δ

i1...ip−1
j1...jp−1

d(αi1...ip−1 ∧ dx j1 ∧ · · · ∧ dx jp−1). (2.31)
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Since γ0 = dα0, using the Hodge decomposition for closed forms (see § B.13), we
obtain

1
(p− 1)!

δ
i1...ip−1
j1...jp−1

αi1...ip−1 ∧ dx j1 ∧ · · · ∧ dx jp−1 = α0 + dβ + h. (2.32)

Here, if M is a compact manifold without (respectively with) boundary, β is an
arbitrary (p − 2)-form (respectively normal (p − 2)-form with vanishing tangential
components; see next-to-last paragraph of § B.13 and references therein). In (2.32),
the (p − 1)-form h is harmonic, that is dh = 0 and d?h = 0. Here, the operator
d? : 3p(Ω) → 3p−1(Ω) with p > 0 is the exterior coderivative, obtained from the
exterior derivative, but acting on the Hodge dual space (for details see § B.9). More
precisely, if γ ∈ 3p(Ω) then we have the (p − 1)-form d?γ = (−1)d(p−1)+1 ? d ? γ .
Note that the latter looks actually more like an integration than a differentiation.

Now, we want to integrate this form over suitable domains, called 1-chains,
2-chains, etc. In a flat space, a 1-chain is just a finite set of 1D contours. For a
general definition of p-dimensional p-chains on manifolds, see § B.12. Let c be a
(p− 1)-chain on the manifold M. Choosing the (p− 2)-form β with suitable values
on the boundary ∂c of c to avoid having a boundary contribution (if a boundary is
present), we obtain, using the Stokes theorem (see § B.12),

1
(p− 1)!

δ
i1...ip−1
j1...jp−1

∫
c
αi1...ip−1 ∧ dx j1 ∧ · · · ∧ dx jp−1 =

∫
c
α0 +

∫
c

h. (2.33)

Moreover, if the Betti number bp−1(M) = 0, then the second term on the right-hand
side of the previous formula vanishes. Considering now a p-chain c, using the Stokes
theorem, we obtain

1
(p− 1)!

δ
i1...ip−1
j1...jp−1

∫
∂c
αi1...ip−1 ∧ dx j1 ∧ · · · ∧ dx jp−1 =

∫
∂c
α0. (2.34)

2.4.3. Generalisation to some non-exact differential forms
From Theorem 1, the following question arises naturally: can we extend the result

of Theorem 1 when the p-form γ is not exact? The answer is yes under some
conditions.

We suppose that the p-form γ of Theorem 1 can be written as γ =Op π, where π
is a q-form and the operator Op :3q(Ω)→3p(Ω) is a linear operator which satisfies
the following conditions:

(i) the commutation relation [Op, £v] = 0 holds;
(ii) the kernel of the operator Op is such that Ker Op = {closed q-form, i.e. κ ∈

3q(Ω) | dκ = 0}.

From assumption (i) the Lie-advection equation (2.19) is equivalent to Op(∂tπ +
£vπ) = 0. From assumption (ii), this equation is also equivalent to ∂tπ + £vπ = κ ,
with κ a closed q-form. Taking the exterior derivative to this equation, we obtain the
equation ∂t dπ+ £v dπ= 0, to which we can apply Theorem 1 with p= q+ 1, γ = dπ
and α =π.

We give now three examples. Choosing Op≡ d, the first one is obvious. The second
example is Op ≡ ?d : 3d−p−1(Ω)→ 3p(Ω). where the star denotes the Hodge dual
operator. Then we have Ker ? d={exact q-form+ harmonic q-form}⊂ {closed q-form},
where a harmonic q-form h satisfies dh= d?h= 0, with d?≡ (−1)dp+1 ? d ?. In addition,
the operator ?d satisfies the commutation relation [?d, £v]= 0 if and only if [?, £v]= 0
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since [d, £v] = 0. Generally the Lie derivative and the Hodge star operator do not
commute. When these operators do commute, i.e. when the commutation relation
[£v, ?] = 0 holds we can extend Theorem 1 to forms which are the Hodge duals
of exact forms. An example of such commutation relation is when the vector field
v generates an isometry (see § B.9). The third example is when the p-form γ is
co-exact, i.e. γ = d?β, with β a (p + 1)-form. Setting Op≡ (−1)dp+1 ? d, we fall in
the case of the second example with π= ?β ∈3d−p−1(Ω). Of course, other interesting
examples can be constructed.

2.4.4. A Lagrangian Biot–Savart problem
So far, the Lie-advected p-form γ was just assumed to be expressible as the exterior

derivative dα of a (p − 1)-form α. As we shall now see, the generalised Cauchy
invariants equation (2.20), allows an inversion, which can be viewed as solving a
Biot–Savart problem in Lagrangian variables: the corollary hereafter gives an explicit
expression for the (p− 1)-form α, in which we use the notation

1a =

d∑
i=1

∂2
ai, (2.35)

for the Laplacian in Lagrangian variables and 1−1
a for its formal inverse.

COROLLARY 1 (A Lagrangian Biot–Savart problem). Under assumptions of Theorem 1,
the generalised Cauchy invariants equation (2.20) leads to

αi1...ip−1 = δ
k`1−1

a
∂

∂ak

(
γ0`j1...jp−1

∂a j1

∂xi1
· · ·

∂a jp−1

∂xip−1

)
, 1 6 i1 < · · ·< ip−1 6 d. (2.36)

Proof. The generalised Cauchy invariants equation (2.20) gives componentwise

1
(p− 1)!

δ
i1...ip−1
j1...jp−1

∂αi1...ip−1

∂a`
∂x j1

∂al1
· · ·

∂x jp−1

∂alp−1
= γ0`l1...lp−1 . (2.37)

Multiplying by p− 1 suitably chosen inverse Jacobian matrices, we obtain

1
(p− 1)!

δ
i1...ip−1
j1...jp−1

∂αi1...ip−1

∂a`
∂x j1

∂al1

∂al1

∂xk1
· · ·

∂x jp−1

∂alp−1

∂alp−1

∂xkp−1
= γ0`l1...lp−1

∂al1

∂xk1
· · ·

∂alp−1

∂xkp−1
, (2.38)

that is

γ0`l1...lp−1

∂al1

∂xk1
· · ·

∂alp−1

∂xkp−1
=

1
(p− 1)!

δ
i1...ip−1
j1...jp−1

δ
j1
k1
· · · δ

jp−1
kp−1

∂αi1...ip−1

∂a`

=
1

(p− 1)!
δ

i1...ip−1
k1...kp−1

∂αi1...ip−1

∂a`
. (2.39)

Since αi1...ip−1 is skew-symmetric, we have

1
(p− 1)!

δ
i1...ip−1
k1...kp−1

αi1...ip−1 = αk1...kp−1, (2.40)
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and (2.39) becomes

∂αi1...ip−1

∂a`
= γ0`j1...jp−1

∂a j1

∂xi1
· · ·

∂a jp−1

∂xip−1
. (2.41)

By application of the differential operator δk`(∂/∂ak) to (2.41) and summation over
index `, equation (2.41) becomes

1aαi1...ip−1 = δ
k` ∂

∂ak

(
γ0`j1...jp−1

∂a j1

∂xi1
· · ·

∂a jp−1

∂xip−1

)
. (2.42)

This equation gives (2.36) after formal inversion of the Laplacian operator 1a,
expressed in Lagrangian variables. We observe that this inversion is reminiscent of
that of the Biot–Savart law, with the left-hand side of (2.41) playing roughly the role
of the curl of the (p− 1)-form α.

2.5. Broad applicability of Theorem 1
Our key result, namely Theorem 1, may be viewed as a new fundamental result
in linear transport theory, giving an alternative Lagrangian formulation of Lie
advection for a large class of differential forms. (This was pointed out to us by
Peter Constantin who made us realise that this new result in linear transport theory
may be of independent interest.) Indeed there is no need to have a self-consistent
coupling between the transporter (vector fields v) and the transported (differential
forms γ ) to obtain generalised Cauchy invariants equations. For the first time, it
is here shown that Cauchy invariants equations exist for non-self-consistent linear
transport. It must be pointed out that, when the Cauchy invariants were rediscovered
in the 20th century, most of the time it was by making use of Noether’s theorem
in the case of self-consistent nonlinear equations (Frisch & Villone 2014). Although
Noether’s theorem is usually not available for linear transport equations, our key
result shows that such generalised Cauchy invariants still do exist in linear transport
theory. Consequently, our result is applicable to a large class of fluid dynamical
equations that rely on Lie advection. Hereafter, we give some important examples.
Some more material, dealing specifically with helicity problems in fluids and MHD,
will be presented in § 4.

2.5.1. Induction equation in ideal incompressible MHD
In incompressible ideal MHD, the magnetic flux conservation law (induction

or Faraday’s equation) can be rewritten as a Lie-advection equation, provided the
magnetic field is considered as a 2-form (see, e.g., Flanders 1963). Denoting the
magnetic field 2-form by B and the magnetic (vector) potential 1-form by A, we have

B= dA, (2.43)

and the induction equation reads

∂tB+ £vB= 0. (2.44)

Indeed (2.44) results from the Maxwell–Faraday equation ∂tB+ dE= 0, the Maxwell–
Gauss equation dB= 0, and the (ideal) induction equation E− ivB= 0, where E is the
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dual 1-form associated to the electric (vector) field. Therefore from Theorem 1, we
obtain the following Cauchy invariants equation

dAk ∧ dxk
= B0 = dA0. (2.45)

Let us note that this equation and (2.44) can be extended to Riemannian manifolds
of any dimension by keeping the same covariant form, i.e. as they stand.

We observe that (2.43) and (2.44) are known, at least for the 3D flat case (Flanders
1963). As to (2.45), in the flat case, it is the well-known law of conservation of
magnetic flux, which is here shown to be a Cauchy-type equation.

2.5.2. Adiabatic and barotropic ideal compressible fluid
Here and in § 2.5.3 we use geometrical tools for writing fluid equations that will

be discussed in more details in § 3.
An adiabatic ideal compressible fluid, with equation of state p = p(ρ, η), where

the scalar ρ and η are respectively the density and the entropy, is governed by the
equations

∂tv
[
+ £vv[ =−

dp
ρ
+

1
2

d(v, v)g (2.46)

∂tm+ £vm= 0 (2.47)
∂tη+ £vη= 0. (2.48)

Here, m denotes the mass d-form defined by m := ρµ. Since by definition we have
divµv := £vµ, equation (2.47) is equivalent to ∂tρ + divµ(ρv) = 0. The Lagrangian
formulation of (2.47)–(2.48) is

ρt ◦ ϕt = ρ0/Jµ(ϕt) and ηt ◦ ϕt = η0, (2.49a,b)

where Jµ(ϕt) :=ϕ
∗

t µ/µ=
√

g ◦ ϕt det(∂ϕt/∂a) is the Jacobian of the Lagrangian flow ϕt

generated from the vector field v, and ρ0= ρ0(a) and η0= η0(a) are the initial density
and entropy. We now introduce the 1-form γ , with zero initial value (i.e. γ0 = 0),
which satisfies the equation

∂tγ + £vγ =−
dp
ρ
. (2.50)

Using the Lie-derivative theorem (2.14), integration of (2.50) yields the 1-form γ such
that

γ =−ϕ∗t

∫ t

0
dτϕ∗τ

(
dp
ρ

)
. (2.51)

Defining the modified 1-form velocity ṽ[ := v[− γ , and the modified 2-form vorticity
ω̃ := dṽ[, from (2.46) and (2.50), we obtain

∂tω̃+ £vω̃= 0. (2.52)

We can now apply Theorem 1 to this equation. We then obtain for (2.46) the following
Lagrangian formulation

dṽ[k ∧ dxk
=ω0 := dv[0. (2.53)
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Let us note that the Ertel potential vorticity 3-form dv[ ∧ dη is a Lagrangian invariant
since (∂t + £v) dv[ ∧ dη = 0, which results from (2.46), (2.48) and the identity dp ∧
dρ ∧ dη = 0 by virtue of the dependence p= p(ρ, η). In three dimension, d = 3, we
can easily show that the scalar local Ertel potential vorticity ?(dv[ ∧ dη) satisfies also
a Lie-advection equation; thus it is also a local conserved quantity. Let us also note
that in the barotropic case (Khesin & Chekanov 1989), since p = p(ρ), we obtain
d(dp/ρ)= 0; thus we have γ = 0, ṽ[ = v[ and ω̃=ω := dv[.

2.5.3. Barotropic ideal compressible MHD
Let b be the magnetic vector field, b[ its dual 1-form and B its dual 2-form. For

an example of a detailed derivation of MHD models we refer to Goedbloed & Poedts
(2004). The barotropic ideal compressible MHD, in a coordinate-free form, reads

∂tm+ £vm= 0 (2.54)

∂tv
[
+ £vv[ =

£bb[ − d(b, b)g
ρ

− d
(

h−
1
2

d(v, v)g

)
(2.55)

∂tB+ £vB= 0. (2.56)

Here, the barotropic equation of state p= p(ρ) is used, and the enthalpy h is related to
the pressure p via the relation dh= dp/ρ. In (2.55), the term (£bb[− d(b, b)g)/ρ is the
dual 1-form of the Lorentz force field. It is obtained from the Ampère law, d ?B=µ0 j,
where j is the current form while j= (? j)]= (?d ?B)]/µ0 is the current-density vector
field. Indeed, in the three-dimensional case d = 3, this 1-form can be expressed as
−ijB/ρ which is the dual 1-form of the vector field j× b/ρ (Lorentz force) where the
current-density vector j is related to the magnetic (vector) field b by the Ampère law
µ0j=∇× b (the displacement current being neglected). In the three-dimensional case
d= 3, let us note that using the relations B= ib/ρρµ and [£v, ib/ρ] = i[v,b/ρ] (see § B.8),
equation (2.56) is equivalent to ∂t(b/ρ)+ £v(b/ρ)= 0. We now introduce the 1-form
γ , with zero initial value (i.e. γ0 = 0), which satisfies the equation

∂tγ + £vγ =
£bb[ − d(b, b)g

ρ
. (2.57)

Using the Lie-derivative theorem (2.14), integration of (2.57) yields the 1-form γ such
that

γ = ϕ∗t

∫ t

0
dτϕ∗τ

(
£bb[ − d(b, b)g

ρ

)
, (2.58)

where ϕt is the Lagrangian flow generated from the vector field v. Defining the
modified 1-form velocity ṽ[ := v[ − γ , and the modified 2-form vorticity ω̃ := dṽ[,
from (2.55) and (2.57), we obtain

∂tω̃+ £vω̃= 0. (2.59)

Therefore, we can again apply Theorem 1 to (2.56) and (2.59). We then obtain for
the system (2.55)–(2.56) the following Lagrangian formulation

dṽ[k ∧ dxk
=ω0 := dv[0, and dAk ∧ dxk

= B0 := dA0. (2.60a,b)

Of course, the Lagrangian formulation of the equation of mass conservation (2.54) is
the same as in § 2.5.2. Let us note that we can extend this formulation to adiabatic
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ideal compressible MHD with the equation of state p= p(ρ, η) by adding to (2.54)–
(2.56) the entropy equation (2.48). Let us also note that in fact there are several
ways in which the full nonlinear ideal MHD equations can be recast as Lie-advection
problems: for example one can use the dual 1-forms of the Elsasser (1956) variables
(Marsch & Mangeney 1987).

2.5.4. Extended ideal compressible MHD
The extended MHD equations (Goedbloed & Poedts 2004; D’Avignon, Morrison &

Lingam 2016; Lingam, Milosevich & Morrison 2016), in covariant form, reads

∂tm+ £vm= 0 (2.61)
∂tB± + £v±B± = 0, (2.62)

where, B± = dA±, A± = A + (d2
e/ρ) ? d ? B + κ±v[, and v± = v − κ∓ (?d ? B)]/ρ.

Here, the constants κ± are the solutions of the quadratic equation κ2
− diκ − d2

e = 0,
where di and de serve as the normalised ion and electron skin depths, respectively.
In addition the variables m and v denote the total-mass form and the centre-of-mass
velocity vector, respectively. As in § 2.5.1 the magnetic potential 1-form by A is linked
to the magnetic field 2-form B by B= dA. Let us note that here the assumption of a
barotropic equation of state was used. We can directly apply Theorem 1 to (2.62) for
obtaining the following Cauchy invariants equations

dA±k ∧ dxk
±
= B±0 := dA±0, (2.63)

where x±t are the Lagrangian maps generated by the vector fields v±. Once again, the
Lagrangian formulation of the equation of mass conservation (2.61) is the same as
in § 2.5.2. When de→ 0, we have κ± = di and we obtain what is called Hall MHD.
When di→ 0, we have κ± =±de and we obtain what is called inertial MHD. Let us
note that when di→ 0 and de→ 0 simultaneously, we obtain κ± = 0 and thus we do
not recover the full ideal compressible MHD, since both equations (2.62) degenerate
into only one equation, namely (2.56).

2.5.5. Tao’s modification of the incompressible Euler equations in Euclidean space
The dynamics of vorticity for the case of the ordinary incompressible Euler

equation will be discussed in detail in § 3, but we wish to mention that recently Tao
(2016) has proposed an interesting modification of the incompressible Euler equations
in Euclidean spaces that preserves much of its differential geometric content, but
sometimes allows (proven) blow-up, that is loss of regularity in a finite time. This
modification consists in keeping the Lie-advection equation for the vorticity 2-form
ω, namely (∂t + £v) ω = 0, but replacing the Biot–Savart law v[ = d?1−1

H ω by the
following self-consistent coupling v[ = d?Aω. Here, A is a linear pseudodifferential
operator which is self-adjoint (like 1−1

H ) and has the same degree of regularity as 1−1
H .

Tao (2016) has shown that there exist some operators A for which the corresponding
classical solutions blow-up in finite time. Since the Lie-advection equation for the
vorticity 2-form is preserved in these models, by Theorem 1, there is a corresponding
generalised Cauchy invariants equation. Indeed, since ω= dv[ and using the modified
velocity 1-form u[ := d?A dv[, we can now define two Lagrangian maps xt and yt by

ẋt :=
dxt

dt
= u(t, xt) and ẏt :=

dyt

dt
= v(t, yt), (2.64a,b)
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where the vector fields u and v are linked by the relation u = (d?A dv[)]. Recalling
that in Euclidean spaces covariant and contravariant components are identical, the
corresponding Cauchy invariants equation then reads

dẏk ∧ dxk
=ω0. (2.65)

Remark 3 (Well-posedness: linear and nonlinear issues). As mentioned at the begin-
ning of § 2.5, the coupling between the p-form γ and the vector field v, in the Lie-
advection equation (2.16), could be either non-self-consistent or self-consistent. In the
former case, also called passive, v is prescribed at all times and there is no feedback
of γ on v. In the latter case, v is not prescribed (except perhaps at the initial time)
and the feedback of γ on v is given by at least one additional equation linking v to
γ ; an instance is the full Euler equation, where the vorticity 2-form is the exterior
derivative of the velocity 1-form (cf. § 3).

In the non-self-consistent case, when the vector field v is Lipschitz continuous
(not necessarily divergence-free or incompressible), the associated Lagrangian flow
exists globally in time (Taylor 1996). Therefore, equation (2.16) is well posed and
has global-in-time regular solutions; thus Lie and Cauchy invariants exist globally in
time too (Taylor 1996).

In the self-consistent case, well-posedness of the coupled system, i.e. existence of
solutions to the system constituted of (2.16) plus the additional equation linking v to
γ , depends of course on the specific self-consistent coupling considered.

For example, in the case where the vector field v is the velocity field given by
the 3D-Euclidean incompressible Euler equations and the p-form ω is the 2-vorticity
form, the self-consistent coupling is given by ω= dv[ (in the simplest case this means
that the vorticity vector is the curl of the velocity vector). Using the Biot–Savart law,
this self-consistent coupling can be rewritten as v[= d?1−1

H ω, where d? is the exterior
coderivative and 1H := dd? + d?d is the Laplace–de Rham operator (see § B.13). The
corresponding Cauchy problem is known to be well posed in time when the initial
velocity is in Hölder or Sobolev spaces with suitable indexes of regularity. This was
established in the seminal work of Lichtenstein (1925, 1927) and Gyunter (1926,
1934) for the case of the whole Euclidean space and, of Ebin & Marsden (1970) for
the case of bounded domains. Therefore (2.16) has local-in-time regular solutions, so
that Lie and Cauchy invariants exist at least for short times.

Although the modified Euler equations of Tao (2016) satisfy helicity and energy
(or Hamiltonian) conservation laws and possess a Kelvin circulation theorem, Tao
has shown that there exist some operators A for which the corresponding classical
solutions blow-up in finite time. It does not mean that we can conjecture a finite-time
blow-up for classical solutions of the original incompressible Euler equations (for
d > 3), but rather that a possible absence of blow-up cannot be proved with the only
properties of the Euler equations that are shared by these modified models. Although
Lie-advection equation for the vorticity 2-form is preserved in these models, the
Cauchy invariants equation (2.65) shows that a modification of the Biot–Savart law
induces a change in the geometry of the original incompressible Euler equations.
Indeed (2.65) involves two families of characteristic curves, whereas the original
incompressible Euler equations deal with only one such family. In other words, on
the set of incompressible vector fields we have d?1−1

H d= Id, whereas d?Ad 6= Id.
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3. Vorticity and incompressible flow in hydrodynamics
In this section we apply our main result, Theorem 1, to the incompressible Euler

equations on a d-dimensional Riemannian manifold. This will extend to Riemannian
manifolds of any dimension the notion of Cauchy invariants, first introduced by
Cauchy (1815) for the three-dimensional incompressible Euler equations in ‘flat’
Euclidean spaces. First, we need to write the Euler equations in a covariant form, i.e.
in terms of a 1-form v[ for the velocity vector field v; this is the aim of § 3.1. The
velocity 1-form v[ is here called the infinitesimal velocity circulation, because if we
were in a flat space, we would have v[ = v · dx. Henceforth, ordinary vectors will
be denoted by bold italic font when they might otherwise be mistaken for p-forms.
Then, the exterior derivative of the covariant form of the Euler equations gives a
Lie-advection equation of the form (2.16) for the vorticity 2-form ω, here called
the covariant vorticity equation. Henceforth, ω always denotes the vorticity 2-form
and not the vorticity vector; the latter being ω. In § 3.2, applying Theorem 1 to the
covariant vorticity equation, we show that the Cauchy invariants equation can have
different representations. In particular we show that the Cauchy invariants equation
is an alternative formulation of the well-known Lie advection of the vorticity 2-form.
From this point of view, the Cauchy invariant and the Cauchy vorticity formula are
representations of the same conservation law, related by Hodge duality. Finally, we
note that the covariant vorticity equation and the Cauchy invariants equation on a
manifold have alternative derivations using variational methods in conjunction with
the relabelling symmetry and Noether’s theorem.

3.1. Covariant formulation of the vorticity equation
In this section the vorticity will be considered as a 2-form ω. We start with the
incompressible Euler equations on a d-dimensional Riemannian manifold (M, g).
Written in terms of the velocity vector field v and of the scalar pressure field p, they
read

∂tv
i
+ vk∇kv

i
=−gik∂kp (Euler),

∇iv
i
= 0 (incompressibility condition) x ∈Ω, t ∈ ] 0, T].

}
(3.1)

Here the symbol ∇k denotes the covariant derivative, which can be seen as a
generalisation to curved spaces of the classical partial derivative ∂k of Euclidean
spaces (for a more detailed definition, see § B.10). The geometric interpretation of the
incompressible Euler equations is recalled in § A.1, while their simplest derivation is
obtained from a variational formulation (least-action principle), as explained in § A.2.

The Euler equations and incompressibility condition, written in the contravariant
formulation (3.1), can be rewritten in the covariant formulation, i.e. in term of 1-form
fields instead of vector fields. Let v[ be the 1-form field obtained from the vector field
by the index lowering operator (·)[ : T 1

0 (Ω)→ T 0
1 (Ω); that is, we set v[ = (vi∂i)

[
=

(v[)i dxi
= gijv

j dxi. Using the preservation of the metric of the Riemann–Levi-Civita
connection, namely ∇kgij = 0, we easily find

∂tvi + v
k
∇kvi =−∂ip, x ∈Ω ⊂M, t ∈ ] 0, T ], (3.2)

and
gij
∇ivj = 0, x ∈Ω, t ∈ ] 0, T ]. (3.3)

In compact form, equation (3.2) can be written as

∂tv
[
+ (∇vv)

[
=−dp, x ∈Ω, t ∈ ] 0, T ]. (3.4)
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Now we rewrite (3.4) as

∂tv
[
+ £vv[ + d

(
p− 1

2(v, v)g
)
= 0, x ∈Ω, t ∈ ] 0, T ], (3.5)

an equation which differs from a Lie-advection condition for v[ by just an additional
exact differential (which will disappear upon application of yet another exterior
differential). To obtain (3.5) we use the Cartan formula £vv[ = divv[ + iv dv[ for the
Lie derivative (§ B.8) and a rewrite of the right-hand side of the Cartan formula,
precisely divv[+ iv dv[= (∇vv)[+ (1/2)d(v, v)g. This is established in § A.5. In these
equations iv :3p(Ω)→3p−1(Ω) is the interior (or inner) product with the vector v,
which acts as an integration; as to (·, ·)g, it denotes the Riemannian scalar product
for vector fields in T 1

0 (Ω), defined by (v,w)g = gijv
iw j (see § B.3).

From a fluid-mechanical point of view, specialising to the Euclidean case, it is of
interest to rewrite the Euler equations (3.5) in standard vector notation as

∂tv +∇|v|
2
+ω× v +∇

(
p−
|v|2

2

)
= 0, (3.6)

where × denotes the vector product and ∇ is the standard gradient operator in
Euclidean coordinate. This has some similarity to what is known as Lamb’s form of
the incompressible Euler equations, in which ω × v also appears. It would not be
advisable to simplify (3.6) to Lamb’s form by combining the two terms involving
a gradient of the local kinetic energy, because the second and third term on the
left-hand side of (3.6) are both needed to obtain a Lie derivative and all the nice
consequences.

Indeed, we can now define the vorticity 2-form as the exterior derivative of the
infinitesimal velocity circulation 1-form v[, that is

ω= dv[. (3.7)

Taking the exterior derivative of the covariant formulation (3.5) of the Euler equations,
and using the commutation relation [d, £v] = 0, we obtain

∂tω+ £vω= 0. (3.8)

This establishes that the vorticity 2-form is Lie-advected, a result essentially known
since Helmholtz (1858). In terms of the 1-form v[, the incompressibility condition
∇iv

i
= 0 reads d?v[= 0 (see § B.9). Using the Hodge theorem (see § B.13), we obtain

the Biot–Savart law v = (d?1−1
H ω)

], which self-consistently expresses the velocity
vector field v in terms of the vorticity 2-form ω. Indeed, using the incompressibility
condition d?v[ = 0, we have v = (d?1−1

H ω)
]
= (1−1

H d? dv[)] = (1−1
H (d

?d + dd?)v[)] =
(v[)] = v.

Finally from (3.8), using the lesser known commutation relation []d−p ?, £v] = 0
(with p= 2), whose proof is given in § A.6, we obtain that the vorticity vector is also
Lie-advected. Here, by vorticity vector, we understand the (d− 2)-vector ω := (?ω)]

d−2

(in other words a (d− 2)-contravariant tensor). Namely, we have

∂tω+ £vω= 0. (3.9)
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Geometric formulation of the Cauchy invariants in flat and curved spaces 433

Remark 4. (i) An alternative derivation of the covariant vorticity equation (3.8)
from the Euler equations (3.1) is to use the relabelling symmetry and Noether’s
theorem (see § A.4). This derivation leads to

ϕ∗t ω=ω0, (3.10)

from where Lie advection of the vorticity ω follows readily (see (2.15) and
(2.16)).

(ii) Let us note that in appendix B of Gilbert & Vanneste (2016), the authors give a
variational derivation of the covariant Euler equations (3.5).

(iii) In § A.6, the proof of the commutation relation []d−p ?, £v] = 0 is done by
following an algebraic approach. A dynamical approach based on infinitesimal
pullback transport and the Lie-derivative theorem could be used for an alternative
proof, along the lines used in § B.9.

3.2. Cauchy invariants equation and Cauchy formula
We are now ready to extend to Riemannian manifolds of any dimension the
Cauchy invariants equation and the Cauchy formula. We begin by observing that
all assumptions of Theorem 1 are now satisfied: the vorticity 2-form ω= dv[ is exact
and is Lie-advected. There from follows Corollary 2 for which we also give a direct
simplified proof.

COROLLARY 2 (Cauchy invariants equations on a Riemannian manifold). Let ϕt be
the Euler flow. We set x= ϕt and v = ϕ̇t, with v0 = ϕ̇0. Then we have

dvk ∧ dxk
= ϕ∗t ω=ω0 := dv[0. (3.11)

Proof. We begin by showing that ϕ∗t ω= dvk ∧ dxk. Indeed, we have

ϕ∗t ω = (ϕ∗t ω)ij dai
∧ da j

=

∑
i<j

∂xl

∂ai

∂xk

∂a j
ωlk(xt(a)) dai

∧ da j

=

∑
i<j

∂xl

∂ai

∂xk

∂a j

(
∂vk

∂xl
−
∂vl

∂xk

)
dai
∧ da j

=

∑
i<j

∂vk

∂xl

(
∂xl

∂ai

∂xk

∂a j
−
∂xl

∂a j

∂xk

∂ai

)
dai
∧ da j

=
∂vk

∂xl

∂xl

∂ai

∂xk

∂a j
dai
∧ da j

=
∂vk

∂ai

∂xk

∂a j
dai
∧ da j

= dvk ∧ dxk. (3.12)

Corollary 2 follows from the covariant vorticity equation (3.8) or the conservation of
the vorticity 2-form, i.e. ϕ∗t ω=ω0 := dv[0.

Remark 5. (i) (Contravariant formulation). In terms of components, the Cauchy
invariants equation (3.11) reads

∂k(ẋigij)∂lx j
− ∂l(ẋigij)∂kx j

=ω0kl, 1 6 k< l 6 d. (3.13)

The contravariant form of this equation reads

εkli1...id−2∂k(ẋigij)∂lx j
=
√

gωi1...id−2
0 , 1 6 i1 < · · ·< id−2 6 d, (3.14)

where the (d− 2)-vector ω0 := (?ω0)
]d−2 is defined componentwise by

ω
i1...id−2
0 =

1
2
√

g
εkli1...id−2ω0kl. (3.15)
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434 N. Besse and U. Frisch

(ii) (Integrated (circulation) form of the Cauchy invariants equation). Since the
Cauchy invariant may be rewritten as an exact 2-form, i.e.

dvk ∧ dxk
= d(vk dxk), (3.16)

using Hodge’s decomposition, we obtain

vk dxk
= v

[
0 + dψ + h, (3.17)

where ψ is an arbitrary 0-form (scalar function) and h is a harmonic 1-form. Let
c be a 1-chain on the manifold M. Choosing the function ψ with suitable value
on the boundary ∂c (if it exists), from the Stokes theorem we obtain∫

c
vk dxk

=

∫
c
v
[
0 +

∫
c

h. (3.18)

Moreover if the Betti number b1(M)= 0, then the second term on the right-hand
side of the previous formula vanishes. Some examples for which b1(M)= 0 are
given in § B.13. Considering now a 2-chain c, using the Stokes theorem, we
obtain ∫

∂c
vk dxk

=

∫
∂c
v
[
0. (3.19)

This is the famous theorem of conservation of circulation, frequently ascribed to
Thomson (Lord Kelvin) (1869) but actually discovered by Hankel (1861, see also
Frisch & Villone 2014), using essentially the argument given above.

(iii) (Variational derivation of the Cauchy invariants equation). The Cauchy invariants
equation (3.11) on a Riemannian manifold has a variational derivation, using the
relabelling symmetry and Noether’s theorem without appealing to Theorem 1
(see § A.3).

We turn now to a corollary that clarifies the relationship between the Cauchy
invariants equation and the Cauchy vorticity formula, which are actually Hodge dual
of each other. We refer the reader to § B.9 for detailed definition of the Hodge
duality operator ? : 3p(Ω) → 3d−p(Ω), which implements the already mentioned
Hodge duality. Indeed, applying the Hodge dual operator to (3.11), we obtain the
following.

COROLLARY 3 (Cauchy vorticity formula on a Riemannian manifold). Under the same
assumptions as in Corollary 2, we have the Cauchy vorticity formula, written in
general as

? (dvk ∧ dxk)= ?ϕ∗t ω= ?ω0, (3.20)

and, in the case of a three-dimensional curved space, as

ωi
=
∂xi

∂a j
ω

j
0, i= 1, 2, 3, (3.21)

where the vorticity vector is defined componentwise by

ωi
=

1
2
√

g
εijkωjk, i= 1, 2, 3. (3.22)
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Geometric formulation of the Cauchy invariants in flat and curved spaces 435

Proof. Equation (3.20) is of course an immediate consequence of (3.11). To
derive (3.21) in the case d = 3, we make use again of the index raising operator
(·)] : T 0

1 (M)→ T 1
0 (M). In the three-dimensional curved case, equation (3.20) is an

equality between 1-forms. Applying the raising operator to (3.20), we obtain an
equality between (1-contravariant) vectors, given by

[?(dvk ∧ dxk)]] = (?ϕ∗t ω)
]
= (?ω0)

]. (3.23)

Now, we expand (3.23) and show that it is equivalent to the Cauchy formula (3.21).
We set the notation g0= g(a) and g= g(x). First, in terms of components of a 1-form,
and using the inversion formula

g−1
0 ε

ijkg0kn = εlmngil
0g jm

0 , (3.24)

we have

ω̃0i1 := (?ω0)i1 =
1
2

√
g0εi1j1j2ω

j1j2
0 =

1
2

√
g0εi1j1j2g

lj1
0 gmj2

0 ω0lm =
1
2 g−1/2

0 εplmg0i1pω0lm. (3.25)

In terms of components of a vector, we then obtain

(ω̃
]
0)

s
= gsq

0 ω̃0q =
1
2 g−1/2

0 gsq
0 ε

plmg0qpω0lm =
1
2 g−1/2

0 δs
pε

plmω0lm =
1
2 g−1/2

0 εslmω0lm. (3.26)

From the definition of the vorticity vector (3.22), we then have

ωs
0 = ([?ω0]

])s =
1

2
√

g0
εslmω0lm. (3.27)

Second, in terms of components of a 1-form, we have

ω̃i1 := (?ϕ
∗

t ω)i1 =
1
2

√
g0εi1j1j2(ϕ

∗

t ω)
j1j2 =

1
2

√
g0εi1j1j2g

lj1
0 gmj2

0 (ϕ∗t ω)lm

=
1
2 g−1/2

0 εplmg0i1p(ϕ
∗

t ω)lm. (3.28)

In terms of vector components, and using det(∂x/∂a)=
√

g0/g, we then obtain

ω̃s
= (ω̃])s = gsq

0 ω̃q =
1
2

g−1/2
0 εplmgsq

0 g0qp(ϕ
∗

t ω)lm

=
1
2

g−1/2
0 δs

pε
plm(ϕ∗t ω)lm =

1
2

g−1/2
0 εslm(ϕ∗t ω)lm

=
1
2

g−1/2
0 εslm ∂xi

∂al

∂x j

∂am
ωij =

1
2

g−1/2
0 det

(
∂x
∂a

)
εkij ∂as

∂xk
ωij =

∂as

∂xk

1
2
√

g
εkijωij

=
∂as

∂xk
ωk, (3.29)

where we have used the definition of the vorticity vector (3.22). Therefore, we have

∂as

∂xk
ωk
=ωs

0, (3.30)

which gives (3.21) after inversion. The latter is the vector form of the Cauchy formula
for a three-dimensional Riemannian manifold (M, g).
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In dimensions d> 3 the Cauchy vorticity formula is no more an equality in terms
of 1-forms (or vectors by the lowering–raising duality) but an equality in terms of
(d− 2)-forms (or (d− 2)-contravariant tensors by the lowering–raising duality). Thus
for d>3, there still exists a Cauchy-type formula for the vorticity, but given in general
by (3.20).

Specialising further, we then consider the flat 3D case and obtain the relations
actually written by Cauchy (1815) in modern vector notation (Cauchy, of course,
wrote them component by component).

COROLLARY 4 (The flat Euclidean case: Cauchy (1815)). Let M = R3. Then the
Cauchy invariants equation reads∑

k

∇ẋk
×∇xk

=ω0, (3.31)

while the Cauchy vorticity formula reads

ω= Dxω0. (3.32)

Proof. For the three-dimensional Euclidean flat space (M =R3), we have gij = δij, so
that first we obtain

[?(dvk ∧ dxk)]] =
∑

k

∇vk
×∇xk

=

∑
k

∇ẋk
×∇xk, (3.33)

and second, we obtain [?ω0]
]
= ω0. Therefore we obtain the classical vector form of

the Cauchy invariants found by Cauchy (1815):∑
k

∇ẋk
×∇xk

=ω0. (3.34)

Multiplying the latter by the Jacobian matrix Dx, and using the relation∑
k

(Dx[∇ẋk
×∇xk

])j =
∑

k

∇xj
· (∇ẋk

×∇xk)=ω j, (3.35)

we obtain
ω= Dxω0, (3.36)

which is the classical vector form of the Cauchy vorticity formula.

4. Local helicities in hydrodynamics and MHD
In this section we show that there are interesting instances of applications of

Theorem 1 to p-forms having p > 2. In particular there are various local helicities.
We shall not, here, discuss global (space-integrated) helicity (Moreau 1961; Moffatt
1969). By ‘local’, we mean without spatial integration. One well-known instance is
the magnetic helicity in ideal MHD flow, for which it was shown by Elsasser (1956)
that it is a material-invariant. Actually, all 3D known global helicities (kinetic helicity
in hydrodynamics, magnetic and cross-helicities in MHD) have local counterparts,
which are Lie-advection-invariant 3-forms along fluid-particle trajectories (in fact,
Hodge duals of material-invariant pseudo-scalars).
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In what follows, we shall make repeated use of the standard result that the exterior
product of a p-form ω and of a q-form γ , both of which are Lie-advected, is also
Lie-advected. Indeed, we have

∂tγ + £vγ = 0, ∂tω+ £vω= 0. (4.1a,b)

Then, using the following identity (see § B.7)

£v(γ ∧ω)= £vγ ∧ω+ γ ∧ £vω, (4.2)

we obtain

∂t(γ ∧ω)= ∂tγ ∧ω+ γ ∧ ∂tω=−£vγ ∧ω− γ ∧ £vω=−£v(γ ∧ω), (4.3)

which establishes the Lie advection of γ ∧ω.

4.1. Local helicity in ideal hydrodynamics
Here we assume that Ω is of dimension three (d=3). Let us recall the covariant Euler
equations (3.5), written in terms of the velocity circulation 1-form v[:

∂tv
[
+ £vv[ = dκ. (4.4)

Here the 0-form κ , is given by

κ := 1
2(v, v)g − p or κ := 1

2(v, v)g − h, with dh= dp/ρ, (4.5a,b)

in the incompressible case and the barotropic compressible case, respectively. Let us
introduce the 0-form ` defined by the following equation

∂t`+ £v`= κ. (4.6)

Equation (4.6) can be integrated along the flow ϕt generated by the velocity vector
field v, since (4.6) is equivalent to

d
dt
` ◦ ϕt = κ ◦ ϕt. (4.7)

Integrating (4.6) in time, we obtain

`(t, x)= `(0, a)+
∫ t

0
κ ◦ ϕτ dτ , (4.8)

with the initial condition `(0, a)= `0(a). The function ` appears for the first time in
the work of Weber (1868) and might be called the Weber function. Let us introduce,
u, the modified velocity circulation 1-form defined by

u= v[ − d`. (4.9)

From the definition (4.9), using (4.4)–(4.6), the 1-form u satisfies

∂tu+ £vu= 0, (4.10)
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and is thus Lie-advected. The 1-form u appears for the first time in Clebsch (1859),
where it takes the form u = m dψ . Here, m and ψ are two material invariants
(Lie-advected 0-forms), now called the Clebsch variables; u might thus be called
the Clebsch 1-form and the associated vector the Clebsch velocity. Of course, the
vorticity 2-form ω= du= dv[, still satisfies the Lie-advection equation

∂tω+ £vω= 0. (4.11)

From (4.10)–(4.11), we deduce that the local helicity 3-form σ ∈ 33(Ω), which is
defined by

σ = u∧ω= (v[ − d`)∧ dv[ = v[ ∧ dv[ − d`∧ dv[, (4.12)

satisfies
∂tσ + £vσ = 0. (4.13)

This is a result of Oseledets (1988, where helicity is called spirality). Taking the
Hodge dual of (4.13) and using the properties of the Lie derivative (see § B.5) and
of the Hodge dual operator (see § B.9), we observe that the scalar local helicity
?σ also satisfies a Lie-advection equation; thus it is also a local conserved quantity,
as shown by Kuzmin (1983) in the 3D flat space. Given that σ is a 3-form in a
three-dimensional space, we obviously have dσ = 0, and thus σ is closed on Ω . The
situation is different for d > 3, because the 4-form dv[ ∧ dv[ no longer vanishes.
Indeed, the wedge product is not commutative in general (see § B.7); hence, the
wedge product α ∧ α is identically zero only if the degree of the differential form
α is odd (as is the case for the cross-product of two identical vectors). Hence, σ is
not closed; nevertheless, the helicity 3-form σ is still a local invariant since (4.13)
remains valid on Riemannian manifolds of any dimension.

Thus local helicity, as a Lie-advection-invariant 3-form, actually exists in any
dimension d > 3, although it cannot in general be associated (by Hodge duality) to a
material-invariant scalar.

Returning to the three-dimensional case, we now suppose that the Betti number b3=

0 (see Remark 1 and § B.13). This guarantees that the closed 3-form σ is exact; that
is, there exists a 2-form π ∈32(Ω) such that

σ = dπ, π ∈32(Ω). (4.14)

From (4.13)–(4.14), and using Theorem 1, we obtain the following Cauchy invariants
equation

1
2δ

kl
ij dπkl ∧ dxi

∧ dx j
= σ0. (4.15)

In principle σ0= u0 ∧ω0= v
[
0 ∧ dv[0− d`0 ∧ dv[0, but if we choose the initial condition

`0= 0, we obtain σ0= v
[
0 ∧ dv[0. As stated in Corollary 1, equation (4.15) can actually

be inverted to obtain the 2-form π. In the present case, this is particularly simple:
from (4.15), using the inverse Lagrangian map, one obtains componentwise

∂πij

∂al
= σ0lmn

∂am

∂xi

∂an

∂x j
. (4.16)

Taking the divergence of this equation and inverting a Laplacian, one formally obtains

πij = δ
kl1−1

a
∂

∂ak

(
σ0lmn

∂am

∂xi

∂an

∂x j

)
, (4.17)

where 1−1
a denotes the formal inverse of the Laplacian operator 1a =

∑3
i=1 ∂

2
ai in

Cartesian coordinates, and δkl
= 1 if k= l and zero otherwise.
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4.2. Local helicities in ideal MHD
4.2.1. Local magnetic helicity

Here we assume that Ω is of dimension three (d= 3). From definition (2.43), and
given that the Lie derivative and the exterior derivative commute, integration of the
induction equation (2.44) leads to the following equation for the magnetic potential
1-form:

d(∂tA+ £vA)= 0. (4.18)

Using Hodge’s decomposition for closed forms (§ B.13) and (4.18), there exists a
harmonic 1-form h such that

∂tA+ £vA= dK + h, (4.19)

with K an arbitrary 0-form (scalar function) depending on the choice of gauge
condition for the magnetic potential 1-form A. We now assume that the Betti number
b1 = 0, as is the case, e.g., when the manifold is simply connected, contractible or
has a positive Ricci curvature (see § B.13 and references therein). This ensures the
vanishing of the harmonic 1-form h, so that (4.19) reduces to

∂tA+ £vA= dK. (4.20)

We now introduce the 0-form L, which is defined by the following equation

∂tL+ £vL=K. (4.21)

Equation (4.21) can be integrated along the flow ϕt generated by the velocity vector
field v, since (4.21) is equivalent to

d
dt

L ◦ ϕt =K ◦ ϕt. (4.22)

Integrating (4.22) in time, we obtain

L(t, x)= L(0, a)+
∫ t

0
K ◦ ϕτ dτ , (4.23)

with the initial condition L(0, a)=L0(a). We also introduce, A, the modified magnetic
potential 1-form defined by

A= A− dL. (4.24)

From the definition (4.24), and using (4.20)–(4.21), the 1-form A satisfies

∂tA+ £vA= 0. (4.25)

From (2.44) and (4.25), we infer immediately that the magnetic helicity 3-form h ∈
33(Ω), which is defined by

h=A∧ B=A∧ dA= A∧ dA− dL∧ dA, (4.26)

satisfies
∂th+ £vh= 0. (4.27)
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Taking the Hodge dual of (4.27) and using the properties of the Lie derivative
(see § B.5) and of the Hodge dual operator (see § B.9), we observe that the scalar
magnetic helicity ?h also satisfies a Lie-advection equation; thus it is also a local
conserved quantity, as shown first by Elsasser (1956, see also Woltjer 1958) in the
3D flat space. Given that h is a 3-form in a three-dimensional space, we obviously
have dh= 0, and thus h is closed on Ω . The situation is different for d> 3, because
the 4-form dA ∧ dA no longer vanishes; hence h is not closed, but the magnetic
helicity 3-form h is still a local invariant, since (4.27) remains valid on Riemannian
manifolds of any dimension provided that the Betti number b1 = 0. Returning to the
three-dimensional case, we now suppose that the Betti number b3 = 0 (see Remark 1
and § B.13). This guarantees that the closed form is exact, that is there exists a
2-form α ∈32(Ω) such that

h= dα, α ∈32(Ω). (4.28)

From (4.27)–(4.28), and using Theorem 1, we obtain yet another Cauchy invariants
equation, namely

1
2δ

kl
ij dαkl ∧ dxi

∧ dx j
= h0. (4.29)

In principle h0=A0∧B0=A0∧ dA0− dL0∧ dA0, but if we choose the initial condition
L0= 0, we obtain h0=A0 ∧ dA0. Equation (4.29) can be solved, similarly to what was
done in § 4.1, to obtain the 2-form α as

αij = δ
kl1−1

a
∂

∂ak

(
h0lmn

∂am

∂xi

∂an

∂x j

)
. (4.30)

4.2.2. Local cross-helicity
Here we assume that Ω is of dimension three (d= 3). We define the cross-helicity

3-form ξ ∈33(Ω) by
ξ = u∧ B. (4.31)

First from (2.44) and (4.10), we find that the 3-form ξ satisfies

∂tξ + £vξ = 0. (4.32)

Taking the Hodge dual of (4.32) and using the properties of the Lie derivative
(see § B.5) and of the Hodge dual operator (see § B.9), we observe that the scalar
cross-helicity ?ξ also satisfies a Lie-advection equation; thus it is also a local
conserved quantity, as shown by Kuzmin (1983) for the 3D flat space. Given that
ξ is a 3-form in a three-dimensional space, we obviously have dξ = 0, and thus
ξ is closed on Ω . We now assume that the Betti number b3 = 0 (see Remark 1
and § B.13). This guarantees that the closed 2-form ξ is exact, that is, there exists a
2-form χ ∈32(Ω) such that

ξ = dχ, χ ∈32(Ω). (4.33)

From (4.32)–(4.33), and using Theorem 1, we obtain still another Cauchy invariants
equation

1
2δ

kl
ij dχkl ∧ dxi

∧ dx j
= ξ0. (4.34)

In principle ξ0= u0 ∧B0= v
[
0 ∧ dA0− d`0 ∧ dA0, but if we choose the initial condition

`0= 0, then we obtain ξ0= v
[
0∧ dA0. Equation (4.34), can be solved to find the 2-form

χ by proceeding along the same line as in § 4.1. We thus formally obtain

χij = δ
kl1−1

a
∂

∂ak

(
ξ0lmn

∂am

∂xi

∂an

∂x j

)
. (4.35)
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4.2.3. Local extended helicities
Here, we consider local helicities associated to the extended ideal compressible

MHD equations (2.61)–(2.62) of § 2.5.4. As shown by Lingam et al. (2016),
equations (2.62) can be rewritten in such a way that the unknowns become the
magnetic potential 1-forms A±, instead of the magnetic field 2-forms B±, with
B±= dA± and A± := A+ (d2

e/ρ) ? d ? B+ κ±v[. More precisely, the magnetic potential
1-forms A± satisfy

∂tA± + £v±A± = dψ±, (4.36)

with the earlier defined vector fields v± := v− κ∓ (? d ? B)]/ρ. Explicit expressions of
the 0-forms ψ± are not needed here (see Lingam et al. 2016). Let us now introduce
the 0-forms L±, which are defined by the following equations

∂tL± + £v±L± =ψ±, (4.37)

with initial condition L±(0, a)= L0±(a). Equations (4.37) can be integrated along the
Lagrangian flows ϕ± t generated by the vector fields v±, similarly to what was done
in § 4.2.1. Let us introduce, A±, the modified magnetic potential 1-forms defined by

A± = A± − dL±. (4.38)

From the definition (4.38), and using (4.36)–(4.37), the 1-forms A± satisfy

∂tA± + £v±A± = 0. (4.39)

From (2.62) and (4.39), we infer immediately that the extended magnetic helicity 3-
forms h±, here defined by

h± =A± ∧ B± =A± ∧ dA± = A± ∧ dA± − dL± ∧ dA±, (4.40)

satisfy
∂th± + £v±h± = 0. (4.41)

From (4.41) we obtain that the extended magnetic helicity 3-forms h± are local
invariants. By spatial integration, these local conservation laws imply also the known
global conservation laws for the integrals of the 3-forms K± :=A± ∧ dA±, established
by Lingam et al. (2016). Indeed, noting that h± =K± − d(L±dA±), using the Stokes
theorem, the Lie-derivative theorem (2.14) and (4.41), we obtain, for any domain Ω ,

0 =
∫
ϕ± t(Ω)

∂th± + £v±h± =
d
dt

∫
ϕ± t(Ω)

h±

=
d
dt

∫
ϕ± t(Ω)

K± +
d
dt

∫
∂ϕ± t(Ω)

L± dA± =
d
dt

∫
ϕ± t(Ω)

K±, (4.42)

where we have supposed that the generalised vorticities B± vanish on the boundaries
of ϕ± t(Ω). In the three-dimensional case d = 3, taking the Hodge dual of (4.41)
and using the properties of the Lie derivative (see § B.5) and of the Hodge dual
operator (see § B.9), we observe that the scalar extended magnetic helicities ?h± also
satisfy Lie-advection equations; thus they are also local conserved quantities. In a
three-dimensional space Ω , given that h± ∈ 33(Ω) are 3-forms, we obviously have
dh± = 0, and thus h± is closed on Ω . We now suppose that the Betti number b3 = 0
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(see Remark 1 and § B.13), which guarantees that closed forms are exact. Then there
exist 2-forms α± ∈32(Ω) such that

h± = dα±, α± ∈3
2(Ω). (4.43)

From (4.41)–(4.43), and using Theorem 1, we obtain two more Cauchy invariants
equations

1
2δ

kl
ij dα± kl ∧ dxi

±
∧ dx j

±
= h± 0, (4.44)

where x± are the Lagrangian maps generated by the vector fields v±. In principle
h± 0=A± 0 ∧B± 0=A± 0 ∧ dA± 0− dL± 0 ∧ dA± 0, but if we choose the initial conditions
L± 0= 0, we obtain h± 0=A± 0∧ dA± 0=K± 0. Equations (4.44) can be solved, similarly
to what was done in § 4.1, to obtain the 2-forms α± as

α± ij = δ
kl1−1

a
∂

∂ak

(
h± 0lmn

∂am

∂xi
±

∂an

∂x j
±

)
. (4.45)

4.3. Other high-order local invariants in hydrodynamics
Here we consider a d-dimensional Riemannian manifolds (M, g), with d an odd
natural integer and Ω a bounded region of M. Again, we consider the velocity
circulation 1-form u, which is defined by (4.9). Using the 1-form u, we define the
d-form J ∈3d(Ω) (Serre 1984; Gama & Frisch 1993) by

J = u∧ (∧ du)(d−1)/2, (4.46)

where (∧ du)(d−1)/2 stands for (d − 1)/2 times the exterior product of the 2-form
du. It was proven by Gama & Frisch (1993) that J is Lie-advected by the velocity
field v. Indeed, first the 1-form u satisfies the Lie-advection equation (4.10). Second,
taking the exterior derivative of equation (4.10) the 2-form du satisfies the same
Lie-advection equation (4.10), because Lie derivative and exterior derivative commute.
Therefore we obtain

∂tJ + £vJ = 0. (4.47)

Since J ∈ 3d(Ω), we obviously have dJ = 0, and thus J is closed on Ω . We now
assume again that the Betti number bp= 0 (see Remark 1 and § B.13). This guarantees
that the closed form J is exact; that is, there exists a (d− 1)-form I such that J= dI.
From exactness of the d-form J and (4.46)–(4.47), using Theorem 1, we then obtain
our last Cauchy invariants equation

1
(d− 1)!

δ
j1...jd−1
l1...ld−1

dIj1...jd−1 ∧ dxl1 ∧ · · · ∧ dxld−1 = J0. (4.48)

In principle J0= u0 ∧ (∧ dv[0)(d−1)/2
= v

[
0 ∧ (∧ dv[0)(d−1)/2

− d`0 ∧ (∧ dv[0)(d−1)/2, but if we
choose a gauge such that `0 = 0, we obtain J0 = v

[
0 ∧ (∧ dv[0)(d−1)/2. By Corollary 1,

the (d− 1)-form I can be written as

Ii1...id−1 = δ
k`1−1

a
∂

∂ak

(
J0`j1...jd−1

∂a j1

∂xi1
· · ·

∂a jd−1

∂xid−1

)
. (4.49)
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5. Conclusion and open problems
A key result of this paper, with all manners of applications to fluid mechanics,

is Theorem 1 of § 2 on generalised Cauchy invariants equations. A straightforward
instance, is the Hankel (1861) proof that the Cauchy (1815) invariants are equivalent
to the Helmholtz (1858) theorem on the Lagrangian invariance of the vorticity
flux through an infinitesimal surface element. Our result is much more general,
stating that any Lie-invariant and exact p-form has an associated generalised
Cauchy invariants equation, together with a Hodge dual formulation that generalises
Cauchy’s vorticity formula. The result, when applied to suitable 3-forms, also implies
various generalisations of local helicity conservation laws for Euler and MHD
flow. There are several ways in which the full nonlinear ideal MHD equations
(compressible or incompressible) can be recast as Lie-advection problems, leading
to Cauchy invariants equations. It is however not clear at the moment if such
formulations lead to interesting results on time-analyticity and numerical integration
by Cauchy–Lagrange-type methods (Zheligovsky & Frisch 2014; Podvigina et al.
2016). Similar questions arise for the extended MHD models discussed in § 2.5.4.

Cauchy-type formulations exist already for the compressible Euler–Poisson
equations in both an Einstein–de Sitter universe (Zheligovsky & Frisch 2014, see
also Ehlers & Buchert 1997) and a 3CDM universe (Rampf et al. 2015). It is now
clear that the results are applicable to compressible models, such as the barotropic
fluid equations, and to the Euler–Poisson equations or compressible MHD for fluid
plasmas.

We remind the reader that problems with a Cauchy invariants formulation have
potentially a number of applications. For example, we believe that Cauchy’s invariants
should play an important part in understanding the regularity of classical solutions
to the 3D incompressible Euler equations through the depletion phenomenon. Indeed,
the Cauchy invariants involve finite sums of vector products of gradients. Individual
gradients are typically growing in the course of time but the constancy of the
invariants put some geometrical constraints on, for example, their alignments. This
may, in due time, lead to the discovery of new estimates helping to establish 3D
regularity results, possibly for all times.

We also note that the Cauchy invariants formulation for the 3D incompressible
Euler equation allows constructive proofs of the regularity of Lagrangian map through
recursion relations among time-Taylor coefficients. These can then in principle be
implemented numerically, without being limited by the Courant–Friedrichs–Lewy
condition on time steps (Podvigina et al. 2016). Given that Cauchy invariants
formulation apply both to flow in Euclidean (flat) space and to flow on Riemannian
curved spaces of any dimension, it is natural to ask if the constructive and numerical
tools just mentioned can be extended to flow in curved spaces. This would allow us,
for example, to numerically study the energy inverse cascade on negatively curved
spaces, recently investigated by Falkovich & Gawedzki (2014) from an analytical point
of view. It would also probably help with flow in relativistic cosmology (Buchert &
Ostermann 2012; Alles et al. 2015).

When leaving flat space, vector quantities involving tangent spaces at two or
more spatially distinct locations cannot be simply added or averaged. This problem
was encountered by Gilbert & Vanneste (2016) in trying to handle the generalised
Lagrangian mean (GLM) theory on curved spaces; they solved it by using pullback
transport and optimal transport techniques. Another difficulty occurs with time-Taylor
series. Time derivatives of different orders, even when they are evaluated at the same
location, do live in tangent spaces of different orders and cannot be readily combined.
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444 N. Besse and U. Frisch

Classical tools of differential geometry, such as the exponential map, parallel transport,
Lie series or Lie transformations (Nayfeh 1973; Dragt & Finn 1976; Cary 1981;
Steinberg 1986) could be useful to overcome this difficulty.

Finally, even in flat space, a generalised-coordinate formulation of the Cauchy
invariants equation can be useful in designing Cauchy–Lagrange numerical schemes in
non-Cartesian coordinates. This could help the investigation of swirling axisymmetric
flow in a cylinder, for which finite-time blow-up is predicted by some numerical
studies (Luo & Hou 2014a,b). In Besse & Frisch (2017) it was shown that a
constructive proof of finite-time regularity, based on recursion relations adapted
to wall-bounded Euler flow is available. The main difficulty is the high-precision
implementation, needed to allow reliable extrapolation without getting too close to
the putative blow-up time.
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Appendix A. Geometric and variational developments of the incompressible Euler
equations

A.1. Geometric interpretation of the incompressible Euler equations
We start by introducing briefly the notions of Lie groups and Lie algebra, which are
important in the geometric view of the incompressible Euler equations. A Lie group
is a differentiable manifold G endowed with an associative multiplication, that is, a
map

G×G→G
(η, σ ) 7→ ησ

}
(A 1)

making G into a group and such that (τη)σ = τ(ησ) (associativity). Moreover, there
is an element e ∈ G called the identity such that eη = ηe = η. Such multiplication
mapping, as well as, the inversion mapping

G→G
η 7→ η−1, with ηη−1

= e,

}
(A 2)

must be differentiable. To the Lie group G, we can naturally associate the Lie algebra
g defined by

g= TGe, (A 3)

i.e. the tangent vector space of G at the identity e ∈G. In fluid dynamics, the space
TG represents the Lagrangian (material) description while the space g represents
the Eulerian (spatial) description. For more details about Lie groups, Lie algebra,
and their applications in physics, we refer the reader, for example, to Arnold (1966),
Ibragimov (1992, 1994, 2013), Olver (1993), Abraham et al. (1998), Arnold & Khesin
(1998), Duistermaat & Kolk (2000), Bluman & Anco (2002), Fecko (2006), Ivancevic
& Ivancevic (2007), Holm, Schmah & Stoica (2009), Bluman, Cheviakov & Anco
(2010) and Frankel (2012).

Here, the flow takes place on an oriented d-dimensional Riemannian manifold
(M, g) with metric volume form µ =

√
g da1

∧ · · · ∧ dad
≡
√

g da, where
√

g =√
det(gij) (see § B.3). Let Ω be a bounded region of M. In the Arnold (1966)
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Geometric formulation of the Cauchy invariants in flat and curved spaces 445

geometric interpretation of the incompressible Euler equations, the solutions can be
viewed as geodesics of the right-invariant Riemannian metric given by the kinetic
energy on the infinite-dimensional group of volume-preserving diffeomorphisms.
Indeed, let us define SDiff(Ω, µ) as the group of diffeomorphisms ϕ : Ω → Ω
preserving the metric volume form µ, i.e. ϕ∗µ = µ. Here the group multiplication
is the composition mapping denoted by ‘◦’ and ϕ∗µ is the pullback of the d-form
µ through the diffeomorphism ϕ. A precise definition of the action on a tensor 2
of the pullback operator ϕ∗ is given in § B.4, but roughly speaking it consists in
evaluating the tensor 2 at the point ϕ(a), a ∈Ω (that is the right composition of 2
with ϕ), while taking into account the deformation of the structure induced by the
map ϕ (reminiscent of a Jacobian matrix). For the volume form µ, the d-covariant
antisymmetric tensor

µ(a)=
√

g(a) da1
∧ · · · ∧ dad

=
1
d!
δ1...d

i1...id

√
g(a) dai1 ∧ · · · ∧ daid , (A 4)

where δ1...d
i1...id is the generalised Kronecker symbol (see appendix B), we obtain by

pullback

ϕ∗µ =
1
d!
δ1...d

j1...jd

∂ϕ j1

∂ai1
· · ·

∂ϕ jd

∂aid

√
g(ϕ(a)) dai1 ∧ · · · ∧ daid

=
1
d!
δ1...d

i1...id det
(
∂ϕ

∂a

)√
g(ϕ(a)) dai1 ∧ · · · ∧ daid

= det
(
∂ϕ

∂a

)√
g(ϕ(a)) da1

∧ · · · ∧ dad. (A 5)

G :=SDiff(Ω,µ) is a Lie group when Ω is a compact differentiable manifold. Even if
it not so, we can associate to G the Lie algebra g := TGe consisting of all divergence-
free vector fields v tangent to the boundary (if it is not empty), i.e. such that

∇iv
i
= 0, on Ω, and (v, ν)= 0, on ∂Ω, (A 6a,b)

where ∇k is the covariant derivative and ν denotes the unit outer normal vector at
the boundary ∂Ω . The covariant derivative ∇k is a generalisation to curved spaces of
the classical partial derivative ∂k to Euclidean spaces (for a more detailed definition,
see § B.10).

In the algebra g, we define the scalar product of two vector fields v1, v2 ∈ g, as

〈v1, v2〉g =

∫
Ω

(v1, v2)g µ, (A 7)

where the scalar product (·, ·)g, induced by the Riemannian metric ds2
= g= gij dai

⊗

da j, is given by (v, w)g = gijv
iw j, v, w ∈ TMa, a ∈ M. Finally let us introduce the

right translation acting on the group G. Every element ϕ of the group G defines
diffeomorphisms of the group onto itself:

Rϕ :G→G, Rϕψ =ψϕ, ∀ψ ∈G. (A 8a,b)

The induced map on the tangent bundle TG will be denoted by

Rϕ∗ : TGψ→ TGψϕ, ∀ψ ∈G. (A 9)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 b

ib
lio

th
eq

ue
, o

n 
25

 Ju
l 2

01
7 

at
 0

8:
34

:2
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
40

2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.402


446 N. Besse and U. Frisch

Then a Riemannian metric on the group G is called right-invariant if it is preserved
under all right translations Rϕ , i.e. if the derivative of the right translation carries every
vector to a vector of the same length. Thus it is sufficient to give a right-invariant
metric at one point of the group (for instance the identity), since the metric can be
carried over to the remaining points of the group by right translations.

We now consider the flow of a uniform ideal (incompressible and non-viscous) fluid
in the region Ω . Here, and henceforth, by ‘flow’ we understand a Lagrangian map
M 3 a→ϕt(a)∈M, which, at this point, need not be a solution of the Euler equations.
Such a flow is given by a curve t→ ϕt in the group SDiff(Ω, µ). This means that
the diffeomorphism ϕt maps every particle of the fluid from the position a it had at
time 0 to the position x at time t.

If ϕt is to be a solution of the Euler equations then, according to the variational
formulation (see, e.g., Arnold 1966), the curve ϕt is a geodesic of the group
SDiff(Ω, µ). Such a curve extremises the (Maupertuis) action defined as the time
integral of the kinetic energy:

AK :=
1
2

∫ T

0
dt〈v(t), v(t)〉g, (A 10)

where v(t) is the Eulerian velocity vector field belonging to g. This formulation
is explicitly given in Arnold (1966) but was probably already known to Lagrange
(1788) who never wrote it explicitly because he switched quickly from variational
formulations to so-called virtual velocity formulations.

It easily shown that the kinetic energy of the moving fluid is a right-invariant
Riemannian metric on the group SDiff(Ω, µ). Indeed, suppose that after time t the
flow of the fluid gives a diffeomorphism ϕt, and the velocity at this moment of time
is given by the Eulerian vector field v. Then the diffeomorphism realised by the flow
after time t+ dt (with dt� 1) will be

ϕt+dt = exp(v dt)ϕt + o(dt), (A 11)

where τ→ exp(vτ) is in one-parameter group with vector v, i.e. the Lagrangian flow
of the differential equation defined by the vector field v. From (A 11) and using the
definitions (A 8)–(A 9) we have

Rϕt−1

(
ϕt+dt − ϕt

dt

)
= Rϕt−1

(
exp(v dt)− e

dt

)
ϕt + o(1), (A 12)

which, after taking the limit dt→ 0, leads to

v = Rϕ−1
t ∗
ϕ̇t = ϕ̇t ◦ ϕ

−1
t or ϕ̇t = Rϕt∗v = v ◦ ϕt. (A 13a,b)

In mathematical language the velocity field v is in the algebra g and is obtained
from the vector ϕ̇t, tangent to the group at the point ϕt, by right translation. In
fluid-dynamics terms the vector field v = vt(x) is the Eulerian velocity field. We
pass from the Lagrangian to the Eulerian description by right translations. We
note that if we replace ϕ by the composition ϕ ◦ η, for a fixed (time-independent)
map η ∈ SDiff(Ω, µ), then ϕ̇t ◦ ϕ

−1
t is independent of η. This reflects the right

invariance of the Eulerian description (v is invariant under composition of ϕ by
η on the right). Therefore t → ϕt is the geodesic, on the group SDiff(Ω, µ), of
the right-invariant Riemannian metric given by the quadratic form (A 7). From the
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Hamiltonian least-action principle we obtain the following Euler equations (A 14)
in contravariant form. For the sake of completeness, details of the derivation are
given in § A.2. Let v ∈ g be the velocity field defined by the right translation (A 13).
Then there exists a scalar function p : ] 0, T] ×Ω 3 (t, x)→R, the so-called pressure
function, such that (v, p) satisfy the following Euler equations

∂tv
i
+ vk
∇kv

i
=−gik∂kp, x ∈Ω, t ∈ ] 0, T]. (A 14a,b)

A.2. Derivation of the Euler equations from a least-action principle
From the discussion of § A.1, the geodesic motions t→ ϕt on SDiff(Ω, µ), which
correspond to the right-invariant Riemann metric defined by (A 7), are given by the
extrema of the action (A 10) where ϕ̇t = Rϕt∗v = v(t, ϕt), under condition ϕ∗t µ = µ.
To perform the extremisation of the action (A 10) over SDiff(Ω, µ), it is convenient
to impose the volume-preservation constraint ϕ∗t µ= µ through a Lagrange multiplier
λ(t, a) by adding to the action (A 10) the term

AI :=

∫ T

0
λ(ϕ∗t µ−µ) da dt. (A 15)

We now compute the first variation of the action

A(ϕ, λ, Ω)=AK(ϕ, Ω)+AI(ϕ, λ, Ω). (A 16)

We start with δAK . For its evaluation, we mainly use an integration by parts in
time, the symmetry of the metric tensor gij, the definition of the covariant derivative
(see § B.10), the change of variable x= ϕt(a)= ϕ(t, a), the equations ϕ̇t = v(t, ϕt) and
ϕ∗t µ=µ. For the first variation of δAK with volume preservation ϕ= ϕt= ϕ(t, a), we
then obtain

δAK(ϕ, Ω)[δϕ] =
1
2
δ

∫ T

0
dt
∫
Ω

µ(x) gij(x)v
i(t, x)v j(t, x)

=
1
2
δ

∫ T

0
dt
∫
Ω

µ(a) gij(ϕ(t, a))∂tϕ
i(t, a)∂tϕ

j(t, a)

=
1
2

∫ T

0
dt
∫
Ω

µ(a) ∂kgij(ϕ(t, a))δϕk(t, a)∂tϕ
i(t, a)∂tϕ

j(t, a)

+

∫ T

0
dt
∫
Ω

µ(a) gij(ϕ(t, a))∂tϕ
i(t, a)∂tδϕ

j(t, a)

=

∫ T

0
dt
∫
Ω

µ(x) δϕ j(t, ϕ−1
t (x))

{
−gij(x)[∂tv

i(t, x)+ vk(t, x)∂kv
i(t, x)]

+
1
2
∂jgik(x)vi(t, x)vk(t, x)− ∂kgij(x)v

i(t, x)vk(t, x)
}

=−

∫ T

0
dt
∫
Ω

µ u jgij

{
∂tv

i
+ vk∂kv

i
+

1
2

gim(∂kglm + ∂lgkm − ∂mglk)v
kvl

}
=−

∫ T

0
dt
∫
Ω

µ u jgij{∂tv
i
+ vk
∇kv

i
}. (A 17)
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Here u j(t, x)= δϕ j(t, ϕ−1
t (x)) and ∂ ≡ ∂a denotes the partial derivative with respect the

Lagrangian parameter a (initial position). Next, for the first variation of δAI , using
the definition of the volume form µ and the following identities (see § B.6)

∂ det(Daϕ)

∂(∂jϕk)
= det(Daϕ)([Daϕ]

−1)
j
k, ∂kg= ggij∂kgij, (A 18a,b)

we obtain

δAI(ϕ, λ, Ω)[δϕ, δλ]

= δ

∫ T

0
dt
∫
Ω

da λ(t, a)
(√

g(ϕ(t, a)) det(Daϕ(t, a))−
√

g(a)
)

=

∫ T

0
dt
∫
Ω

da δλ(t, a)
(√

g(ϕ(t, a)) det(Daϕ(t, a))−
√

g(a)
)

+

∫ T

0
dt
∫
Ω

da λ(t, a)
√

g(ϕ(t, a)) det(Daϕ(t, a))

×

(
1
2

gij(ϕ(t, a))∂kgij(ϕ(t, a))δϕk(t, a)+ ([Daϕ(t, a)]−1)
j
k∂jδϕ

k(t, a)
)

=

∫ T

0
dt
∫
Ω

da δλ(t, a)
(√

g(ϕ(t, a)) det(Daϕ(t, a))−
√

g(a)
)

+

∫ T

0
dt
∫
Ω

µ(x) p(t, x)
(

1
2

gij(x)∂kgij(x)u
k(t, x)+ ∂kuk(t, x)

)
. (A 19)

Here we have introduced the pressure function p by setting p(t, x) = λ(t, ϕ−1
t (x)).

Using an integration by parts in the last term of this equation, we finally obtain

δAI(ϕ, λ, Ω)[δϕ, δλ] =

∫ T

0
dt
∫
Ω

da δλ(t, a)
(√

g(ϕ(t, a)) det(Daϕ(t, a))−
√

g(a)
)

−

∫ T

0
dt
∫
Ω

µ(x) uk(t, x)∂kp(t, x), (A 20)

where we have used the boundary condition (u, ν) = 0 on ∂Ω for the infinitesimal
variation u(t, x)= δϕ(t, ϕ−1

t (x)). Setting the first variation δA to zero, and using (A 16)
and (A 17)–(A 20), we obtain the Euler equations (A 14), together with the volume-
preserving condition ϕ∗t µ= µ, which is equivalent to the incompressibility condition
∇iv

i
= 0 for the velocity field.

A.3. Derivation of the Cauchy invariants equation from the relabelling symmetry
and a variational principle

In this appendix, from the relabelling symmetry, i.e. the invariance of the action
under relabelling transformations, we recover the Cauchy invariants equation without
appealing to Theorem 1. Here we follow the spirit of the proof given by Frisch
& Villone (2014) and references therein for the Euclidean case. The reader is also
referred to this for historical discussion and description of the use of different
Hamiltonian principles or least-action principles in Lagrangian coordinates. Such
a strategy does not directly make use of Noether’s theorem, but is reminiscent of
its proof. Before stating the result, we give the formal definition of a relabelling
transformation.
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DEFINITION 1. A relabelling transformation is a map Ω 3 a→ η(a) ∈Ω such that

η(a)= a+ δa(a), δa ∈ g, (A 21)

i.e. with
∇iδai

= 0 and (δa, ν)= 0. (A 22a,b)

In other words the vector field δa is the infinitesimal generator of a group of volume-
preserving diffeomorphisms of Ω that leave the boundary ∂Ω invariant.

THEOREM 2 (Cauchy invariants equation from the relabelling symmetry and
variational principle). Let ϕt be the Euler flow. We set x= ϕt and v= ϕ̇t, with v0= ϕ̇0.
Then the invariance of the action (A 10) of § A.1 under relabelling transformations
of Definition 1 implies the following Cauchy invariants conservation law:

dvk ∧ dxk
=ω0 := dv[0. (A 23)

Proof. The idea is first to compute the first-order variation of the action integral

AK(ϕ, Ω)=
1
2

∫ T

0
dt
∫
Ω

µ(a)gij(ϕt(a))∂tϕ
i
t(a)∂tϕ

j
t(a), (A 24)

induced by the relabelling transformations of Definition 1. The variation of AK(ϕ,Ω)

is given by

δAK(ϕ, Ω)[δϕ] =
1
2
δ

∫ T

0
dt
∫
Ω

µ(a) gij(ϕt(a))∂tϕ
i
t(a)∂tϕ

j
t(a)

=
1
2

∫ T

0
dt
∫
Ω

µ(a) ∂lgij(ϕt(a))δϕl
t(a)∂tϕ

i
t(a)∂tϕ

j
t(a)

+

∫ T

0
dt
∫
Ω

µ(a) gij(ϕt(a))∂tδϕ
i
t(a)∂tϕ

j
t(a). (A 25)

The relabelling transformation of Definition 1 induces a change in the Lagrangian flow
ϕt at time t, given by

δϕt =
∂ϕt

∂ai
δηi
=
∂ϕt

∂ai
δai. (A 26)

Substituting (A 26) in (A 25), and using the product rule, we obtain

δAK(ϕ, Ω)[δa]

=

∫ T

0

∫
Ω

µ(a)
{

1
2
∂lgij(ϕt(a))

∂ϕl
t(a)
∂am

∂tϕ
i
t(a)∂tϕ

j
t(a)δa

m

+ gij(ϕt(a))∂t

(
∂ϕi

t(a)
∂an

)
∂tϕ

j
t(a)δa

n

}
=

∫ T

0

∫
Ω

µ(a)
{

1
2
∂lgij(ϕt(a))

∂ϕl
t(a)
∂am

∂tϕ
i
t(a)∂tϕ

j
t(a)δa

m

+ ∂t

(
gij(ϕt(a))

∂ϕi
t(a)
∂an

∂tϕ
j
t(a)
)
δan
− ∂t(gij(ϕt(a))∂tϕ

j
t(a))

∂ϕi
t(a)
∂an

δan

}
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=

∫ T

0

∫
Ω

µ(a)
{

1
2
∂lgij(ϕt(a))

∂ϕl
t(a)
∂am

∂tϕ
i
t(a)∂tϕ

j
t(a)δa

m

− ∂kgij(ϕt(a))∂tϕ
k
t (a)∂tϕ

j
t(a)

∂ϕi
t(a)
∂am

δam
− gij(ϕt(a))∂2

t ϕ
j
t(a)

∂ϕi
t(a)
∂am

δam

}
+

∫ T

0

∫
Ω

µ(a) ∂t

(
gij(ϕt(a))

∂ϕi
t(a)
∂an

∂tϕ
j
t(a)
)
δan

= I1 + I2. (A 27)

First, we show that I1 = 0. From (A 27) and using the definition of the covariant
derivative, we obtain

I1 =

∫ T

0
dt
∫
Ω

µ(a)
∂ϕ

j
t

∂am
δam

{
−gij(ϕt)[∂tv

i(t, ϕt)+ v
k(t, ϕt)∂kv

i(t, ϕt)]

+
1
2
∂jgik(ϕt)v

i(t, ϕt)v
k(t, ϕt)− ∂kgij(ϕt)v

i(t, ϕt)v
k(t, ϕt)

}
= −

∫ T

0
dt
∫
Ω

µ(a)
∂ϕ

j
t

∂am
δamgij(ϕt)

{
∂tv

i(t, ϕt)+ v
k(t, ϕt)∂kv

i(t, ϕt)

+
1
2

gim(t, ϕt)(∂kglm(t, ϕt)+ ∂lgkm(t, ϕt)− ∂mglk(t, ϕt))v
k(t, ϕt)v

l(t, ϕt)

}
= −

∫ T

0
dt
∫
Ω

µ(a)
∂ϕ

j
t

∂am
δamgij(ϕt){∂tv

i(t, ϕt)+ v
k(t, ϕt)∇kv

i(t, ϕt)}. (A 28)

Using the Euler equations (A 14), the term I1 becomes

I1 =

∫ T

0
dt
∫
Ω

µ(a) δam ∂ϕ
j
t

∂am
gij(ϕt)gik(ϕt)∂kp(t, ϕt)=

∫ T

0
dt
∫
Ω

µ(a) δam ∂ϕ
j
t

∂am
δk

j ∂kp(t, ϕt)

=

∫ T

0
dt
∫
Ω

µ(a) δam ∂ϕ
k
t

∂am
∂kp(t, ϕt)=

∫ T

0
dt
∫
Ω

µ(a) δam ∂p
∂am

. (A 29)

Now, we recall that ∇iδai
= g−1/2∂i(

√
gδai) = 0, and (δ, ν) = 0. Therefore, using an

integration by parts in space, the term I1 becomes

I1=

∫ T

0
dt
∫
Ω

µ(a) δai ∂p
∂ai
=−

∫ T

0
dt
∫
Ω

µ(a)∇iδaip+
∫ T

0
dt
∫
∂Ω

dΓ
√

g(a)p(δa, ν)=0.

(A 30)
Finally, we deal with the term I2 defined in (A 27). For this, we use the property that
δa ∈ g, i.e. ∇nδan

= 0 and (δa, ν) = δijδaiν j
= 0. Here, δij is the metric tensor of an

Euclidean space with Cartesian coordinates, i.e. δij = 0 if i 6= j and δij = 1 if i = j.
Such a vector δa can be constructed from a skew-symmetric 2-contravariant tensor ξ ij

satisfying the following constraints:

ξ ij
+ ξ ji

= 0 on Ω, δijξ
ikν j
= 0 ∀k on ∂Ω, and δijξ

ik∂kν
j
= 0 on ∂Ω.

(A 31a−c)
Indeed, if we set

δai
=

1
√

g
∂jξ

ij, (A 32)
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then, using (A 31), we find that ∇iδai
= 0 and (δa, ν) = δijδaiν j

= 0. We observe
that a skew-symmetric 2-contravariant tensor ξ ij satisfying ξ

ij
|∂Ω
= 0, satisfies also the

boundary conditions (A 31). Using (A 31)–(A 32), the term I2 becomes

I2 =

∫ T

0

∫
Ω

µ(a) ∂t

(
gij(ϕt(a))

∂ϕi
t(a)
∂an

∂tϕ
j
t(a)
)
δan

= −

∫ T

0

∫
Ω

da ∂k∂t

(
gij(ϕt(a))

∂ϕi
t(a)
∂an

∂tϕ
j
t(a)
)
ξ nk

+

∫ T

0
dt
∫
∂Ω

dΓ ∂t

(
gij(ϕt(a))

∂ϕi
t(a)
∂an

∂tϕ
j
t(a)
)
ξ nkνmδkm

= −

∫ T

0

∫
Ω

da ∂t∂k

(
gij(ϕt(a))

∂ϕi
t(a)
∂an

∂tϕ
j
t(a)
)
ξ nk. (A 33)

The action AK(ϕ, Ω) should be invariant under relabelling transformations. Thus the
variation of the action integral, i.e. δAK , must vanish. Therefore we have I2 = 0, i.e.

−

∫ T

0

∫
Ω

da ∂t∂k

(
gij(ϕt(a))

∂ϕi
t(a)
∂an

∂tϕ
j
t(a)
)
ξ nk
= 0. (A 34)

Since the ξ nk’s are arbitrary, we obtain

d
dt
∂k

(
gij(ϕt(a))

∂ϕi
t(a)
∂an

∂tϕ
j
t(a)
)
= 0, ∀k, n= 1, . . . , d. (A 35)

Integration in time of these equations leads to

∂k

(
vi(t, ϕt(a))

∂ϕi
t(a)
∂an

)
= ∂kv0n, ∀k, n= 1, . . . , d. (A 36)

Multiplying these equalities by dak
∧ dan and summing over the indices k and n, we

obtain
d(vi dxi)= dv[0 i.e. dvi ∧ dxi

=ω0 := dv[0, (A 37)

which ends the proof.

A.4. Conservation of the vorticity 2-form, directly from Noether’s theorem
As we shall now show, when Noether’s theorem is literally applied to the variational
formulation of the Euler equations in conjunction with the relabelling symmetry, it
does not yield the Cauchy invariants but the conservation (under pullback) of the
vorticity 2-form.

For this, we introduce the Lagrangian density LK associated to the action integral
(A 10). Since by definition we have

AK(ϕ, Ω)=

∫ T

0
dt
∫
Ω

µ(a)LK(a, ϕ, ∂ϕ), (A 38)

then, from (A 10), we obtain

LK(a, ϕ, ∂ϕ)= 1
2 gij(ϕt)∂tϕ

i
t∂tϕ

j
t . (A 39)
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452 N. Besse and U. Frisch

In this definition of the Lagrangian density, ∂ϕ denotes any first-order partial
derivative of ϕ with respect to space or time variables. Let us now define the
energy–momentum tensor Tαβ by

Tαβ =
∂LK

∂(∂αϕ
γ
t )
∂βϕ

γ
t −LKδ

α
β , (A 40)

where the contravariant (respectively covariant) index α (respectively β) denotes
space–time-independent variables. The relabelling transformations, as given in
Definition 1 in § A.3, lead us to choosing the following functional variations

δa, such that ∇iδai
= 0, and (δa, ν)= 0; δϕ ≡ 0, δ∂ϕ ≡ 0. (A 41a−d)

Using these functional variations and the relabelling symmetry (i.e. invariance of the
action integral (A 38) under relabelling transformations), from Noether’s theorem (Hill
1951; Courant & Hilbert 1966; Lanczos 1970; Jose & Saletan 1998; Goldstein, Poole
& Safko 2001; Giaquinta & Hildebrandt 2016), we obtain the following conservation
law

∇αTα = 0 where Tα = Tαi δa
i. (A 42)

More precisely, using (A 39)–(A 40) and the properties of the Euler flow ϕt, the
components of the covariant contraction of the energy-impulsion tensor Tα are

T t
= Tαl δa

l
=

∂

∂(∂tϕi
t)

(
1
2

gmn(ϕt)∂tϕ
m
t ∂tϕ

n
t

)
∂lϕ

i
tδa

l
= gij(ϕt)∂tϕ

i
t∂lϕ

j
tδa

l,

T i
=−LKδai

=−
1
2 gjk(ϕt)∂tϕ

j
t∂tϕ

k
t δa

i.

 (A 43)

Using this equality and the boundary condition (δa, ν)= 0 (since δa ∈ g), we obtain
the boundary condition (T, ν)= 0, where T is the vector of components T i. Integrating
the conservation law (A 42) on Ω and using the boundary condition (T, ν) = 0, we
obtain∫

Ω

µ∇αTα =
∫
Ω

da
√

g∇αTα =
∫
Ω

da ∂t(
√

gT t)+

∫
Ω

da ∂i(
√

gT i)

=

∫
Ω

da ∂t(
√

gT t)+

∫
∂Ω

dΓ
√

g (T, ν)=
d
dt

∫
Ω

da
√

gT t
:= 0. (A 44)

We now give details of the calculation of the time-integral invariant (A 44). For this,
we use the property that δa ∈ g, i.e. ∇iδai

= 0 and (δa, ν) = δijδaiν j
= 0. Here, δij

is the metric tensor of an Euclidean space with Cartesian coordinates, i.e. δij = 0 if
i 6= j and δij= 1 if i= j. Such a vector δa can be constructed from a skew-symmetric
2-contravariant tensor ξ ij, which satisfies the following constraints

ξ ij
+ ξ ji

= 0 on Ω, δijξ
ikν j
= 0 ∀k on ∂Ω, and δijξ

ik∂kν
j
= 0 on ∂Ω.

(A 45a−c)
Indeed, if we define δa by

δai
=

1
√

g
∂jξ

ij, (A 46)

then using (A 45) we obtain that ∇iδai
= 0 and (δa, ν) = δijδaiν j

= 0. We note that
a skew-symmetric 2-contravariant tensor ξ ij, satisfying ξ

ij
|∂Ω
= 0, also satisfies the
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Geometric formulation of the Cauchy invariants in flat and curved spaces 453

boundary conditions (A 45). Using (A 45)–(A 46), and an integration by parts in
space, the integral invariant becomes∫

Ω

da
√

gT t
=

∫
Ω

da
√

ggij(ϕt)∂tϕ
i
t∂lϕ

j
tδa

l

=

∫
Ω

da gij(ϕt)∂tϕ
i
t∂lϕ

j
t∂kξ

kl
=

∫
Ω

da vj(t, ϕt)∂lϕ
j
t∂kξ

kl

= −

∫
Ω

da{∂ivj(t, ϕt)∂kϕ
i
t∂lϕ

j
t + vj(t, ϕt)∂klϕ

j
t}ξ

kl

+

∫
∂Ω

dΓ vj(t, ϕt)∂lϕ
j
tξ

klνmδkm

= −
1
2

∫
Ω

da(∂ivj(t, ϕt)− ∂jvi(t, ϕt))∂kϕ
i
t∂lϕ

j
tξ

kl
−

∫
Ω

da vj(t, ϕt)∂klϕ
j
tξ

kl

= −
1
2

∫
Ω

da(∂ivj(t, ϕt)− ∂jvi(t, ϕt))∂kϕ
i
t∂lϕ

j
tξ

kl. (A 47)

Therefore, we obtain ∫
Ω

da ξ kl d
dt
ϕ∗t ωkl = 0, (A 48)

where we have defined the components of the vorticity 2-form ωkl as

ωkl(t, x)= ∂kvl(t, x)− ∂lvk(t, x). (A 49)

Since the functions ξ kl’s are arbitrary and smooth, equality (A 48) implies

d
dt
ϕ∗t ωkl = 0, (A 50)

which implies
ϕ∗t ω=ω0. (A 51)

Here,
ω(t, x)=

∑
i<j

ωij(t, x) dxi
∧ dx j, (A 52)

and

ω0(a)=ω(0, a)=
∑
i<j

ωij(0, a) dai
∧ da j

=

∑
i<j

ω0ij(a) dai
∧ da j. (A 53)

Equation (A 51) establishes the invariance of the vorticity 2-form under pullback.

A.5. About Cartan’s formula
The aim of this appendix it to establish the formula

divv[ + iv dv[ = (∇vv)[ + 1
2 d(v, v)g. (A 54)

First, using definitions of the interior product iv and the exterior derivative d, given
in § B.8, and the symmetry of the Christoffel symbols in the definition of the covariant
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454 N. Besse and U. Frisch

derivative (see § B.10), for a vector field X ∈ T 1
0 (M) and a 1-form X ∈ T 0

1 (M), we
obtain

iX dα = iX
(

1
2(∂iαj − ∂jαi) dxi

∧ dx j
)
= Xj(∂jαi − ∂iαj) dxi

= Xj(∇jαi −∇iαj) dxi. (A 55)

Second, using the same properties as for deriving (A 55), we obtain

diXα = ∂i(Xjαj) dxi
=∇i(Xjαj) dxi

= (Xj
∇iαj + αj∇iXj) dxi. (A 56)

Adding (A 55) and (A 56), we obtain

diXα + iX dα = (Xj
∇jαi + αj∇iXj) dxi

= (Xj∂jαi + αj∂iXj) dxi
= £Xα. (A 57)

Using this equation with X = v and α = v[, the lowering–raising operators and the
property ∇igjk = 0, we obtain

v j
∇jv

[
i + v

[
j∇iv

j
= v j
∇jv

[
i + v

kgjk∇iv
j
= v j
∇jv

[
i +

1
2 gjk∇i(v

jvk)

= v j
∇jv

[
i +

1
2∇i(gjkv

jvk)= v j
∇jv

[
i +

1
2∂i(gjkv

jvk), (A 58)

which re-expresses (A 54) in terms of components. For more details see, e.g., Arnold
& Khesin (1998, chap. IV, pp. 202–204).

A.6. Proof of a commutation relation needed for the Lie advection of the
vorticity vector

In § 3.1, to establish the Lie-advection equation for the vorticity vector, we have
used a result on the commutation of the composition of the raising operator with the
Hodge dual operator and the Lie derivative. Here, we give a proof of the commutation
relation []d−p ?, £v] = 0 with the condition ∇iv

i
= 0. We are also motivated by the

observation that we were not able to find a proof in the published literature.
Let ω be a p-form. Using the definitions of the raising operator (see § B.3) and of

the Hodge dual operator (see § B.9), and recognising the determinant of the metric
tensor in the following expression, we obtain

ωi1...id−p = ([?ω]]
d−p
)i1...id−p =

1
p!
√

gε j1...jpl1...ld−pg j1k1 . . . g jpkpgi1l1 . . . gid−pld−pωk1...kp

=
1
p!

1
√

g
εk1...kpi1...id−pωk1...kp . (A 59)

Using definitions of the Lie derivative (see § B.7), of the raising and Hodge star
operators, and using the product rule to reveal the divergence of the vector field v
and the term ∂lω

i1...id−p in the next expression, we obtain

([?£vω]]
d−p
)i1...id−p =

1
p!

1
√

g
εk1...kpi1...id−p(vl∂lωk1...kp + pωlk2...kp∂k1v

l)

= vl∂lω
i1...id−p +ωi1...id−p(∇lv

l
− ∂lv

l)

+
1

(p− 1)!
1
√

g
εk1...kpi1...id−pωlk2...kp∂k1v

l

= T1 +
1

(p− 1)!
1
√

g
εk1...kpi1...id−pωlk2...kp∂k1v

l
= T1 + T2. (A 60)
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Using (A 59), the antisymmetry of ω, and properties of generalised Kronecker symbols
(see § B.6), we obtain

(−1)p
√

g
(d− p)!

εi1...id−pj1...jpω
i1...id−p =

1
p!(d− p)!

εj1...jpi1...id−pε
k1...kpi1...id−pωk1...kp

=
1
p!
δ

k1...kp
j1...jp ωk1...kp =ωj1...jp . (A 61)

Substituting (A 61) in T2, and using properties of generalised Kronecker symbols, we
obtain

T2 =
(−1)p

(p− 1)!
1

(d− p)!
εk1...kpi1...id−pεl1...ld−plk2...kpω

l1...ld−p∂k1v
l

=
1

(d− p)!
δ

i1...id−pk1
l1...ld−pl ω

l1...ld−p∂k1v
l

=
1

(d− p)!

d−p+1∑
k=1

(−1)d−p+k+1δ
k1
lk δ

i1...id−p

l1...l̂k ...ld−p+1
ωl1...ld−p∂k1v

ld−p+1, (A 62)

where we have set ld−p+1 := l, and where the hat character ˆ indicates an index that is
omitted from the sequence. Using the antisymmetry of ω, equation (A 62) becomes

T2 = ∂lv
lωi1...id−p +

1
(d− p)!

d−p∑
k=1

(−1)d−p+k+1δ
i1...id−p

l1...l̂k ...ld−pl
ωl1...ld−p∂lkv

l
= T21 + T22. (A 63)

Using properties of generalised Kronecker symbols, the antisymmetry of ω, and
relabelling some indices, we obtain

T22 = −
1

(d− p)!
δ

i1...id−p
l1...ld−p

d−p∑
k=1

ωl1...nk l̂k ...ld−p∂nkv
lk

= −
1

(d− p)!

d−p∑
k=1

(
(−1)k+1δ

ik
l1δ

i1...îk ...id−p

l̂1l2...ld−p
∂n1v

l1ωn1l2...ld−p + · · ·

+ (−1)k+d−pδ
ik
ld−p
δ

i1...îk ...id−p

l1...l̂d−p
∂nd−pv

ld−pωl1...ld−p−1nd−p

)
= −

1
d− p

d−p∑
k=1

((−1)k+1∂lv
ikωli1...îk ...id−p + · · · + (−1)k+d−p∂lv

ikωi1...îk ...id−pl)

= −∂lv
i1ωli2...id−p − · · · − ∂lv

id−pωi1...id−p−1l. (A 64)

Finally, putting all the terms together, using the condition ∇iv
i
= 0, and remembering

the definition of Lie derivative for tensors (see § B.5), we obtain

([?£vω]]
d−p
)i1...id−p = T1 + T2 = T1 + T21 + T22

= vl∂lω
i1...id−p − ∂lv

i1ωli2...id−p − · · · − ∂lv
id−pωi1...id−p−1l

= (£v[?ω]]
d−p
)i1...id−p, (A 65)

which ends the proof.
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Appendix B. Differential geometry in a nutshell
In this appendix we recall some notions of differential geometry. There exist

many classical textbooks of differential geometry on manifolds, for example
Helgason (1962), Flanders (1963), Kobayashi & Nomizu (1963), Stenberg (1964),
Choquet-Bruhat (1968), Choquet-Bruhat, De Witt-Morette & Dillard-Bleick (1977),
Spivak (1979), Schutz (1980), de Rham (1984), Arnold (1989), Lovelock & Rund
(1989), Abraham et al. (1998), Fecko (2006), Frankel (2012). This appendix is based
on textbooks that we find pedagogical for our intended readership (Choquet-Bruhat
et al. 1977; de Rham 1984; Abraham et al. 1998; Arnold 1989; Fecko 2006; Frankel
2012), to which we give precise references.

B.1. Manifolds, tangent and cotangent bundles
A manifold is a generalisation of the notion of a smooth surface in Euclidean space.
The concept of manifold has proved to be useful because they occur frequently, and
not just as subsets embedded in an Euclidean space. Indeed such a generalisation,
eliminating the need for a containing Euclidean space, makes the construction intrinsic
to the manifold itself. Usually a differentiable (smooth) manifold M of dimension d is
defined through a differentiable parametric representation, called an atlas, which can
be seen as a collection of charts (Ui, φi)i∈I such that M=

⋃
i∈I Ui. A chart (Ui, φi) is a

local subset Ui⊂M and local smooth bijection φi from Ui to an open subset of Banach
space (typically Rd). The manifold M is then constructed by patching smoothly such
objects together. For a formal definition of a differentiable manifold we refer the
reader to Choquet-Bruhat et al. (1977, § III.A.1, p. 111), Abraham et al. (1998, § 3.1,
p. 141) and Frankel (2012, § 1.2c, p. 19).

The set of tangent vectors to M at a ∈M forms a vector space TMa. This space is
called the tangent space to M at a. The union of the tangent spaces to M at the various
point of M, i.e. TM :=

⋃
a∈M TMa, has a natural differentiable manifold structure, the

dimension of which is twice the dimension of M. This manifold is called the tangent
bundle of M and is denoted by TM. The mapping π :TM→M, which takes a tangent
vector V to the point a ∈ M at which the vector is tangent to M (i.e. X ∈ TMa), is
called the natural projection. The inverse image of a point a ∈ M under the natural
projection, i.e. π−1(a), is the tangent space TMa. This space is called the fibre of the
tangent bundle over the point a. A vector field on M is a (cross-)section of TM. A
(cross-)section of a vector bundle assigns to each base point a∈M a vector in the fibre
π−1(a) over a and the addition and scalar multiplication of sections takes place within
each fibre (see, e.g., Frankel 2012, § 2.2, p. 48 and § III.B.3, p. 132 in Choquet-Bruhat
et al. 1977).

As for ordinary vector spaces, one can define the dual of the tangent bundle, noted
T∗M, which can be constructed through linear forms, called 1-forms or cotangent
vectors, acting on vectors of the tangent bundle TM. The cotangent space to M at
a, noted T∗Ma, is the set of all cotangent vectors to M at a. The cotangent bundle is
the union of the cotangent spaces to the manifold M at all its points, that is T∗M :=⋃

a∈M T∗Ma. The cotangent bundle T∗M has a natural differentiable manifold structure,
the dimension of which is twice the dimension of M.

Finally we introduce the notion of contractible manifolds. Let c : [0, 1] →M be a
continuous map such that c(0)= c(1)= a ∈M. We call c a loop in M at the point a.
The loop is called contractible if there is a continuous map H : [0,1]× [0,1]→M such
that H(t, 0)= c(t) and H(0, s)=H(1, s)=H(t, 1)= a for all t ∈ [0, 1]. Indeed cs(t)=
H(t, s) has to be viewed as a family of arcs connecting c0 = c to c1, a constant arc.
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Geometric formulation of the Cauchy invariants in flat and curved spaces 457

Roughly speaking, a loop is contractible when it can be shrunk continuously to the
point a by loops beginning and ending at a. The manifold M is contractible to a
point a, if every loop in M, which starts and ends at the point a is contractible. In
other words the manifold M is contractible if there exists a vector field u on M which
generates a flow ηt :M→M, with t ∈ [0, 1], that gradually and smoothly shrinks the
whole manifold M to the point a, i.e. η0 = IdM and η1(x) = a, ∀x ∈ M, where the
point a is fixed and independent of x. For more details see Abraham et al. (1998,
§ 1.6, p. 33) and Fecko (2006, § 9, p. 192).

B.2. Tensors

Let {Ei}i∈N∗ , F be finite-dimensional vector spaces. Let Lk(E1, . . . ,Ek;F) be the vector
space of continuous k-multilinear maps of E1× · · · ×Ek to F. The special case of the
linear form on E, i.e. L(E,R), is denoted E∗, the dual space of E. If {e1, . . . , ed} is an
ordered basis of E, there is a unique ordered basis of E∗, the dual basis {e1, . . . , ed

},
such that 〈e j, ei〉 := e j(ei)= δ

j
i , where δj

i = 1 if i= j and 0 otherwise. Here 〈·, ·〉 denotes
the natural pairing between E and E∗. Furthermore, for each v ∈ E, v = 〈ei, v〉ei and
for each and α ∈ E∗, α = 〈α, ei〉ei.

For a vector space E we define

Tq
p(E)=Lq+p(E∗, . . . , E∗, E, . . . , E;R), (B 1)

(q copies of E∗ and p copies of E). Elements of Tq
p(E) are called tensors on

E, contravariant of order q and covariant of order p; or simply of type (q, p).
Given 21 ∈ Tq1

p1
(E) and 22 ∈ Tq2

p2
(E), the tensor product of 21 and 22 is the tensor

21 ⊗22 ∈ Tq1+q2
p1+p2(E) defined by

(21 ⊗22)(α
1, . . . , αq1, β1, . . . , βq2, f1, . . . , fp1, g1, . . . , gp2)

=21(α
1, . . . , αq1, f1, . . . , fp1)22(β

1, . . . , βq2, g1, . . . , gp2), (B 2)

where α j, β j
∈ E∗, and fj, gj ∈ E. The natural basis of Tq

p(E) of dimension dp+q is
given by

{ei1 ⊗ · · · ⊗ eiq ⊗ e j1 ⊗ · · · ⊗ e jp | i1, . . . , iq, j1, . . . jp = 1, . . . , d}. (B 3)

In this basis any tensor 2 ∈ Tq
p(E) reads

2=2
i1...iq
j1...jpei1 ⊗ · · · ⊗ eiq ⊗ e j1 ⊗ · · · ⊗ e jp, (B 4)

where the components of 2 are given by

2
i1,...iq
j1...jp =2(e

i1, . . . , eiq, ej1, . . . , ejp). (B 5)

We refer to Abraham et al. (1998, § 5.1, p. 341) for the definition of standard
operations (linear combination, contraction, contracted product, interior product,
change of basis formula, tensoriality criterion, etc.) on tensors.

Let M be a manifold and TM its tangent bundle. We call Tq
p(M) := Tq

p(TM) =⋃
a∈M Tq

p(TMa) the vector bundle of tensors contravariant of order q and covariant of
order p, or simply of type (q, p). We identify T1

0(M) with the tangent bundle TM and
call T0

1(M) the cotangent bundle of M, also denoted T∗M (i.e. the set of linear forms
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458 N. Besse and U. Frisch

on TM). The zero section of Tq
p(M) is identified with M. Recall that a section of a

vector bundle assigns to each base point a ∈M a vector in the fibre π−1(a) over a
and the addition and scalar multiplication of sections takes place within each fibre. In
the case of Tq

p(M) these vectors are called tensors. The C∞ sections of E are denoted
by Γ ∞(E). Recall that a vector field on M is a C∞ section of TM, i.e. an element
of Γ ∞(TM). Therefore a tensor field of type (q, p) on a manifold M is a C∞ section
of Tq

p(M). We denote by T q
p (M) the set Γ ∞(Tq

p(M)). A covector field or a differential
1-form is an element of T 0

1 (M).
For the tangent bundle TM, a natural chart is obtained by taking the vector bundle

(or tangent) map Tφ : TM→ TRd
=Rd, where φ is an admissible chart of M. This in

turn induces a tensor bundle map (Tφ)∗ :Tq
p(M)→Tq

p(Rd), which constitutes a natural
chart on Tq

p(M). Indeed let φ :U 3 a→ x= φ(a)∈U′⊂Rd a chart on M. Let {ei}16i6d

(respectively {ei
}16i6d) be a (respectively dual) basis of Rd

x . Then ∂/∂ai
= φ∗ei =

(Tφ)−1
◦ ei ◦φ= (∂a j/∂xi)ej is a basis of T 1

0 (U). The vector field ∂/∂ai corresponds to
the differentiation f 7→ ∂f /∂ai. In the same way the 1-forms dai

= φ∗ei
= (∂xi/∂a j)e j

is a basis of T 0
1 (U). Since

〈dai, ∂/∂a j
〉 := dai(∂/∂a j)=

∂xi

∂al
el

(
∂ak

∂x j
ek

)
=
∂xi

∂al

∂ak

∂x j
el(ek)=

∂xi

∂al

∂ak

∂x j
δl

k =
∂xi

∂x j
= δi

j,

(B 6)
{dai
}i is the dual basis of {∂/∂ai

}i at every point of U. Let

2
i1...iq
j1...jp =2(dai1, . . . , daiq, ∂/∂a j1, . . . , ∂/∂a jp) ∈F(U), (B 7)

where F(U) is the set of mappings from U into R that are of class C∞. Then at
every point a of U the coordinate expression of a (q, p)-tensor field 2 ∈ T q

p (M) is

2|U =2
i1...iq
j1...jp(a)

∂

∂ai1
⊗ · · · ⊗

∂

∂aiq
⊗ da j1 ⊗ · · · ⊗ da jp . (B 8)

For more details see Choquet-Bruhat et al. (1977, § III.B.1, p. 117 and § III.B.4,
p. 135), Abraham et al. (1998, § 5.2, p. 352) and Fecko (2006, § 2.5, p. 47).

B.3. Riemannian manifolds
Sometimes when dealing with manifolds it is useful to quantify geometric notions
such as length, angles and volumes. All such quantities are expressed by means of the
lengths of tangent vectors, that is, as the square root of a positive definite quadratic
form given on every tangent space.

A Riemannian manifold is a differentiable manifold M together with a differentiable
2-covariant tensor field g ∈ T 0

2 (M), called the metric tensor, such that: (i) g is
symmetric, (ii) for each a ∈ M, the bilinear form ga (this notation emphasises that
g is evaluated in a) is non-degenerate, i.e. ga(v, w) = 0 for all v ∈ TMa if and only
if w= 0. Such a manifold is said to possess a Riemannian structure. A Riemannian
manifold (Riemannian structure) is called proper if ga is a positive definite quadratic
form on every tangent space, i.e. ga(v, v) > 0, ∀v ∈ TMa, v 6= 0, a∈M. Otherwise the
manifold is called pseudo-Riemannian or is said to possess an indefinite metric. The
tensor g allows one to define a metric on M for measuring distances between two
points on M. The Riemannian metric is given by the infinitesimal line element ds2

which is defined by the metric tensor g:

ds2
= g= gij dai da j

= gij(a) dai
⊗ da j. (B 9)
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Geometric formulation of the Cauchy invariants in flat and curved spaces 459

The tensor g endows each tangent vector space TMa with an inner or scalar product,
(·, ·)ga called also Riemannian metric and defined by: ∀a ∈M

(·, ·)ga : TMa × TMa→R(
v = vi ∂

∂ai
,w=wi ∂

∂ai

)
7→ (v,w)ga = gij(a)v

i(a)w j(a),

 (B 10)

where the notation (·, ·)ga is to emphasise that the quadratic form is local, i.e.
evaluated at the point a ∈ M; but most of the time it is omitted to simplify the
notation into (·, ·)g. The components of g are differentiable on M and are given by

gij(a)=
(
∂

∂ai
,
∂

∂a j

)
ga

=
∂ak

∂xi

∂al

∂x j
(ek, el), (B 11)

where (·, ·) denotes the usual scalar product in the Euclidean space, i.e. induced by
the constant diagonal metric δij, with unity on the diagonal. Therefore, using the
inner product (·, ·)g, we get an isomorphism between the tangent bundle TM and
the cotangent bundle T∗M. In particular, it induces an isomorphism of the spaces of
sections, which is called the raising operator (·)] : T 0

1 (M)→ T 1
0 (M), with its inverse,

named the lowering operator (·)] : T 1
0 (M)→ T 0

1 (M). More precisely, such operators
are defined by

(·)] : T 0
1 (M)→ T 1

0 (M)

α 7→ α] = (αi dai)] = (α])i
∂

∂ai
, (α])i = gijαj,

 (B 12)

(·)[ : T 1
0 (M)→ T 0

1 (M)

v 7→ v[ =

(
vi ∂

∂ai

)[
= (v[)i dai, (v[)i = gijv

j,

 (B 13)

where gikgkj
= δ

j
i . For more details we refer the reader to Choquet-Bruhat et al. (1977,

§ V.A.1, p. 285).

B.4. Pullback and pushforward
Let M, N and P be differentiable manifolds. Let ϕ :M 3 a→ x = ϕ(a) ∈ N and ψ :
N→ P be diffeomorphisms. The pullback of 2 ∈ T 0

p (N) by ϕ is defined by

(ϕ∗2)(a)(v1, . . . , vp)=2(ϕ(a))(Taϕ(v1), . . . , Taϕ(vp)), (B 14)

for all a∈M, and v1, . . . , vp ∈TMa. The map Taϕ :TMa→TNx=ϕ(a) is the tangent map
of ϕ at a ∈M, i.e. the Jacobian matrix Jϕ(a) = J(ϕ)(a) = (∂ϕ/∂a)(a). The pullback
ϕ∗ :T 0

p (N)→T 0
p (M) is a linear isomorphism, which satisfies ϕ∗(21⊗22)= (ϕ

∗21)⊗

(ϕ∗22) for any 21 ∈T 0
p1
(N) and 22 ∈T 0

p2
(N). The pullback, applied to the composition

of two maps, ψ ◦ ϕ, satisfies the following rule: (ψ ◦ ϕ)∗ = ϕ∗ψ∗. Since ϕ is a
diffeomorphism, ϕ∗ is an isomorphism with inverse (ϕ∗)−1

:= (ϕ−1)∗.
The pushforward of 2 ∈ T q

p (M) by ϕ is defined by

(ϕ∗2)(x)(α1, . . . , αq, f1, . . . , fp)

=2(ϕ−1(x))(ϕ∗α1, . . . , αq, (Tϕ)−1( f1), . . . , (Tϕ)−1( fp)), (B 15)
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460 N. Besse and U. Frisch

where αi
∈ T∗Nx and fi ∈ TNx. Using the tensor bundle map (Tϕ)∗ : Tq

p(M)→ Tq
p(N),

the pushforward can be written in compact form as ϕ∗2 := (Tϕ)∗ ◦ 2 ◦ ϕ−1.
The pushforward ϕ∗ : T q

p (M) → T q
p (N) is a linear isomorphism, which satisfies

ϕ∗(21 ⊗ 22) = (ϕ∗21) ⊗ (ϕ∗22) for any 21 ∈ T q1
p1
(M) and 22 ∈ T q2

p2
(M). The

pushforward of map composition verifies the following rule: (ψ ◦ ϕ)∗ = ψ∗ϕ∗. Since
ϕ is a diffeomorphism, ϕ∗ is an isomorphism with inverse (ϕ∗)

−1
:= (ϕ−1)∗. The

pullback of 2 ∈ T q
p (N) by ϕ is given by ϕ∗2 = (ϕ−1)∗2. In other words we have

ϕ∗ = (ϕ∗)
−1
= (ϕ−1)∗ and ϕ∗ = (ϕ∗)−1

= (ϕ−1)∗.
For finite-dimensional manifolds, pullback and pushforward can be expressed

in terms of coordinates. Setting m = dim(M) and n = dim(N), the maps x j
=

ϕ j(a1, . . . , am), with j= 1, . . . , n denote the local expression of the diffeomorphism
ϕ : M→ N relative to charts. Taking into account that the tangent map Tϕ of ϕ is
given locally by the Jacobian matrix Jϕ = J(ϕ) = (∂ϕ/∂a), we obtain the following
coordinate expressions of the pushforward and the pullback.

If 2 ∈ T q
p (M) and ϕ is a diffeomorphism, the coordinates of the pushforward of

ϕ∗2 are

(ϕ∗2)
i1...iq
j1...jp =

(
∂xi1

∂ak1
◦ ϕ−1

)
· · ·

(
∂xiq

∂akq
◦ ϕ−1

)
∂al1

∂x j1
· · ·

∂alp

∂x jp
2

k1...kq
l1...lp ◦ ϕ

−1. (B 16)

If 2 ∈ T q
p (N) and ϕ a diffeomorphism, the coordinates of the pullback of ϕ∗2 are

(ϕ∗2)
i1...iq
j1...jp =

(
∂ai1

∂xl1
◦ ϕ

)
· · ·

(
∂aiq

∂alq
◦ ϕ

)
∂xk1

∂a j1
· · ·

∂xkp

∂a jp
2

l1...lq
k1...kp
◦ ϕ. (B 17)

In particular, if 2 ∈ T 0
p (N) the coordinates of the pullback of ϕ∗2 are

(ϕ∗2)j1...jp =
∂xk1

∂a j1
· · ·

∂xkp

∂a jp
2k1...kp ◦ ϕ. (B 18)

If v = vi(∂/∂ai) ∈ T 1
0 (M) (respectively α = αi dai

∈ T 0
1 (M)) then ϕ∗(v

i(∂/∂ai)) =
v j(∂xi/∂a j)(∂/∂xi) (respectively ϕ∗(αi dai) = αj(∂x j/∂ai) dai). Therefore, using the
map g :N→R, we obtain

(ϕ∗v)g=
(
v j ∂xi

∂a j

∂

∂xi

)
g= v j ∂xi

∂a j

∂g
∂xi
= v j ∂

∂a j
g(ϕ(a))=

(
v j ∂

∂a j

)
ϕ∗g= v(ϕ∗g). (B 19)

From the above formula we see that the pullback of covariant tensors can be defined
even for maps that are not diffeomorphisms but only differentiable maps, i.e. of class
C 1 (see, e.g., Abraham et al. 1998, § 5.2, p. 355; see also § 3.1, p. 54 in Fecko 2006).

B.5. Lie derivative
Concepts of Lie derivative and Lie advection have been presented in § 2.2, where the
Lie-derivative theorem has also been stated. Here we give additional properties of the
Lie differentiation process.

From an algebraic point of view, the local coordinate expression of the Lie
derivative £v : T q

p (M) → T q
p (M) of an arbitrary tensor 2 ∈ T q

p (M) is (see, e.g.,
Abraham et al. (1998), § 5.3, p. 359; see also § 4.3, p. 72 in Fecko 2006)

£v2= (£v2)
i1...iq
j1...jp

∂

∂ai1
⊗ · · · ⊗

∂

∂aiq
⊗ da j1 ⊗ · · · ⊗ da jp, (B 20)
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where

(£v2)
i1...iq
j1...jp = v`∂`2

i1...iq
j1...jp −2

ki2...iq
j1...jp ∂kv

i1

− (all upper indices)+2i1...iq
lj2...jp∂j1v

l
+ (all lower indices). (B 21)

Moreover the Lie derivative is a linear operator, a derivation (i.e. it satisfies the
Leibniz rule):

£v(ω+ λθ)= £vω+ λ£vθ, £v(ω⊗ γ )= £vω⊗ γ +ω⊗ £vγ ,
λ ∈R, v ∈ T 1

0 (M), γ ∈ T r
s (M), θ, ω ∈ T q

p (M).

}
(B 22)

Furthermore, the Lie derivative is natural with respect to the pushforward and pullback
by any diffeomorphism ϕ :M→N, in the following sense

ϕt∗£v = £ϕt∗vϕt∗, ϕ∗t £v = £ϕ∗t vϕ
∗

t . (B 23a,b)

B.6. Permutations, generalised Kronecker symbols and determinants
The set Sk is the permutation group on k elements, which consists of all bijections
σ : {1, . . . , k}→ {1, . . . , k}, usually given in the form a table(

1 . . . k
σ(1) . . . σ (k)

)
, (B 24)

with the structure of a group under composition of maps. A transposition is a permu-
tation which swaps two elements of {1, . . . , k}. A permutation is even (respectively
odd) when it can be written as the product of an even (respectively odd) number
of transpositions. When a permutation is even (respectively odd) sign σ = +1
(respectively sign σ = −1) and sign(σ ◦ τ) = (sign σ)(sign τ). The dimension of
Sk is dim(Sk)= k!.

Let δij, δi
j and δij be the first Kronecker symbols defined by

δij = δ
i
j = δ

ij
=

{
0 if i 6= j
1 if i= j.

(B 25)

The generalised Kronecker symbol δi1...ip
j1...jp (also noted εi1...ip

j1...jp ) is defined by

δ
i1...ip
j1...jp =


0 if (i1 . . . ip) is not a permutation of ( j1 . . . jp)

+1 if (i1 . . . ip) is an even permutation of ( j1 . . . jp)

−1 if (i1 . . . ip) is an odd permutation of ( j1 . . . jp).

(B 26)

Using the Laplace expansion of determinant, the generalised Kronecker symbol δi1...ip
j1...jp

can be recast in different forms:

δ
j1...jp
i1...ip =

∣∣∣∣∣∣∣∣
δ

j1
i1 . . . δ

j1
ip

...
. . .

...

δ
jp
i1 . . . δ

jp
ip

∣∣∣∣∣∣∣∣=
p∑

k=1

(−1)p+kδ
jp
ik δ

j1...jk ...̂jp
i1...̂ik ...ip

,

=

∑
σ∈Sp

sign(σ )δi1
jσ(1) . . . δ

ip
jσ( p)
=

∑
σ∈Sp

sign(σ )δiσ(1)
j1 . . . δ

iσ( p)
jp , (B 27)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 b

ib
lio

th
eq

ue
, o

n 
25

 Ju
l 2

01
7 

at
 0

8:
34

:2
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
40

2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.402


462 N. Besse and U. Frisch

where the hat character ˆ indicates an index that is omitted from the sequence.
Moreover, the generalised Kronecker symbol δi1...ip

j1...jp satisfies the properties (Fecko
2006, § 5.6, p. 107)

1
p!
δ

i1...ip
k1...kp

δ
k1...kp
j1...jp = δ

i1...ip
j1...jp , and δ

i1...ipip+1...iq
j1...jpip+1...iq =

(d− p)!
(d− q)!

δ
i1...ip
j1...jp . (B 28a,b)

We also define the second Kronecker symbols εj1...jp and εi1...ip by

εj1...jp = δ
1...p
j1...jp, εi1...ip = δ

i1...ip
1...p and thus δ

i1...ip
j1...jp =

1
(d− p)!

εi1...ipkp+1...kdεj1...jpkp+1...kd .

(B 29a−c)
Finally, let d = dim(M), and ϕ : M → M be of class C 1. The determinant of the
linear mapping (tangent map at the point a) Taϕ : TMa→ TMa, is noted det(Taϕ) =
det(∂ϕ/∂a) and is given by

det(Taϕ) =
∑
σ∈Sd

sign(σ )
∂ϕ1

∂aσ(1)
· · ·

∂ϕd

∂aσ(d)

=

∑
σ∈Sd

sign(σ )
∂ϕσ(1)

∂a1
· · ·

∂ϕσ(d)

∂ad
= εi1...id ∂ϕ

1

∂ai1
· · ·

∂ϕd

∂aid

= εj1...jd
∂ϕ j1

∂a1
· · ·

∂ϕ jd

∂ad
=

1
d!
εi1...idεi1...id det(Taϕ)

=
1
d!
εi1...idεj1...jd

∂ϕ j1

∂ai1
· · ·

∂ϕ jd

∂aid
=

1
d!
δ

i1...id
j1...jd

∂ϕ j1

∂ai1
· · ·

∂ϕ jd

∂aid
. (B 30)

The inverse matrix components of an invertible matrix A is given by (A−1)
j
i =

(det(A)−1)1
j
i, where 1j

i is the (i, j)th minor, i.e. the determinant of a matrix which it
is obtained from A when the ith row and jth column are deleted. In other words we
have det(A)δj

k = Aj
i1

i
k =1

j
iAi

k. Therefore, we obtain

∂ det(A)

∂Aj
i

=1i
j = det(A)(A−1)ij so that d(det(A))= det(A)Tr(A−1 dA), (B 31)

where Tr(A) denotes the trace of A, i.e.
∑

i Ai
i. Now, we consider the metric tensor

g ∈ T 0
2 which can be identified to a matrix. We define the minor aij := ggij, with g=√

det(gij). It then follows that the differential of the determinant g is dg = aij dgij =

ggij dgij. Furthermore, using partial derivatives, the differential of g is dg= ∂kg dak
=

ggij∂kgij dak, from which we infer by identification that

∂kg= ggij∂kgij =−ggij∂kgij. (B 32)

B.7. Exterior algebra and differential forms

Let E be a finite-dimensional vector space. The space
∧p
(E), is the subspace of all

skew-symmetric elements of Lp(E) or T0
p(E), i.e. all antisymmetric covariant p-tensors

on E. An element of
∧p
(E) is called an exterior p-form. The exterior product ∧

(wedge or Grassmann product) of a p-form and a q-form is a mapping

∧ :

p∧
(E)×

q∧
(E)→

p+q∧
(E)

(α, β) 7→ α ∧ β,

 (B 33)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 b

ib
lio

th
eq

ue
, o

n 
25

 Ju
l 2

01
7 

at
 0

8:
34

:2
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
40

2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.402


Geometric formulation of the Cauchy invariants in flat and curved spaces 463

with α ∧ β defined by

(α ∧ β)(v1, . . . , vp+q)=
1

p!q!

∑
σ∈Sp+q

sign(σ )α(vσ(1), . . . , vσ(p))β(vσ(p+1), . . . , vσ(p+q)),

(B 34)
where vi ∈ E and Sp is the permutation group on p elements. Componentwise it is
defined as

(α ∧ β)i1...ip+q =
1

p!q!
δ

j1...jpk1...kq
i1...ip+q

αj1...jpβk1...kq . (B 35)

In particular, if α and β are 1-forms then α ∧ β = α ⊗ β − β ⊗ α. It follows from
the definition that the exterior product is: (i) associative (α ∧ β) ∧ γ = α ∧ (β ∧ γ );
(ii) bilinear α ∧ (β + γ )= α ∧ β + α ∧ γ and λ(α ∧ β)= λα ∧ β = α ∧ λβ, with λ∈R;
(iii) not commutative in general α ∧ β = (−1)pqβ ∧ α if α ∈

∧p
(E), β ∈

∧q
(E). From

the property (iii) it follows that (∧α)k is identically zero if the degree of α is odd; but
not otherwise. If E is finite-dimensional with d= dim(E), then for p> d,

∧p
(E)={0}.

Indeed the only non-zero components of a totally antisymmetric covariant p-tensor are
those in which all indices are different, a situation which can never exist if p> d. For
0< p6 d,

∧p
(E) has dimension d!/(p!(d− p)!). If {e1, . . . , ed} is an ordered basis of

E and its dual basis {e1, . . . , ed
}, a basis for

∧p
(E) is

{ei1, . . . , eip | 1 6 i1 < i2 < · · ·< ip 6 d}. (B 36)

Therefore any α ∈
∧p
(E), can be expanded as

α =
∑

i1<···<ip

αi1...ipe
i1 ∧ · · · ∧ eip =

1
p!
αi1...ipe

i1 ∧ · · · ∧ eip =
1
p!
δ

i1...ip
j1...jpαi1...ipe

j1 ⊗ · · · ⊗ e jp .

(B 37)
Given the tangent vector bundle TM of a manifold M, we can construct fiberwise the
vector bundle

∧p
(M) of exterior differential p-form on the tangent spaces of M, as

p∧
(M)=

p∧
(TM)=

⋃
a∈M

p∧
(TMa). (B 38)

The field of exterior differential p-form on a manifold M, denoted 3p(M), is defined
as the C∞ section of

∧p
(M), i.e. 3p(M) = Γ ∞(

∧p
(M)). We have the following

identifications: 31(M) = T 0
1 (M) and 30(M) = F(M), where F(M) is the set of

mappings from M into R that are of class C∞. As for the definition of tensors on
a manifold, given (U, φ), an admissible local chart on M, the local expression on U
of α ∈

∧k
(M) is given by

α|U =
∑

i1<···<ip

αi1...ip(a) dai1 ∧ · · · ∧ daip =
1
p!
αi1...ip(a)dai1 ∧ · · · ∧ daip

=
1
p!
δ

i1...ip
j1...jpαi1...ip(a) da j1 ⊗ · · · ⊗ da jp . (B 39)

The differential p-form is of class C k, when the component maps αi1...ip : U 3 a→
αi1...ip(a) ∈ R are k times continuously differentiable on U or are differentiable
functions of a of class C k(U).
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464 N. Besse and U. Frisch

Pullback and pushforward of p-forms are just special cases of general definitions
given for tensors (see § B.2) since a p-form field is a totally antisymmetric covariant
p-tensor field. Moreover we have the following properties. Let ϕ :M→N be of class
C 1. Then ϕ∗ :3k(N)→3k(M) is a homeomorphism of differential algebras, that is

ϕ∗(α ∧ β)= ϕ∗α ∧ ϕ∗β, ϕ∗(α + λγ )= ϕ∗α + λϕ∗γ ,

α, γ ∈3p(N), β ∈3q(N), λ ∈R.

}
(B 40)

Of course similar formulae hold also for the pushforward operator when ϕ :M→N is
a diffeomorphism. The Lie derivative is a derivative on 3p(M), since it satisfies the
Leibniz rule:

£v(α ∧ β)= £vα ∧ β + α ∧ £vβ, α ∈3p(M), β ∈3q(M). (B 41)

From the definition of Lie derivative for tensors, the coordinate expression for the Lie
derivative £v :3p(M)→3p(M) of a p-form α is

£vα =
1
p!
vl∂lαi1...ip dai1 ∧ · · · ∧ daip

+
1
p!
αi1...ip(∂lv

i1 dal
∧ dai2 ∧ · · · ∧ daip + · · · + ∂lv

ip dai1 ∧ · · · ∧ daip−1 ∧ dal).

(B 42)

This can also be recast in a simpler form, which however is not antisymmetric, namely

£vα =
1
p!
(vk∂kαi1...ip + pαki2...ip∂i1v

k) dai1 ∧ · · · ∧ daip . (B 43)

For more details we refer the reader to Choquet-Bruhat et al. (1977, § IV.A.1, p. 195),
Abraham et al. (1998, § 6.1, p. 392; § 6.3, p. 417) and Fecko (2006, § 5.3, p. 102).

B.8. Exterior derivative and interior product

The exterior differentiation operator d :3p(M)→3p+1(M) maps a p-form α of class
C k into a (p + 1)-form dα of class C k−1, called the exterior derivative of α. The
operator d is uniquely defined by the following properties:

(i) d is linear: d(α + λβ)= dα + λ dβ, λ ∈R, α, β ∈3p(M);
(ii) d is an antiderivative; that is, d is R-linear and for α ∈3p(M) and β ∈3q(M),

d(α ∧ β)= dα ∧ β + (−1)pα ∧ dβ (‘antiLeibniz’ product rule);
(iii) d2

= dd= 0;
(iv) if f ∈F(M) is a 0-form, then df is the ordinary differential of f , i.e. df = ∂if dai;
(v) the operation d is local; if α and β coincide on an open set U, dα = dβ on U;

that is, the behaviour of α outside U does not affect dα|U , i.e. d(α|U )= (dα)|U .

Let ϕ :M→ N be a diffeomorphism. Let v ∈ T 1
0 (M), α ∈3

p(M) and β ∈3p(N). We
have the properties:

ϕ∗(dβ)= d(ϕ∗β), ϕ∗(dα)= d(ϕ∗α), d£vα = £v dα. (B 44a−c)

The contracted multiplication or interior product (also called inner product) of a
p-form α ∈3p(M) and a vector v ∈ T 1

0 (M) is denoted ivα. The operator iv :3p(M)→
3p−1(M) is defined as follows:
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(i) iv is an antiderivative; that is, iv is R-linear and for α ∈3p(M) and β ∈3q(M),
iv(α ∧ β)= (ivα)∧ β + (−1)pα ∧ (ivβ) (‘antiLeibniz’ product rule);

(ii) ivf = 0, f ∈F(M); iv dai
= vi.

Then by the ‘antiLeibniz’ rule, the coordinate expression of the interior product of a
p-form α is

ivα =
1

(p− 1)!
vkαki2...ip dai2 ∧ · · · ∧ daip =

∑
i1<···<ip−1

vkαki1...ip−1 dai1 ∧ · · · ∧ daip−1 . (B 45)

Let ϕ :M→ N be a diffeomorphism. Let v, w ∈ T 1
0 (M), u ∈ T 1

0 (N), α ∈3
p(M), β ∈

3p(N), γ ∈31(M), and f ∈F(M). Using the commutator notation [A, B] = AB− BA,
we have the properties:

(i) i2
v = iviv = 0;

(ii) £vα = iv dα + divα, (Cartan formula);
(iii) ifvα = f ivα = ivfα, iv df = £vf , £fvα = f £vα + df ∧ ivα;
(iv) [£v, iw]α = i[v,w]α, [£v, £w]α = £[v,w]α, iv£vα = £vivα, iviw dγ = £viwγ − £wivγ −

i[v,w]γ ;
(v) ϕ∗iuβ = iϕ∗u ϕ∗β, ϕ∗ivα = iϕ∗v ϕ∗α.

The last formula of point (iv), which expresses the exterior derivative in terms of the
Lie derivative, can be extended to high-order form (see, e.g., Abraham et al. 1998,
§ 6.4, p. 431). For more details about exterior derivative and interior product, we refer
the reader to Choquet-Bruhat et al. (1977, §§ IV.A.2–IV.A.4, p. 200) and Abraham
et al. (1998, § 6.4, p. 423).

B.9. Hodge dual operator and exterior coderivative
Let (M, g) be a d-dimensional Riemannian manifold with the volume form µ. The
Hodge dual operator is defined as the unique isomorphism ? : 3p(M)→ 3d−p(M),
which satisfies (see, e.g., Abraham et al. 1998, § 6.2, p. 411)

α ∧ ?β = ((α, β))g µ, α, β ∈3p(M), (B 46)

with
((α, β))g =

1
p!
αi1...ipβ

i1...ip =
1
p!
αi1...ipβj1...jpg

i1j1 . . . gipjp . (B 47)

Using (B 46) with β = dai1 ∧ · · · ∧ daip and α= da j1 ∧ · · · ∧ da jp , where { j1, . . . , jp} is
the complementary set of indices to { jp+1, . . . , jd}, we obtain

? (dai1 ∧ · · · ∧ daip)=
1

(d− p)!
√

gεj1...jd gi1j1 . . . gipjp da jp+1 ∧ · · · ∧ da jd . (B 48)

Then the coordinate expression of the (d− p)-form ?α, where α ∈3p(M), is

? α =
1

(d− p)!
(?α)i1...id−p dai1 ∧ · · · ∧ daid−p, (B 49)

with

(?α)i1...id−p =
1
p!
√

g εj1...jpi1...id−pα
j1...jp =

1
p!
√

g εj1...jpi1...id−pg
j1k1 . . . g jpkpαk1...kp . (B 50)
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Let α, β ∈3p(M). Then the Hodge dual operator satisfies α∧ ?β=β ∧ ?α= ((α,β))g µ,
?1= µ, ?µ= 1, ? ? α = (−1)p(d−p)α, ((α, β))g = ((?α, ?β))g. The Hodge dual is an R-
linear operator, i.e. ?(α + λβ)= ?α + λ ? β, λ ∈ R. In particular if v and w are two
vectors of R3, and if M =R3, then v×w= [?(v[ ∧w[)]] and v ·w= ?(v[ ∧ ?w[).

The codifferential operator (or exterior coderivative) d? : 3p(M)→ 3p−1(M), is an
R-linear operator which is defined by (see, e.g., Abraham et al. 1998, § 6.5, p. 457)

d?α = (−1)d(p−1)+1 ? d ? α. (B 51)

Since d2
= 0, then (d?)2 = d? ◦ d? = 0.

Let v ∈T 1
0 (M) be a vector field on M. Then the unique function divµv ∈F(M) such

that
£vµ=: (divµv)µ, (B 52)

is by definition called the divergence of v (see, e.g., Abraham et al. 1998, § 6.5,
p. 455). Let f , h ∈F(M), with f (a) 6= 0, ∀a ∈M. Then we have the formula

divfµv = divµv + f−1£vf , divµ(hv)= hdivµv + £vh. (B 53a,b)

Here, for a Riemannian manifold (M, g) with an oriented chart (a1, . . . , ad) on M,
the volume form µ is given by (see, e.g., Abraham et al. 1998, § 6.5, p. 457)

µ(a)=
√

g(a) da1
∧ · · · ∧ dad

=
1
d!
δ1...d

i1...id

√
g(a) dai1 ∧ · · · ∧ daid , where g= det(gij).

(B 54)
Using the relation ivµ = ?v[ and the Cartan formula we obtain (divµv)µ := £vµ :=
divµ= d ? v[ =− ? d?v[ =−(d?v[) ? 1=−(d?v[)µ. Therefore

divµv =−d?v[ =
1
√

g
∂i(
√

gvi). (B 55)

Let Op=Op2 be an operator that depends on a tensor field 2. The operator Op is
called natural with respect to the diffeomorphism ϕ :M→N, if ϕ∗Op2=Opϕ∗2ϕ

∗. Of
course we have a similar definition with the pushforward operator since ϕ∗ = (ϕ−1)∗.
In the previous section, we have seen that the Lie derivative, the interior product and
the exterior derivative are natural with respect to diffeomorphisms. For convenience
we use now the following notation: [g ≡ (·)

[, ]g ≡ (·)
], ?g ≡ ? and d?g ≡ d?. All these

operators are natural with respect to diffeomorphisms, i.e.

ϕ∗[g = [ϕ∗gϕ
∗, ϕ∗]g = ]ϕ∗gϕ

∗, ϕ∗∗g =∗ϕ∗gϕ
∗, ϕ∗d?g = d?ϕ∗gϕ

∗. (B 56a−d)

Let (M, g) and (N, h) be two Riemannian manifolds, and ϕ : M → N a
diffeomorphism. The mapping ϕ is called an isometry if ϕ?h = g (see, e.g.,
Choquet-Bruhat et al. 1977, § V.A.5, p. 298). If ϕ is an isometry, using (B 56),
we then observe that the commutators [ϕ∗,Op] with Op ∈ {[, ], ?, d?} vanish.

Let κ ∈T 1
0 (M). The vector field κ on (M, g) is called a Killing vector field if £κg=

0, that is it satisfies the Killing equations

(£κg)ij = κk ∂gij

∂ak
+ gkj

∂κk

∂ai
+ gik

∂κk

∂a j
= 0. (B 57)
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Using the covariant derivative, the Killing equations (B 57) can be recast as

(£κg)ij = (∇iκ
k)gkj + (∇jκ

k)gik = (∇iκj)+ (∇jκi)= 0. (B 58)

Let us note that a Killing vector is always divergence-free, since the contraction of
the 2-contravariant metric tensor gij with the 2-covariant tensor appearing in (B 58)
gives 2∇iκ

i
= 0. The Lie-derivative theorem (see § 2.2) implies that the vector field κ

generates a flow ft :M→M, which leaves invariant the metric g, since f ∗t g= g. Thus
the flow ft, induced by the Killing vector field κ , generates a family of isometries.
Since the operators [g, ]g, ?g, and d?g are natural with respect to diffeomorphism we
obtain [ f ∗t , Op] = 0, with Op ∈ {[g, ]g, ?g, d?g}. Taking the derivative of [ f ∗t , Op] = 0
with respect to time t at t= 0, we obtain (see, e.g., Fecko 2006, § 8.3, p. 171)

[£κ,Op] = 0, Op ∈ {[g, ]g, ?g, d?g}. (B 59a,b)

B.10. Riemannian connection and covariant derivative
The velocity vector field lies in the tangent bundle, and so the acceleration (the
‘velocity of the velocity’) lies in the tangent bundle of the tangent bundle. The
acceleration of the fluid is the rate of change of the velocity vector field v in the
direction v of a trajectory t→ ϕt (with ϕ̇t(a)= v(t, ϕt(a))) and is thus a special case
of what is called the directional derivative. For clarity of this exposition and leaving
apart physical considerations about acceleration, we assume now that the vector field
v is time-independent. We also consider another time-independent vector field u. The
directional derivative of u in the direction of the vector field v, which generates the
flow ϕt, is noted ∇vu and is defined by

∇vu(a)= lim
t→0

P∗
‖
u(ϕt(a))− u(a)

t
, (B 60)

where P∗
‖
u(ϕt(a)) denotes a backward parallel transport of the vector u(ϕt(a)). Since

in an Euclidean space Rd all tangent spaces are the same and identified with Rd,
the backward parallel transport P∗

‖
is just an infinitesimal rigid translation or shift,

which alters neither length nor direction of shifted vectors. However in the case of
a manifold M, the vector u(ϕt(a)) belongs to the tangent space TMϕt(a), while the
vector u(a) belongs to TMa. Such vectors lie in different vector spaces and thus their
difference by using rigid translation has no meaning. Therefore, on a manifold we
need to introduce a rule of parallel transport (satisfying suitable requirements) as a
linear mapping connecting two different tangent spaces, namely

P‖,ϕ,a,b : TMa→ TMb=ϕt(a)

w 7→P‖,ϕ,a,bw.

}
(B 61)

Note that the rule of parallel transport takes as input not only the edge point a and
b, but also a path ϕ connecting them. So, if a vector field u is given at the point
a, in addition to a path from a to b, the parallel transport of u is uniquely defined
to the point b. Given another path the parallel transport is unique as well, but the
resulting transported vectors may well be different. The path dependence of parallel
transport is an important and typical feature, which enables one to speak about the
curvature of the manifold. In fact the only situation in which all parallel transport is
independent of path is when there is no curvature. In spite of this, the infinitesimal
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limit in (B 60) is independent of the choice of the curve, so that it may be used to
define the so-called covariant derivative ∇wu of u in the direction w, for any given
vector w ∈ TMa, since the limit does not depend on how w is extended to a vector
field on the whole manifold. In addition, as we shall see, covariant derivative and
parallel transport can be extended to tensors. Finally, observe that the vanishing of
the covariant derivative on some curve t→ ϕt amounts to stating that the vector field
u behaves as if its values along the curve ϕt were arising by parallel transport to
the whole curve of the value taken at a particular point on the curve. Such a field
along a curve is called an autoparallel field. The covariant derivative thus measures
the deviation from being autoparallel. We have seen that the infinitesimal version of
the parallel transport rule allows one to define a differentiation of one vector field with
respect to another one; this differentiation process is called a linear connection and is
noted ∇. In fact the role of the parallel transport and the covariant derivative can be
reversed. Indeed, when it is technically feasible to perform the operation of covariant
derivative, one can construct a parallel transport rule, which is simply obtained by
performing the transport in such a way that the covariant derivative vanishes. This is
the usual way of introducing the concept of linear connection on a manifold, which
we now state formally.

To each vector field w ∈ T 1
0 (M), one associates an operator ∇w, the covariant

derivative along the field w, satisfying the following properties:

(i) it is a linear operator on the tensor algebra, which preserves the degree

∇w : T q
p (M)→ T q

p (M), (B 62)
∇w(21 + λ22)=∇w21 + λ∇w22, 21, 22 ∈ T q

p (M), λ ∈R; (B 63)

(ii) it is a derivative, i.e. it satisfies the Leibniz rule

∇w(21⊗22)=∇w21⊗22+21⊗∇w22, 21 ∈T q1
p1
(M), 22 ∈T q2

p2
(M); (B 64)

(iii) it is F -linear with respect to w, i.e. ∇v+λw =∇v + λ∇w;
(iv) ∇wf =w( f )= £wf , ∀f ∈F(M)= T 0

0 (M);
(v) ∇w commutes with the operation of contracted multiplication.

Given (U, φ) an admissible local chart on a d-dimensional manifold M, the natural
basis for T 1

0 (U) is {∂/∂ai}16i6d, while the natural basis for T 0
1 (U) is the dual basis

{dai
}16i6d. The covariant derivative is uniquely specified by the coefficients of linear

connection Γ i
jk(a) with respect to the natural basis and are functions defined by

∇i∂j =: Γ
k

ij ∂k, ∇i da j
=−Γ

j
ki dak, ∇i :=∇∂i, (B 65a−c)

with the notation ∂i ≡ ∂/∂ai. Let us note that if 2 ∈ T q
p (M), then the covariant

derivative (also called the absolute differential) ∇2 = ∇`2 da` = ∇`2 ⊗ da` is a
tensor of type (q, p+ 1). Therefore if 2 ∈ T q

p (M), then ∇2 ∈ T q
p+1(M) with

∇2=∇`2
i1...iq
j1...jp

∂

∂ai1
⊗ · · · ⊗

∂

∂aiq
⊗ da` ⊗ da j1 ⊗ · · · ⊗ da jp, (B 66)

with

∇`2
i1...iq
j1...jp = ∂`2

i1...iq
j1...jp + Γ

i1
ik 2

ki2...iq
j1...jp + all upper indices− Γ l

ij12
i1...iq
lj2...jp − all lower indices.

(B 67)
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Geometric formulation of the Cauchy invariants in flat and curved spaces 469

Under a change of natural basis, resulting from a change of coordinates (ai)16i6d 7→

(ãi
:= ãi(a))16i6d, the following transformation holds:

Γ̃ i
jk =

∂ ãi

∂al

∂am

∂ ã j

∂an

∂ ãk
Γ l

mn +
∂ ãi

∂al

∂2al

∂ ã j∂ ãk
. (B 68)

From this expression, we observe that the coefficients of the linear connection Γ i
jk,

called the Christoffel symbols of the second kind, are not tensors since they do not
satisfy the tensoriality criterion given by the change of coordinate formula for the
components of a tensor (B 16). On a C k (k > 2) manifold a connection is said to
be of class C r if, in all charts of an atlas, the Γ i

jk are of class C r. If r 6 k − 2 the
definition is coherent and does not depend on the atlas. If 2 is of class C k−1 and the
connection of class C k−2, then ∇2 is of class C k−2.

Let (M,∇) be a manifold endowed with a linear connection, ∇ the corresponding
covariant derivative operator, t → γt a curve on M, and V ∈ T 1

0 (M). The absolute
derivative of the field V along γ is defined as

DV(t)
Dt
:=∇γ̇V. (B 69)

The vector field V on γ is called autoparallel if its absolute derivative along γ
vanishes, i.e. if the right-hand side of (B 69) vanishes. The straight lines that result
from iteration of the infinitesimal parallel transport of the velocity vector, i.e. the
trajectories a 7→ γt(a), a∈M, with zero acceleration (∇γ̇ γ̇ = 0), are called the affinely
parametrised geodesics on (M,∇).

A fundamental object associated to a manifold (M,∇) with a linear connection is
the torsion operation t, defined by

t : T 1
0 (M)× T 1

0 (M)→ T 1
0 (M)

(u, v) 7→ t(u, v)=∇u∇v −∇v∇u − [u, v].

}
(B 70)

We observe that t is antisymmetric since t(u, v)=−t(v, u). The torsion tensor field
τ ∈T 1

2 (M) is defined by τ(α, u, v)=α(t(u, v)), for all u, v ∈T 1
0 (M) and α ∈31(M)=

T 0
1 (M). Using the natural basis one has [∂/∂a j, ∂/∂ak

] = 0, so that the components of
τ are given by

τ i
jk = Γ

i
jk − Γ

i
kj. (B 71)

On a Riemannian manifold there exists a unique linear connection such that τ = 0 and
∇g = 0 (i.e. ∇igjk = ∇ig jk

= 0). Such a connection is called a Riemann–Levi-Civita
(RLC) connection. The condition τ = 0 means that the connection ∇ is torsion-free
and thus that the Christoffel symbols are symmetric. The condition ∇g = 0, which
is equivalent to stating that ∇ is a metric connection, ensures the preservation of
length of vectors, which are generated by parallel transport. For an RLC connection
the Christoffel symbols can be expressed in terms of the partial derivatives of the
metric tensor g:

Γ i
jk =

1
2 gil(∂jgkl + ∂kgjl − ∂lgjk), Γ i

jk = Γ
i

kj. (B 72)

Let (M, g,∇, µ) a Riemannian manifold endowed with a RLC connection ∇ and
a volume form µ. If v = vi∂i, then

divµv =∇iv
i
=

1
√

g
∂i(
√

gvi). (B 73)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 b

ib
lio

th
eq

ue
, o

n 
25

 Ju
l 2

01
7 

at
 0

8:
34

:2
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
40

2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.402


470 N. Besse and U. Frisch

Commonly used differential operators such as the exterior derivative or the codifferential
can be expressed in terms of covariant derivatives (Choquet-Bruhat et al. 1977,
§ V.B.4, p. 316; see also de Rham (1984), chap. V, § 26, p. 106).

A detailed description of linear connections and parallel transport can be found in
Choquet-Bruhat et al. (1977, § V.B.1, p. 300) and Fecko (2006, § 15.2, p. 372). We
refer the reader to Choquet-Bruhat et al. (1977, § V.B.2, p. 308 and chap. V) and
Fecko (2006, § 15.3, p. 382 and chap. 15) for more details about RLC connections
(e.g., curvature tensor).

B.11. Incompressible or divergence-free vector fields

Let (M, g, ∇, µ) be a Riemannian manifold endowed with an RLC connection ∇
and a volume form µ. We say that a vector field v ∈ T 1

0 (M) is incompressible or
divergence-free (with respect to µ) if divµv = 0. A divergence-free time-dependent
smooth vector field v ∈T 1

0 (M) is the infinitesimal generator of a one-parameter family
of volume-preserving smooth maps ϕt :M→M, which satisfy

ϕ̇t :=
dϕt

dt
= v(t, ϕt), ϕ0 = e := Identity. (B 74a,b)

Then v is incompressible (i.e. divµv= 0) if and only if the flow ϕt :M→M is volume
preserving; that is the local diffeomorphism ϕt : U → V is volume preserving with
respect to µ|U and µ|V for all U ⊂ M. Let us introduce Jµ(ϕt), the Jacobian of the
flow ϕt with respect to the volume form µ, defined by

Jµ(ϕt)= ϕ
∗µ/µ. (B 75)

Then the time evolution of the Jacobian Jµ(ϕt) is given by the classical differential
identity

d
dt

Jµ(ϕt)= Jµ(ϕt)∇iv
i
◦ ϕt. (B 76)

From (B 76) we directly see that the volume-preserving property of the flow, in other
words incompressibility, ϕt, i.e. Jµ(ϕt)= 1, is equivalent – as in a flat space – to the
divergence-free condition for the vector field v, i.e ∇iv

i
= 0. The differential identity

(B 76) can be easily proved from the Lie-derivative theorem (see § 2.2), which states
that

d
dt
ϕ∗t µ= ϕ

∗

t (∂tµ+ £vµ), (B 77)

where £vµ is the Lie derivative of the volume form µ with respect to the vector field
v. From a geometric point of view, the Lie derivative of the form µ measures the
rate of change of volume of a parallelepiped spanned by d vectors that are pushed
forward by the flow ϕt of v (see § 2.2). Indeed, dividing (B 77) by µ, and using the
properties ∂tµ= 0, and £vµ=: (divµv)µ=∇iv

iµ, we obtain

d
dt

Jµ(ϕt)= [ϕ
∗

t (∇iv
iµ)]/µ= [(∇iv

i
◦ ϕt)ϕ

∗

t µ]/µ= Jµ(ϕt)∇iv
i
◦ ϕt. (B 78)
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B.12. Integration of differential forms and the Stokes theorem
The standard p-simplex in an oriented Euclidean space Rp, is the oriented convex
closed set Sp= {x∈Rp

| 06 xi 6 1,
∑p

i=1 xi 6 1}. The vertices, which generate Sp⊂Rp,
are the p+ 1 points V0 = (0, . . . , 0), V1 = (1, 0 . . . , 0), . . . , Vp(0, . . . , 0, 1). We shall
write Sp= (V0, . . . ,Vp). Opposite to each vertex Vk there is the kth face of Sp, which
is not a standard Euclidean simplex, sitting as it does in Rp instead of Rp−1. We shall
rather consider it as a singular simplex in Rp. In order to do this we must exhibit a
specific map f k

p−1 : Sp−1→ Sp given by

f 0
p−1(y

1, . . . , y p−1)=

(
1−

p−1∑
i=1

yi, y1, . . . , y p−1

)
, (B 79)

and
f k
p−1(y

1, . . . , y p−1)= (y1, . . . , yk−1, 0, yk, . . . , y p−1), (B 80)

if k 6= 0. A C m-singular p-simplex on a C r-manifolds M, 16m6 r, is a C m-map Sp :

Sp→M. The points Sp(V0), . . . , Sp(Vp) are the vertices of the singular p-simplex Sp

and the maps Sp ◦ f k
p−1 : Sp−1→M are called the kth face of the singular p-simplex Sp.

We emphasise that there is no restriction on the rank (dimension of the image in M)
of the map Sp; for example the image of Sp, which is also denoted by Sp may be a
single point in M. A (C m-singular) p-chain cp on M is a finite linear combination with
real coefficients λj ∈R of C m-singular p-simplexes {Sp,j}16j6n; that is cp=

∑n
j=1 λjSp,j.

The boundary of a singular p-simplex Sp is the (p− 1)-chain ∂Sp defined by

∂Sp =

p∑
k=0

(−1)kSp ◦ f k
p−1, (B 81)

and that of a singular p-chain is obtained by extending the operator ∂ from simplexes
to chains by linearity. For example, in R2 the 2-simplex is a triangle S2= (V0,V1,V2),
and its boundary is the 1-chain ∂S2= (V1,V2)− (V0,V2)+ (V0,V1). Using the relation
f j
p−1 ◦ f j

p−2 = f i−1
p−2 ◦ f i−1

p−2 for j< i, we can verify the property

∂2
= ∂ ◦ ∂ = 0. (B 82)

The singular p-simplex Sp : Sp→ M is the natural object over which one integrates
p-forms of M via the pullback∫

Sp

α =

∫
Sp

S∗pα, α ∈3p(M). (B 83)

Integration of a p-form over a p-chain is easily obtained by linear extension. Finally,
we give the Stokes theorem on chains. If c is any p-chain and α ∈3p−1(M), then∫

c
dα =

∫
∂c
α. (B 84)

A detailed description of the Stokes theorem on chains can be found in Abraham et al.
(1998, § 7.2C, p. 495) and Frankel (2012, § 3.3, p. 110 and § 13.1, p. 333).
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B.13. From local to global geometry: Betti numbers and Hodge’s generalisation of
the Helmholtz decomposition

Throughout our study of hydrodynamics using a geometrical point of view, we have
encountered questions that depend on the global topological structure of the space in
which the flow takes place. One frequently occurring example is the need to know
under what conditions a differential form that is closed (i.e. has a vanishing exterior
derivative) is also exact (i.e. is the exterior derivative of some other form). Another
instance has do with the generalisation of the well-known Helmholtz decomposition.
The latter states that in the full 3D space, any square integrable vector field can be
orthogonally decomposed into the sum of two vector fields, one being a gradient and
the other one a curl. In terms of differential forms this amounts to decomposing a
differential form into the sum of an exact form and of a co-exact form. Actually, the
correct decomposition, called the Hodge decomposition, has sometimes a third term,
which is harmonic (of vanishing Laplacian).

The appropriate tool to address such global topological issues is known as
cohomology, a central subject in modern mathematics. Here we give only a glimpse
of some key results that matter for the geometrical approach to fluid mechanics. The
emphasis will be on Betti numbers that give necessary and sufficient conditions for a
closed p-form to be exact.

Let M (respectively N) be a differentiable manifold of dimension d (respectively n).
Singular p-chains have been defined in § B.12. The collection of all singular p-chains
of M with coefficients in R forms an Abelian (commutative) group, the (singular)
p-chain group of M with coefficients in R, written Cp(M;R). The boundary operator
∂ defines the homomorphism ∂ : Cp(M; R)→ Cp−1(M; R). Given a map ϕ :M→ N
we have an induced homomorphism ϕ∗ : Cp(M; R) → Cp(N; R) and the boundary
homomorphism ∂ is natural with respect to such maps, i.e. ∂ ◦ ϕ∗= ϕ∗ ◦ ∂ . We define
a (singular) p-cycle to be a p-chain cp whose boundary is 0. The collection of all
p-cycles,

Zp(M;R) := {cp ∈Cp | ∂cp = 0} = ker ∂ :Cp→Cp−1, (B 85)

that is, the kernel of the boundary homomorphism ∂ , is a subgroup (the p-cycle group)
of the chain group Cp. We define a p-boundary βp to be a p-chain that is the boundary
of some (p+ 1)-chain. The collection of all such chains

Bp(M;R) := {βp ∈Cp | βp = ∂cp+1, for some cp+1 ∈Cp+1} = Im ∂ :Cp+1→Cp, (B 86)

the image or range of ∂ , is a subgroup (the p-boundary group) of Cp. In addition,
∂β = ∂∂c= 0 implies that Bp ⊂ Zp ⊂Cp. When considering closed forms, we observe
that boundaries contribute nothing to integrals. Thus, when integrating closed forms,
we may identify two cycles if they differ by a boundary. Therefore we say that
two cycles cp and c′p in Zp(M; R) are equivalent or homologous if they differ by a
boundary, that is, an element of the subgroup Bp(M; R) of Zp(M; R). The quotient
group

Hp(M;R) :=
Zp(M;R)
Bp(M;R)

, (B 87)

is called the pth homology group. When Bp and Zp are infinite-dimensional, in many
cases Hp is nevertheless finite-dimensional. For example, this is the case when M is a
compact finite-dimensional manifold. The dimension of the vector space Hp is called
the pth Betti number, written bp = bp(M) and defined by

bp(M) := dim Hp(M;R). (B 88)
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In other words, bp is the maximum number of p-cycles on M, such that all real
linear combinations with non-vanishing coefficients are never a boundary. Since ϕ∗
commutes with the boundary homomorphism ∂ , we know that ϕ∗ takes cycles into
cycles and boundaries into boundaries. Thus ϕ∗ sends homology classes into homology
classes, and we have an induced homomorphism ϕ∗ : Hp(M; R) → Hp(N; R). We
now give some fundamental examples. If M is compact (path-)connected (any two
points of M can be connected by a piecewise smooth curves) then H0(M, R) = R
and b0(M) = 1. If M is compact but not connected, i.e. it consists of k connected
pieces then H0(M, R)= Rk and b0(M)= k. If M is a d-dimensional closed manifold
(compact manifold without boundary), then Hp(M, R) = 0 and bp(M) = 0, for p > d.
If M is compact and simply connected (i.e. path-connected and every path between
two points can be continuously transformed, staying on M, into any other such path
while preserving the two endpoints in question; in other words M is connected and
every loop in M is contractible to a point) then H1(M,R)= 0 and b1(M)= 0. More
examples can be found in Frankel (2012, § 13.3, chap. 13, p. 347).

We set Zp(M; R) the subspace of 3p(M) constituted of all closed p-forms, also
called p-cocycles. We set Bp(M;R) the subspace of Zp(M;R) constituted of all exact
p-forms, also called p-coboundaries. Integration allows us to associate to each closed
p-form on M a linear functional on p-cycles. This linear functional remains the same
if we add to a closed p-form an exact p-form or if we add to a p-cycle a p-boundary.
Therefore this linear functional defines a linear transformation from the quotient space
Zp(M;R)/Bp(M;R) to H∗p(M;R) that is the dual space of Hp(M;R). This dual space
is called the pth cohomology vector space and is noted Hp(M; R). Moreover, it can
be shown that this linear functional is an isomorphism: this is the celebrated de Rham
theorem (see, e.g., Frankel 2012, § 13.4, chap. 13, p. 355). Therefore we have

Hp(M;R) :=H∗p(M;R)=
Zp(M;R)
Bp(M;R)

. (B 89)

Two closed forms are equivalent or cohomologous if they differ by an exact form. As
a consequence a closed p-form is exact if and only if its integral on any p-cycles
vanishes or if it is cohomologous to zero. Since a finite-dimensional vector space has
the same dimension as its dual space, we have dim Hp(M;R)= bp(M) for M compact,
where bp(M) is the pth Betti number. Thus bp(M) is also the maximum number of
closed p-forms on M, such that all linear combinations with non-vanishing coefficients
are not exact. The knowledge of the Betti numbers of a given manifold M for p > 1
yields an exact quantitative answer to the question about exactness of a closed p-form:

a closed p-form is exact if and only if bp(M)= 0. (B 90)

From the Poincaré lemma (see, e.g., Abraham et al. 1998, Lemma 6.4.18), if M
is a compact d-dimensional contractible manifold (see § B.1 for the definition), all
the Betti numbers p > 1 vanish, i.e. b1(M) = · · · = bd(M) = 0, and b0(M) = 1.
Contractibility is, however, an excessively strong constraint to ensure the equivalence
of closeness and exactness. For p-forms of a given degree p, the vanishing of just
the Betti number, bp(M) is actually sufficient. Let us remark that from the duality
between the finite-dimensional vector spaces Hp(M; R) and H∗p(M; R) exactness of
p-form can be determined from the topological properties of M.

The Laplace–de Rham operator 1H : 3
p(M) → 3p(M) is defined by 1H :=

dd? + d?d = (d + d?)(d + d?). A form α for which 1Ha = 0 is called harmonic. Let
Hp(M) := {α ∈3p(M) |1Hα = 0} denote the vector space of harmonic p-forms. If M
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is a closed Riemannian manifold (i.e. a compact boundaryless oriented Riemannian
manifold) and α ∈3p(M), then 1Hα= 0 if and only if dα= 0 and d?α= 0. If M is a
compact Riemannian manifold with boundary, the condition that dα = 0 and d?α = 0
is now stronger than 1Hα = 0. Thus the vector space of harmonic p-form is defined
by Hp(M)= {α ∈3p(M) | dα= d?α= 0}. The Hodge theorem (see, e.g., Frankel 2012,
Theorem 14.28, chap. 14, p. 371; see also de Rham (1984), Theorem 22, chap. V,
§ 1, p. 131) states that if M is a closed Riemannian manifold, then the vector space
of harmonic p-form is finite-dimensional and the Poisson equation 1Hα = ρ has a
solution if and only if ρ is orthogonal to Hp(M), that is 〈h, ρ〉g= 0, for all h∈Hp(M)
and where (see § B.9)

〈α, β〉g :=

∫
M
α ∧ ?β =

∫
M
((α, β))gµ, α, β ∈3p(M). (B 91)

If h1, h2, . . . , hq is an orthonormal basis of Hp(M) and β ∈ 3p(M), then β − h :=
β −

∑
i〈β, hj〉ghj is orthogonal to Hp(M) and so, by Hodge’s theorem we can solve

the equation 1Hα = β − h for α ∈3p(M). In other words, for any β ∈3p(M) on a
closed Riemannian manifold M we can write

β = d(d?α)+ d?(dα)+ h. (B 92)

Thus any p-form β on a closed Riemannian manifold M can be written as the sum of
an exact p-form d(d?α), a co-exact p-form d?(dα) and a harmonic p-form h. Hence,
we obtain the Hodge decomposition

3p(M)= d3p−1(M)⊕ d?3p+1(M)⊕Hp(M), (B 93)

where the three subspaces are mutually orthogonal. As already observed the Hodge
decomposition generalises and extends the Helmholtz decomposition, for which the
harmonic term is absent (because in Rd, the 1-cohomology H1

=0). In particular, from
the Hodge decomposition, if β ∈ 3p−1(M) is closed on a closed manifold M, then
β = dα + h where α ∈ 3p−1(M) and h ∈Hp(M). Thus in each p-cohomology vector
space there is a unique harmonic representative, or in other words the spaces Hp(M)
and Hp(M;R) are isomorphic:

Hp(M;R)≡Hp(M). (B 94)

The Hodge theorem and decomposition have been extended to non-compact spaces by
de Rham (1984, see chap. V, § 32, p. 136) and to a compact Riemannian manifold
with boundary (see, e.g., Abraham et al. (1998), § 7.5, p. 541; see also Frankel
(2012), § 14.3, p. 375 and references therein). In the latter case, the space of closed
(respectively exact) p-forms must be replaced by the space of normal p-forms that are
closed (respectively exact). Furthermore, the space of co-closed (respectively co-exact)
p-forms must be replaced by the space of co-closed (respectively co-exact) tangent
p-forms (Schwarz 1995). Here, ‘normal’ means with vanishing tangential components
and ‘tangent’ with vanishing normal components.

Finally we recall the Bochner theorem (see, e.g., Frankel 2012, Theorem 14.33,
§ 14.2, p. 374), which states that if a closed Riemannian manifold M has positive Ricci
curvature, then a harmonic 1-form must vanish identically, and thus M has first Betti
number b1 = 0 and 1-cohomology H1(M,R)= 0.
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