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“Generalized Hydrodynamics” (GHD) stands for a model that describes one-dimensional 
integrable systems in quantum physics, such as ultra-cold atoms or spin chains. Mathemati-
cally, GHD corresponds to nonlinear equations of kinetic type, where the main unknown, 
a statistical distribution function f (t, z, θ), lives in a phase space which is constituted by 
a one-dimensional position variable z, and a one-dimensional “kinetic” variable θ , actually 
a wave-vector, called “rapidity”. Two key features of GHD equations are first a non-local 
and nonlinear coupling in the advection term, and second an infinite set of conserved 
quantities, which prevent the system from thermalizing. To go beyond this, we consider 
the dissipative GHD equations, which are obtained by supplementing the right-hand side 
of the GHD equations with a non-local and nonlinear diffusion operator or a Boltzmann-
type collision integral. In this paper, we deal with new high-order numerical methods 
to efficiently solve these kinetic equations. In particular, we devise novel backward semi-
Lagrangian methods for solving the advective part (the so-called Vlasov equation) by using 
a high-order time-Taylor series expansion for the advection fields, whose successive time 
derivatives are obtained by a recursive procedure. This high-order temporal approximation 
of the advection fields is used to design new implicit/explicit Runge–Kutta semi-Lagrangian 
methods, which are compared to Adams–Moulton semi-Lagrangian schemes. For solving 
the source terms, constituted by the diffusion and collision operators, we use and compare 
different numerical methods of the literature.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Over the last decades, significant advances in experimentally realizing and manipulating quantum many-body systems 
have been made. In particular, the platform of ultracold atoms has demonstrated great success, owing to its versatility; 
by controlling the trapping geometry or interactions of the atoms, the effective Hamiltonian of the system can be tuned 
to follow various condensed matter or field theory models [16,28,53]. Hence, ultracold gases are sometimes referred to as 
‘analog quantum simulators’ [15,56].
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However, the behavior of such interacting quantum many-body systems is notoriously complex, thus leading to a high 
demand for theoretical methods capable of simulating their dynamics. Particularly successful theoretical developments in-
clude, among others, the Density Matrix Renormalization Group [34,96,97] and quantum Monte Carlo methods [1,47,88]. 
Alternative to treating microscopic interactions, emergent properties of interacting quantum many-body system can often 
be described in terms of quasi-particles representing collective degrees of freedom. The concept of quasi-particles was orig-
inally developed to study the transport of electrons in a solid [66], but has since been employed to describe a number of 
phenomena, such as colossal magnetoresistance [76] and superconductivity [68].

In integrable systems, quasi-particles descriptions are especially powerful, as they provide an exact solution following the 
Bethe Ansatz [13,70,51,64]. Such systems include, but are not limited to, repulsively interacting Bose [72,71] and Fermi [106,
50] gases and the anisotropic XXZ Heisenberg spin chain [84]. Integrable systems share a number of key properties; they 
are one-dimensional, all associated multi-particle scattering matrices factorize into two-particle matrices, and they obey an 
infinite number of conservation laws. Further, by virtue of their restricted geometry, the systems are intrinsically strongly 
correlated and exhibit phenomena not found in higher-dimensional system, such as the absence of thermalization [90,27,67]. 
The resulting dynamics and relaxation properties are thus rather particular (see the special issue [23]), as is perhaps best 
demonstrated in the seminal quantum Newton’s cradle experiment [63].

Recently, the development of the theory of “Generalized Hydrodynamics” (GHD) [24,7] has drastically simplified the 
study of quantum many-body dynamics in integrable system by formulating the conservation laws as a kinetic equation 
for the quasi-particles. The theory derives it name from the generalized Gibbs ensemble [92,91]; these statistical ensembles 
describe the non-thermal, maximum-entropy steady states of integrable models. Following its inception, a large number of 
extensions have been made to GHD (see the special issue [4]), treating the spreading of entanglement and correlations [2], 
transport properties [83,19] and perturbations to integrability [79,6]. The validity of GHD and some of its extensions have 
been demonstrated following observations from several experiments with (quasi) one-dimensional Bose gases [95,75,79,25]
(see also the review [18]).

However, despite its significance and impact [81,80,42,104,40,94,78], no systematic approach to develop and compare 
numerical methods has been done in relation to GHD, with most studies employing only low-order schemes [20,3,21,73,5]. 
For advancing the use of GHD, especially for numerical modeling of experiments, it is very useful to further develop and test 
numerical techniques for solving the associated kinetic equations. In this work, we develop a set of novel backward semi-
Lagrangian (BSL) schemes of high-order (implicit/explicit Runge–Kutta semi-Lagrangian schemes), which give very accurate 
results proved by comparison with other high-order semi-Lagrangian schemes (Adams–Moulton). Our results represent the 
highest numerical precision solution of the GHD equation so far. Further, we present several versions of BSL hybrid schemes 
for solving the GHD equation in the presence of diffusion (higher order corrections to the typical Euler scale formulation of 
GHD) or non-integrable perturbations (accounted for by a Boltzmann-type collision integral). Of the latter we here treat the 
effect of highly energetic collisions in a Bose gas, which can lead to 3D excitations of the atoms in the trapping potential 
used to confine the gas. However, the methods presented can be generalized to a number of other relevant perturbations [6,
48,43,85] in a straightforward manner.

This paper is organized as follows: In Section 2, we introduce the theory of Generalized Hydrodynamics (GHD) and 
present the key equations, namely the advective and dissipative GHD equations. Of the latter, we focus on two particular 
dissipative source terms: the diffusion operator and the Boltzmann-type collision integral. Next, in Section 3, we derive exact 
time-derivatives of the GHD advection fields, while in Section 4 we discuss how to solve the dressing equation ubiquitous 
in GHD. In Section 5, we recall the backward semi-Lagrangian method, followed, in Section 6, by the presentation of various 
high-order time discretization schemes. In particular, we develop novel implicit/explicit Runge–Kutta methods. In Section 7, 
we conduct a number of numerical benchmarks, testing the accuracy of BSL schemes for solving the advective GHD equation 
and BSL-hybrid schemes for solving the dissipative GHD equation. Finally, in Section 8, we present some concluding remarks.

2. The GHD equations

Here, we present the GHD equations in two steps. In Section 2.1, we first describe the GHD advection equation, which can 
be seen as a collisionless kinetic equation of Vlasov type with non-local and nonlinear advection fields. Then, in Section 2.2, 
we present two source terms for the right-hand side of the GHD equation, resulting in a advective-dissipative equation. The 
first source term is a diffusion operator (see Section 2.2.1), while the second one is a Boltzmann-type collision operator (see 
Section 2.2.2). Both operators are non-local and nonlinear, but their dissipation mechanisms and mathematical structures 
are very different.

2.1. The GHD advection equation

By virtue of the infinite number of conservation laws found in integrable systems, their emergent hydrodynamics consist, 
in principle, of an infinite set of continuity equations. Generalized Hydrodynamics employs the so-called “thermodynamic 
Bethe Ansatz” [102] to formulate all the conservation laws as a single kinetic equation. Following the thermodynamic Bethe 
Ansatz, the local equilibrium state of an integrable system is fully characterized by a density of quasi-particles ρp. The 
quasi-particles represent collective excitations of the system and are uniquely labelled by their wavevector θ , the rapidity, 
2
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which in the thermodynamic limit becomes a continuous parameter. Note that with θ having dimension 1/length, p =
h̄θ is a momentum. Assuming small variations between neighboring mesoscopic regions of the system, a single position-
dependent quasi-particle density describes the macrostate of the entire system. Large scale dynamics can then be viewed 
as the propagation of quasi-particles between different regions of the system. The mean propagation velocity of a given 
quasi-particle, dubbed the effective velocity, is highly dependent on interactions with other quasi-particles at the same point 
in space. At the lowest order (Euler scale), where all currents depend only on the local densities of conserved quantities, 
the propagation of the quasi-particles is purely ballistic. Expressions for the currents were first presented in [24,7] and later 
more rigorously proven in [33,17,45,22]. Including first-order positional derivatives of the densities in the current functions 
results in diffusive corrections to the quasi-particle propagation [36,37].

The most convenient formulation of the GHD equation is not in terms of the quasi-particle density ρp but rather the 
filling function f . The filling function is non-negative and can be seen as a statistical distribution function of particle 
occupation rate in the phase space, encoding the fraction of possible momentum states occupied by the particles. In fact, the 
functions ρp and f can be considered as two different sets of state coordinates, which each can be used to fully characterize 
the local equilibrium state [102]. They are related by the fundamental identity (12) specified below. Furthermore, each 
rapidity component of the filling function can be identified as a fluid mode [24,39]. Following GHD, the infinite set of 
advection equations for the fluid modes can be written as a single, two-dimensional advection equation for the filling 
function f = f (t, z, θ), namely

∂t f + veff ∂z f + aeff ∂θ f = 0, (1)

where t ∈ R+ , z ∈ R, and θ ∈ R, represent, respectively, the time, position and momentum (rapidity) variables [24,7]. The 
advection equation (1), which is the main equation of the GHD equations, must be supplemented with an initial condition, 
f (0, z, θ) = f0(z, θ). The effective velocity veff = veff(t, z, θ) is a non-local and nonlinear expression in terms of f . Similarly, 
the effective acceleration aeff = aeff(t, z, θ), accounting for inhomogeneous Hamiltonians [3], is also in general a non-local 
and nonlinear expression in terms of f . The effective velocity veff is defined by

veff := (∂θε)dr

(∂θ p)dr
, (2)

and the effective acceleration aeff is defined by

aeff := (−∂zε)dr

(∂θ p)dr
, (3)

where ε = ε(z, θ) and p = p(θ) are the single-particle energy and momentum, respectively. Note that aeff has the dimension 
of an acceleration if you divide by h̄m that is 1 in our scaling. Similar for veff . The exact expressions for ε and p depend 
on the integrable model in question. Meanwhile, the superscript dr denotes the dressing operation, which describes the 
modification of single-particle properties following interactions with other particles. Given a state f , the dressing operation 
is defined as

gdr(θ) = g(θ) +
∫
R

dθ ′ T (θ − θ ′) f (θ ′)gdr(θ ′). (4)

Here, T (θ) is the scattering kernel given by

T (θ) = ∂θϕ(θ)

2π
, (5)

with ϕ(θ) being the two-body scattering phase, which also depends on the specific model. Since the effective velocity (and 
in general the acceleration) are functionals of the distribution function f itself, it turns out that the GHD advection equation 
(1) is a nonlinear kinetic equation with a self-consistent coupling.

Note, the dressing operation defines the function gdr as the solution of an integral equation in the rapidity variable 
θ , with the given source term g , and where the other variables, i.e. (t, z), are fixed. Introducing the following shorthand 
notation for the action of an integral operator K̂ with kernel K on any function g ,(

K̂ g
)
(θ) :=

∫
R

dθ ′ K (θ, θ ′)g(θ ′), (6)

the dressing operation rewrites as

gdr = g + T̂ f gdr, (7)

and formally the dressing operator is (1 − T̂ f )−1, i.e. gdr = (1 − T̂ f )−1 g , for any function g .
3
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As for collisionless kinetic equations of Vlasov type, a conservative form of the GHD equations, written in terms of the 
quasi-particle density ρp = ρp(t, z, θ), exists and reads as

∂tρp + ∂z
(

veff ρp
)+ ∂θ

(
aeff ρp

) = 0. (8)

Likewise, the effective velocity and acceleration can be expressed in terms of the quasi-particle density ρp yielding the 
equations

veff(t, z, θ) = ∂θε(z, θ) + 2π

∫
R

dθ ′ T (θ − θ ′)ρp(t, z, θ ′)
(

veff(t, z, θ ′) − veff(t, z, θ)
)
, (9)

and

aeff(t, z, θ) = −∂zε(z, θ) + 2π

∫
R

dθ ′ T (θ − θ ′)ρp(t, z, θ ′)
(
aeff(t, z, θ ′) − aeff(t, z, θ)

)
. (10)

In fact, the conservative form of the GHD equations (8)-(10) is equivalent to the advective form of the GHD equations, which 
are constituted by equations (1), (2) and (3). Indeed, using the density of states ρs = ρs(t, z, θ), defined by

ρs := 1dr

2π
, (11)

and the fundamental definition,

f := ρp

ρs
, (12)

we obtain, from the definitions of the dressing operation (4) and the scattering kernel T given by (5), that the equations 
(2)-(3) for the advection field F ≡ (veff, aeff)T are the same as (9)-(10). To pass from the advective form (1) to the con-
servative form (8), we use the relation (12), and the fact that the density of states ρs , defined by (11), satisfies the same 
conservation law as ρp, namely,

∂tρs + ∂z
(

veff ρs
)+ ∂θ

(
aeff ρs

) = 0. (13)

In Appendix A we show that the conservation law (13) for ρs can be recovered from the conservation law (8) for ρp. In 
addition, in Appendix A we show that the GHD equations preserve in time some integral invariants such as the total number 
of particles N , the total density of states J , the total energy E and an infinite number of entropy S . More precisely, for all 
t ∈R+ , we have,

d

dt
N(t) = 0, with N(t) =

∫
R

dz

∫
R

dθ ρp, (14)

d

dt
J (t) = 0, with J (t) =

∫
R

dz

∫
R

dθ ρs, (15)

d

dt
E(t) = 0, with E(t) =

∫
R

dz

∫
R

dθ ρpε, (16)

d

dt
S(t) = 0, with S(t) =

∫
R

dz

∫
R

dθ ρp�( f ), (17)

where the function � :R+ �→R is any smooth function.

The Lieb–Liniger model [72,71], which describes a one-dimensional Bose gas with repulsive point-like interaction, is 
among the most common models treated with GHD. Therefore, within the scope of this paper, we will concern ourselves 
only with this particular model. However, by virtue of the universal formulation of GHD, all results and methods presented 
can be generalized in a straightforward manner to other integrable models [39]. Given a gas of N bosons, the Lieb–Liniger 
Hamiltonian reads, after a rescaling s.t. h̄2

2m = 1

H = −
N∑ ∂2

∂z2
i

+ 2c
N∑

δ
(
zi − z j

)
, (18)
i i< j

4
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where c > 0 is the coupling constant of the atoms and zi the position of the i’th boson. For the Lieb–Liniger model, we have 
∂θϕ(θ) = 2c/(c2 + θ2). Further, the single-particle momentum and energy read

p = p(θ) := θ, (19)

and

ε = ε(z, θ) := θ2 + W (z, θ), (20)

respectively, where W = W (z, θ) is a general potential. Most commonly the potential W is an external trapping potential 
W (z, θ) = V (z) used to confine the atoms to a particular region in space. In this case, the effective acceleration simplifies 
to aeff(t, z, θ) = aeff(z) = −∂z V (z) [41]. Note that for the Lieb-Liniger model we have (∂θ p)dr = 1dr.

2.2. The dissipative GHD equation

In the presence of diffusion or perturbations to integrability, the GHD evolution of the filling function f takes the general 
form of a advective-dissipative equation

∂t f + veff ∂z f + aeff ∂θ f = N [ f ], (21)

where the source term N [ f ] is a nonlinear functional of the filling function f . Unlike the GHD advection equation (1), the 
dissipative GHD equation (21) no longer preserves the infinite set of conserved quantities, and thus enables thermalization. 
We will be studying two different nonlinear source terms N [ f ] in the following. First, the diffusion operator N = D, 
which accounts for high-order corrections to the GHD advection equation [36,37,5], and second the Boltzmann-type collision 
integral N = I , which accounts for non-integrable perturbations to the system [6,48,43]. Here, we will be treating an 
integrability-breaking perturbation in the form of 3D excitations of atoms in the Bose gas [69,79]. Generally, in the presence 
of either of these nonlinear source terms, the total number of particles N and the total energy E remain conserved, while 
entropies S decrease or increase monotonically, according to the choice of the sign convention (see [37,5,79]). However, 
due to simplifications made in the construction of the collision integral for the 3D excitations, the total energy is not 
fully conserved for all interaction strengths of the Lieb–Liniger model. Lastly, an important difference between these two 
dissipation operators is that the diffusion operator acts in the variable z locally (with a second-order derivative in this 
variable) and non-locally in the variable θ (with some integral operators in this variable), while the Boltzmann-type collision 
operator only acts in a non-local way in the variable θ (without any derivative in the variables z and θ ).

2.2.1. Diffusion operator
The GHD model can be extended by adding a diffusive term: While considering excitations with only one particle-hole 

pair above the reference state is sufficient to derive the GHD on the Euler scale, the diffusion arises due to simultaneous ex-
citation of multiple (at least 2) particle-hole pairs. The resonance conditions (i.e., the momentum and energy conservation) 
for the scattering of two pairs are fulfilled in a general case, which leads to the violation of the genuinely ballistic propaga-
tion of quasiparticles. More detailed analysis [37] shows that the subleading to ballistic expansion order in this propagation 
is diffusive (its contribution to the two-point correlation functions of conserved charge grows linearly in time).

For the advective form of the extended GHD equation (21), the diffusion operator reads [37,5],

D f [ f ] = 1

2ρs
(1 − f T̂ ) ∂z

(
(1 − f T̂ )−1ρs D̂ ∂z f

)
, (22)

which, notably, depends on the z-derivative of the filling function. Here, the kernel of the integral operator D̂ is given by

D(θ,α) = 1

ρ2
s (θ)

(
δ(θ − α)

∫
R

dγ W (γ ,α) − W (θ,α)
)
, (23)

where

W (θ,α) = ρp(θ)
(
1 − f (θ)

)[
T dr(θ,α)

]2∣∣veff(θ) − veff(α)
∣∣. (24)

In (24) the dressed scattering kernel T dr(θ, α) is the kernel of the operator (1 − T̂ f )−1 T̂ , i.e. T dr(θ, α) = ((1 − T̂ f )−1T (· −
α))(θ), or in other words the dressing of the function T (θ − α) as a function of its first argument θ . Even if the variables 
(t, z) are not explicitly written in (23)-(24), the kernels D(θ, α) and W (θ, α) depend on the time variable t and the position 
variable z, through the functions ρs, ρp, and f . In the presence of diffusion and an external potential V (z), the total number 
of quasi-particles N , defined by (14), and the total energy E , defined by (16), remain conserved throughout evolution [5]
(see Appendix B for a proof), while entropies S , defined by (17), decrease monotonically [37]. For this, it is more convenient 
to work with the conservative form of the GHD equations, namely
5
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∂tρp + ∂z
(

veff ρp
)+ ∂θ

(
aeff ρp

) = Dρp [ρp], (25)

where the corresponding diffusion operator Dρp [ρp] reads

Dρp [ρp] = 1

2
∂z
(
(1 − f T̂ )−1ρs D̂ ρ−1

s (1 − f T̂ ) ∂zρp
)
. (26)

Passing from the conservative form (25)-(26) to the advective form (21), with N [ f ] = D f [ f ] and D f [ f ] given by (22), is 
detailed in [37].

2.2.2. Boltzmann-type collision integral
In an experimental setting, the Lieb-Liniger model can be realized by tightly confining an ultracold Bose gas along two 

of its axes. Assuming the transverse confinement to be harmonic with trapping frequency ω⊥ and width l⊥ = √
h̄/mω⊥ , the 

dynamics of the gas is effectively restricted to a single position axis if the transverse level spacing h̄ω⊥ exceeds all internal 
energy scales of the gas [54,55,62,65]. However, real systems are often only quasi one-dimensional, as excited states of the 
transverse confinement can be populated through high energy collisions of atoms. Such collisions break the integrability 
of the system and eventually lead to thermalization [69]. To account for non-integrable scattering processes within the 
framework of GHD, one can construct a Boltzmann-type collision integral [48,43,6]. The construction of the collision integral 
accounting for transverse state-changing collisions is summarized in Appendix C; the resulting collision integral is given by

I[g] =
2∑

n=1

1

2

({
I+

h [g] − I−
p [g]}+ {

I−
h [g] − I+

p [g]}νβn
n
)
, (27)

where g is respectively the filling function f or the density of quasi-particles ρp, depending on whether the advective or 
conservative form of the extended GHD equations is considered [79,25]. Here, νn is the probability for an atom to be in the 
n’th transverse excited state, while β1 = 2 and β2 = 1 are the number of atoms changing state via the collisions. Note that 
the probability νn = νn(t) is a function of the time variable t . In addition, for solving the dissipative GHD equation with the 
Boltzmann-type collision integral (27), one must also solve the rate equations for the excitation probabilities νn(t), namely

dνn

dt
= 1

2
βn

{
�+

h − �+
p ν

βn
n
}
, (28)

where, for α ∈ {p, h},

�+
α = (2N)−1

∫
R

dz

∫
R

dθ ρs I+
α [ f ] = (2N)−1

∫
R

dz

∫
R

dθ I+
α [ρp]. (29)

The terms I±
α of eq. (27) are collision integrals of individual scattering processes, which for the advective form of the 

dissipative GHD equation (21) can be written in the form

I±
α [ f ](θ) = (2π)2h̄

m

∫
R±

dθ ′ |θ − θ ′| P	(|θ − θ ′|, |θ± − θ ′±|) fα(θ) fα(θ ′) fᾱ(θ±) fᾱ(θ ′±) ρs(θ
′)ρs(θ±)ρs(θ

′±). (30)

Here, ᾱ = h, for α = p and vice versa, while fp = f and fh = 1 − f . Further, P	(θ1, θ2) = 4c2θ1θ2/[θ2
1 θ2

2 + c2(θ1 +
θ2)

2] is the scattering probability, while θ± = 1
2 (θ + θ ′) + 1

2 (θ − θ ′)
√

1 ± 8/[(θ − θ ′)l⊥]2 and θ ′± = 1
2 (θ + θ ′) − 1

2 (θ −
θ ′)

√
1 ± 8/[(θ − θ ′)l⊥]2 are the rapidities after a collision leading to excitation or de-excitation of the transverse states, 

respectively. The integration ranges in equation (30) are the following: R+ is the whole real axis, and R− is comprised 
of those real values of θ ′ , which yield real θ− and θ ′− , i.e. R− = {θ ′ : θ ′ < θ − √

8/l⊥} ∪ {θ ′ : θ ′ > θ + √
8/l⊥}. Even if the 

variables (t, z) are not explicitly written in eqs. (27)-(30), the collision integrals I±
α [ f ](θ) depend on the time variable t and 

position variable z through the functions ρs and f .
Boltzmann-type collision integrals are explicitly constructed to preserve the total number of particles N . Generally, this 

is also the case for the total energy E , however, in the derivation of the collision integral (30) the backflow, describing a 
shift in all local rapidities following an excitation [71], was neglected. Hence, the associated energy shift is not accounted 
for and the total energy is not conserved, although for most experimentally realizable parameters of the Lieb–Liniger model 
the error is not too severe [79]. For more details, see Appendix C.

Again, the conservation of particle number is most obvious when examining its equivalent conservative form given by

∂tρp + ∂z
(

veff ρp
)+ ∂θ

(
aeff ρp

) = I[ρp]. (31)

The form of the collision integral I[ρp], which is originally constructed in [79], has the same form as equation (27), however, 
the collision integrals of the individual collision channels now read
6
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I±
α [ρp](θ) = (2π)2h̄

m

∫
R±

dθ ′ |θ − θ ′|P	(|θ − θ ′|, |θ± − θ ′±|)ρα(θ)ρα(θ ′)ρᾱ(θ±)ρᾱ(θ ′±), (32)

where ᾱ = h, for α = p and vice versa, and with ρᾱ = ρs − ρα .

3. Analytic time derivatives of the advection fields

In this section, we derive analytic time derivatives of the advection fields veff and aeff, which will be used to high-order 
schemes in time for solving the GHD advection equation (1). Indeed, knowing the advection fields and its time derivatives 
up to high order, we will obtain a high-order approximation of the advection fields at any time by using a time-Taylor series 
expansion (see also [99] where some Taylor series expansions are used). For this, we define auxillary advection fields weff

and beff as follows,

weff := 1dr veff, and beff := 1draeff.

Given the definition of the dressing equation (4), weff and beff solve the following equations,

weff(θ) = ∂θε +
∫
R

dθ ′ T (θ − θ ′) f (θ ′)weff(θ ′),

beff(θ) = −∂zε +
∫
R

dθ ′ T (θ − θ ′) f (θ ′)beff(θ ′),

where ε = ε(θ, z) = θ2 + V (z) is the one-particle Hamiltonian. Note that the filling function f is also a function of time and 
position, i.e. f = f (t, z, θ); although these arguments will be omitted in the following whenever they appear the same on 
either side of an equality. Differentiating weff in time, we obtain

∂t weff(θ) =
∫
R

dθ ′ T (θ − θ ′)∂t f (θ ′)weff(θ ′) +
∫
R

dθ ′ T (θ − θ ′) f (θ ′)∂t weff(θ ′).

Here, ∂t f (θ ′) is given through the GHD advection equation (1), implying that the time derivative of f is expressed in terms 
of the position and rapidity derivatives of f , and of other known quantities, such as the advection fields (veff, aeff). Defining 
the source term S w as

S w(θ) :=
∫
R

dθ ′ T (θ − θ ′)∂t f (θ ′)weff(θ ′),

we see that

∂t weff(θ) = Sdr
w (θ).

Likewise, a source term for beff can be defined such that

∂tbeff(θ) = Sdr
b (θ),

where

Sb(θ) =
∫
R

dθ ′ T (θ − θ ′)∂t f (θ ′)beff(θ ′).

Knowing the derivatives ∂t weff and ∂tbeff, the time derivatives of the advection fields can be computed following

∂t veff = ∂t weff − ∂t1dr veff

1dr
,

∂ta
eff = ∂tbeff − ∂t1draeff

1dr
,

(33)

where the unit-cell 1dr obeys the conservation law

∂t1dr + ∂z
(

veff 1dr)+ ∂θ

(
aeff 1dr) = 0. (34)
7
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Thereby, knowing both 1dr and the advection fields (veff, aeff), we can compute ∂t 1dr from (34) and in turn the time 
derivatives of the advection fields (veff, aeff) from (33). Higher-order time derivatives of the advection fields can be derived 
in similar fashion. If we let S(1)

w ≡ S w , we can construct higher-order source terms fulfilling

∂
(k)
t weff(θ) = (

S(k)
w
)dr

(θ),

where S(k)
w (θ) depends on all previous source terms S( j)

w (θ) with j < k. Of course, we have similar expressions for ∂(k)
t beff(θ)

in terms of S(k)

b (θ). For example, the second-order source term S(2)
w (θ) reads

S(2)
w (θ) =

∫
R

dθ ′ T (θ − θ ′)∂(2)
t f (θ ′)weff(θ ′) + 2

∫
R

dθ ′ T (θ − θ ′)∂t f (θ ′)∂t weff(θ ′). (35)

In order to obtain high-order time derivatives of f , such as ∂(2)
t f appearing in (35), we use the successive time derivatives 

of the GHD advection equation (1), where for any mixed derivative of f , containing some time derivatives, each time 
derivative of f is replaced by the (z, θ)-derivative of f through the GHD advection equation (1). In such a way, high-order 
time derivatives of f can be expressed only in terms of the (z, θ)-derivatives of f and of other known quantities, such as 
the previously calculated time derivatives of the advection fields (veff, aeff). In the same spirit, we use the successive time 
derivatives of equations (33)-(34) to obtain the high-order time derivatives of (veff, aeff) from those of (weff, beff). Finally, 
knowing the advection fields (veff, aeff) at time τ and their time derivatives up to the order k, we can obtain a high-order 
approximation of the advection fields at any time t following the time-Taylor series expansion,

veff(t) = veff(τ ) + (t − τ ) ∂t veff(τ ) + . . . + (t − τ )k

k! ∂
(k)
t veff(τ ),

aeff(t) = aeff(τ ) + (t − τ ) ∂ta
eff(τ ) + . . . + (t − τ )k

k! ∂
(k)
t aeff(τ ).

(36)

4. Solving the dressing equation

The dressing operation, given by equation (4), is ubiquitous in GHD, as it describes how a single particle, or bare function 
is modified in the presence of collective interactions. Importantly, a dressed quantity becomes a function of time and 
position (and of course rapidity) through the dependence on the filling function f (t, z, θ). Therefore, at every step of time 
propagation, the dressing operation presents a new set of equations to be solved.

To solve the dressing equation, we first discretize position and rapidity creating the grids zi ∈ [z1, z2, . . . , zNz ] and θ j ∈
[θ1, θ2, . . . , θNθ ]. Although the rapidity integral in equation (4) is taken over the whole real axis, in practice it is sufficient 
to integrate over the interval [θmin, θmax] containing the support in θ of the filling function f . Since the dressing operation 
is completely local in position, the equation can be solved independently for every point in position zi . Then, in discretized 
form, the dressing equation for a single point in position reads

gdr(θi) = g(θi) +
Nθ∑
j=1

w j T (θi − θ j) f (θ j)gdr(θ j), (37)

where w j are the quadrature weights for the corresponding discretization scheme of the rapidity axis. Note that the position 
and time arguments have been omitted entirely for a more compact notation, as they are the same on either side of the 
equality sign. The discretized form of the dressing equation (37) can be rewritten as

g(θi) =
Nθ∑
j=1

[
δi j − w j T (θi − θ j) f (θ j)

]
gdr(θ j), (38)

where δi j is the standard Kronecker symbol. Hence, equation (38) can be written in compact form as the matrix product g =
U · gdr, where the elements of the matrix U are Ui j = δi j − w j T (θi − θ j) f (θ j). Applying the dressing operation numerically 
thus amounts to solving the set of linear equations of equation (38) either through inverting the matrix U or, as in the 
case of the iFluid framework [81], using a subroutine such as MATLAB mldivide function [77], capable of leveraging 
symmetries of the matrix.

In general, when solving the dressing equation it is most convenient to employ the same discretization scheme used in 
the backward semi-Lagrangian method. Otherwise interpolation of the filling function f between the two grids must be 
performed at every evaluation of the dressing equation. Hence, for the entirety of this work, a uniform discretization of 
both the position and rapidity axis will be employed. For such discretization several quadrature rules exist to approximate 
this integral. Here, we test two of the most standard: the trapezoidal rule and the Simpson’s rule. Following the trapezoidal 
rule, the quadrature weights w j read
8
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Fig. 1. Comparison of effective velocity (2) calculated for the test state (39) using the trapezoidal (blue) and Simpson’s (red) rule to discretize the integral 
over rapidities featuring in the dressing equation (4). The effective velocity is calculated and plotted for increasingly fine discretization of the rapidity axis 
(Nθ is the number of grid points). Below, the difference between the two results is plotted. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

{w1,w2,w3, . . . ,wNθ −1,wNθ } = (θmax − θmin)

2(Nθ − 1)
{1,2,2, . . . ,2,1},

while for the Simpson’s rule they read

{w1,w2,w3,w4,w5, . . . ,wNθ −2,wNθ −1,wNθ } = (θmax − θmin)

3(Nθ − 1)
{1,4,2,4,2 . . . ,2,4,1}.

To compare the two quadrature rules, we compute the effective velocity (2) at different grid resolutions of the reference 
state

f0(θ) = 0.9

[
exp

(
− (θ − θB)2

2σ

)
+ exp

(
− (θ + θB)2

2σ

)]
, (39)

where θB = 2 and σ = 1/
√

2. The results can be seen in Fig. 1. Although a clear systematic difference between the two 
quadrature rules is apparent, the difference is nonetheless almost vanishing for Nθ > 100. Then, in order to keeps matters 
simple, for the entirety of this work the trapezoidal rule will be employed.

5. The backward semi-Lagrangian (BSL) method

The characteristic equations associated with the first-order PDE (1) are

dZ(t)

dt
= veff(t, Z(t),�(t)) , Z(t; t, z, θ) = z, (40a)

d�(t)

dt
= aeff(t, Z(t),�(t)) , �(t; t, z, θ) = θ, (40b)

while the filling function f is constant along the characteristics, i.e.,

f (t, z, θ) = f (s, Z(s; t, z, θ),�(s; t, z, θ)), ∀s ∈R. (41)

We recall that the advection field F := (veff, aeff)T is a functional of the filling function f , through the integral equations 
(2)-(3). Using the Cauchy–Lipschitz–Picard–Lindelöf theorem, existence and uniqueness of solutions (Z(t), �(t)) for ODEs 
(40) hold true provided that the advection field F(t, z, θ) is bounded in the time variable t and Lipschitz continuous in the 
9
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Fig. 2. Illustration of a single propagation step using a backward semi-Lagrangian scheme. The planes of the phase-space (z, θ) at times tn and tn+1 are 
drawn as rectangles, while their projection including a mesh indicating the discretization of the phase-space is shown in the back. Following the Lagrangian 
formalism, distribution f , whose values are known on the mesh at the starting time tn , is constant along the characteristic X(τ ) for τ ∈ [tn, tn+1] (solid 
blue line). In BSL schemes, the arrival point of the characteristic at the next time step X(tn+1) is assumed to coincide with the mesh xi j = (zi , θ j), while 
the departure point X(tn) (marked as a square) is unknown. The solution of the corresponding ODEs (43) can be approximated using various numerical 
schemes (dashed red line) to obtain an estimate of the departure point (triangle).

phase-space variables (z, θ). Here, such a regularity is assumed. Nevertheless, as F is defined self-consistently through a 
nonlinear functional of f , to determine the regularity properties of F, we must study, in a convenient functional framework, 
the Cauchy problem for the GHD equations, which is out of the scope of this paper.

Several methods for numerically solving equation (1) exist. In purely Lagrangian methods, the implicit solution (41) is 
utilized by considering the initial state f (0, z, θ) = f0(z, θ) as a distribution of fluid packages, whose trajectories, following 
time evolution, are encoded in the characteristics defined by equations (40). However, following dynamics, the fluid packages 
will be scattered around the entire phase space, which may result in the mesh needed for evaluating the effective velocity 
becoming heavily distorted and irregular [105]. Backward Semi-Lagrangian (BSL) schemes [12] circumvent this issue by 
assuming the arrival point of the characteristics at each time step to coincide with a pre-defined grid, effectively re-meshing 
at every time step [101]. The BSL schemes then proceed in the following way. First, we discretize position and rapidity, 
creating the grids zi ∈ {z1, z2, . . . , zNz } and θ j ∈ {θ1, θ2, . . . , θNθ }. For a single time step �t , the GHD advection equation (1), 
integrated in time, writes as

f (tn+1, zi, θ j) = f (tn, Z(tn; tn+1, zi, θ j),�(tn; tn+1, zi, θ j)), (42)

where tn = n�t . To compute f (tn+1) at the grid points (zi, θ j), we consider the characteristics which arrive at time tn+1

on the grid points (zi, θ j). Then, the position and rapidity couple 
(

Z(tn; tn+1, zi, θ j), �(tn; tn+1, zi, θ j)
)

denotes the departure 
point of the fluid package at time tn , which at the next time tn+1 will arrive at the grid point (zi, θ j). For a more com-

pact notation we write the phase-space coordinate as x ≡ (z, θ)T , the characteristics as X(tn) ≡ (
Z(tn; tn+1), �(tn; tn+1)

)T
, 

and the advection fields as F ≡ (veff, aeff)T . Hence, a solution to equation (1) is obtained from (42) and by following the 
characteristics X backward in time, starting from the grid points xi j , i.e. by solving,⎧⎨⎩

dX(t)

dt
= F(t,X(t))

X(tn+1) ≡ Xn+1 := xi j.

(43)

Note that the characteristics in general do not coincide with the grid points. So we must employ interpolation in order 
to obtain values of the filling function f or the advection field F at any point in the phase space. With this in mind, a 
single propagation step following a BSL scheme can be divided into two sub-steps: First, the origin of the characteristics 
X(tn) is computed. An illustration of this can be seen in Fig. 2. Next, the filling function at the origin f (tn, X(tn)) is recon-
structed using interpolation from the known values on the mesh. Since the value of the filling function is constant along 
the characteristics, the state at time tn+1 is obtained as follows,

f n+1(xi j) = �h f n(Xn),

where �h denotes the interpolation operator. The choice of �h is crucial for the accuracy and stability of the scheme 
[8,9,11]. In the following, we will employ an interpolation scheme based on a cubic spline using not-a-knot end conditions 
[35,98].

6. High-order schemes in time to solve the BSL method

In this section we present a number of high-order schemes for solving the advective and dissipative GHD equations. 
First, in Section 6.1, we focus on the purely advective case, for which we develop a set of novel implicit/explicit Runge–
Kutta semi-Lagrangian methods. These methods employ the exact time-derivatives of the GHD advection fields derived in 
10
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Section 3 to estimate the advection fields at intermediate time steps. For comparison, we introduce both Adams–Moulton 
schemes in Section 6.2 and leap-frog schemes in Section 6.3. Finally, in Section 6.4 we present a number of BSL-hybrid 
schemes for solving the dissipative GHD equation.

6.1. Implicit/explicit Runge–Kutta semi-Lagrangian schemes

Runge–Kutta methods are a family of methods that employ a number of intermediate time steps in order to obtain 
a high-order approximation for the solution of ordinary differential equations, such as the one of equation (43). Suppose 
that one knows the advection field F(t, ·) at any time t . For the purpose of solving the GHD advection equation (1), and 
following the recursive method of Section 3, the advection field F(t, ·) can be predicted by computing successively the time 
derivatives ∂(k)

t F(tn, ·), for k ≥ 0, and then using the time-Taylor series expansion (36) to reconstruct F(t, ·) at any time 
t ∈ [tn, tn+1] (see Section 3 for more details). Then, using the Runge–Kutta schemes of order s, that we formally write as 
RK(s)

F (�t; tn, tn+c2 , tn+c3 , . . . , tn+cs ; X(tn)), with 0 < ci < 1 and i ∈ {2, . . . , s}, we obtain

X(tn+1) − X(tn) =
tn+1∫
tn

F(s,X(s))ds

� �t RK(s)
F

(
�t; tn, tn+c2 , tn+c3 , . . . , tn+cs ;X(tn)

)
.

(44)

The function RK(s)
F (�t; tn, tn+c2 , tn+c3 , . . . , tn+cs ; ·) is known explicitly in terms of the functions F(tn, ·), F(tn+c2 , ·), . . ., 

F(tn+cs , ·). Then, to obtain the departure points X(tn) from equation (44), one must solve the following fixed-point problem 
corresponding to finding the zeroes of the following nonlinear function,

X → G(X) := xi j − X − �t RK(s)
F

(
�t; tn, tn+c2 , tn+c3 , . . . , tn+cs ;X

)
. (45)

The problem, G(X) = 0, can be solved by using the Picard iteration (first order) or the Newton iteration (second order). Here, 
we employ the former, which usually converges in less than five iterations. While the fixed-point problem of equation (45)
is implicit, one can also construct explicit Runge–Kutta schemes such as

X(tn) � xi j − �t RK(s)
F

(
�t; tn, tn+c2 , tn+c3 , . . . , tn+cs ;xi j

)
.

Note that the functions RK(s)
F used in the implicit and explicit schemes are usually not the same. Explicit schemes rely only 

on known quantities and do not require to solve any fixed-point problem by successive iterations, whereby they often are 
faster than implicit schemes. However, given two schemes at the same order, the implicit scheme is often more accurate, 
allowing for overall larger time steps.

We end this section by giving a convergence criteria for the Picard iteration used to solve the implicit scheme (45), by 
following the method described in [99]. Let ̃F be an approximation of F, which is obtained from the phase-space discretiza-
tion of f , the numerical approximation of the dressing operation (see Section 4) and the time-Taylor series expansion of the 
advection fields (36) (see Section 3). Then, using the Runge–Kutta scheme of order O(�ts+1), given by (44), we obtain

X +O
(
�ts+1, �t

∥∥RK(s)
F − RK(s)

F̃

∥∥) = xi j − �t RK(s)
F̃

(
�t; tn, tn+c2 , tn+c3 , . . . , tn+cs ;X

)
. (46)

The Picard iteration can be compactly written as

Xν +O
(
�ts+1, �t

∥∥RK(s)
F − RK(s)

F̃

∥∥) = xi j − �t RK(s)
F̃

(
�t; tn, tn+c2 , tn+c3 , . . . , tn+cs ;Xν−1), (47)

where the index ν numbers successive iterations. Subtracting (47) from (46), taking the norm of the resulting difference, 
and assuming the differentiability of the function X �→ RK(s)

F̃
(. . . ; X), we obtain∥∥∥X − Xν +O

(
�ts+1, �t

∥∥RK(s)
F − RK(s)

F̃

∥∥)∥∥∥ = �t
∥∥RK(s)

F̃
(. . . ;X) − RK(s)

F̃
(. . . ,Xν−1)

∥∥
≤ �t

∥∥∥∥∂RK(s)
F̃

∂X

∥∥∥∥‖X − Xν−1‖.

This last inequality implies that the Picard iteration converges if the following condition

�t

∥∥∥∥∂RK(s)
F̃

∂X

∥∥∥∥ < 1,

is satisfied.
11
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6.1.1. First-order schemes (RK1)
Here, we consider a first order scheme, just to demonstrate how to compute the origin of the characteristics. For most 

practical purposes first-order schemes are not used, as they become too diffusive and are not accurate enough. At first order, 
the implicit Runge–Kutta method reads

RK(1)
F (�t;X) = F(tn,X).

To evaluate F(tn, X) at any points (z, θ) in the phase-space, we need to interpolate them from the known grid values Fi j(tn). 
Historically, this scheme was first employed in [20] to solve equation (1) in the absence of any external potential. Similarly, 
we can construct an explicit first-order Runge–Kutta scheme such as

RK(1)
F (�t;xi j) = F(tn+1,xi j),

where F(tn+1, xi j) ≡ Fi j(tn+1) is estimated via equation (36).

6.1.2. Second-order schemes (RK2)
At second order, the Runge–Kutta schemes employ the midpoint advection field F(tn+1/2) to obtain a more accurate 

estimate of the origin of the characteristics. To estimate the midpoint advection field on the grid we employ the time-
Taylor series expansion (36) and the recursive procedure of Section 3 to compute the time derivatives of the advection 
field {∂(k)

t F(t)}k≥0. Next, we use cubic-spline interpolation to evaluate F(tn+1/2, X) at any points (z, θ) in the phase-space. 
Integrating the ODEs between tn and tn+1 with a second-order quadrature in time, we obtain the following implicit scheme,

RK(2)
F (�t;X) = F

(
tn+1/2,

X + X(tn+1)

2

)
,

where (X(tn) + X(tn+1))/2 � X(tn+1/2) + O(�t2) is the second-order approximation of the midpoint characteristics. The 
corresponding explicit scheme reads

RK(2)
F (�t;xi j) = F

(
tn+1/2,xi j − �t

2
Fi j(t

n)
)
.

Similar time discretizations were already used in [105].

6.1.3. Fourth-order schemes (RK4)
Assume that for all times t ∈ [tn, tn+1], the approximate advection field F(t) is known. This can be obtained by using 

the recursive method of Section 3. We recall that this method allows us to compute recursively the time derivatives of 
the advection field {∂(k)

t F(t)}k≥0, in order to construct the time-Taylor series expansion (36) of the advection field F(t). We 
then integrate the “backward” characteristic which ends at time tn+1 at the grid point xij . At fourth order the Runge–Kutta 
scheme then reads

RK(4)
F (�t;X) = 1

6
(K1 + 2K2 + 2K3 + K4),

where the implicit advection estimates are given by

K1 = F(tn,X) (48a)

K2 = F
(

tn+1/2,X + �t

2
K1

)
(48b)

K3 = F
(

tn+1/2,X + �t

2
K2

)
(48c)

K4 = F(tn+1,X + �t K3). (48d)

Since the coordinate argument of K4 in (48d), namely Xn +�t K3, is supposed to be an estimate of the arrival point at tn+1, 
which coincides with the grid as principle of the BSL scheme, we then replace (48d) by K4 = F(tn+1, xi j). Then, only K1, K2

and K3 depend implicitly on the unknown starting point X at time tn , so an implicit equation such as (45) has to be solved 
to find this point by using the Picard or Newton iteration. The implicit scheme can be seen as integration of the “backward” 
characteristic in forward direction.
In its explicit form, the advection estimates take the following form,

K1 = F(tn,xi j)

K2 = F
(

tn+1/2,xi j − �t

2
K1

)
K3 = F

(
tn+1/2,xi j − �t

2
K2

)
K = F(tn+1,x − �t K ).

(49)
4 i j 3

12
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The explicit scheme can be seen as integrating the “backward” characteristic in backward direction, hence the negative time 
increment. This method is a generalization to fourth order of the second-order scheme used in [105].

Remark 1. It should be noted that one can also construct a fully implicit 2-stage Runge–Kutta scheme of fourth order follow-
ing the method by Hammer and Hollingsworth [57] where

RK(4)
F (�t;X) = b1F(tn+1 − c1�t,xi j − �t K1) + b2F(tn+1 − c2�t,xi j − �t K2),

and the fully implicit advection estimates take the following form,

K1 = a11F(tn+1 − c1�t,xi j − �t K1) + a12F(tn+1 − c2�t,xi j − �t K2)

K2 = a21F(tn+1 − c1�t,xi j − �t K1) + a22F(tn+1 − c2�t,xi j − �t K2).

Here, the coefficients aij and bi are given by

a11 = 1

4
, a12 = 1

4
−

√
3

6
, a21 = 1

4
+

√
3

6
, a22 = 1

4
,

b1 = b2 = 1

2
,

c1 = 1

2
−

√
3

6
, c2 = 1

2
+

√
3

6
.

We find that this fully implicit scheme offers a small performance increase over the previous implicit scheme.

6.2. Adams–Moulton semi-Lagrangian schemes

Adams–Moulton schemes are a family of implicit schemes, which employ the solutions at previous time steps to obtain 
a higher-order approximation for the solution of ordinary differential equations. When applied to equation (43), Adams–
Moulton schemes require knowledge of the endpoint advection field Fn+1. To this end, a high-order reconstruction of Fn+1

can be obtained by using either an affine extrapolation in time using the known advection field at previous times or by 
using the recursice procedure of Section 3, which allows us to compute recursively the time derivatives of the advection 
field, in order to construct the time-Taylor series expansion of the advection field (36). As we will demonstrate, using 
the recursive procedure of Section 3 generally produces more accurate results than time extrapolations. Using the Adams–
Moulton schemes of order s, that we formally write as AM(s)

F (�t; tn, tn−1, . . . , ; X(tn)), we obtain

X(tn+1) − X(tn) =
tn+1∫
tn

F(s,X(s))ds

� �t AM(s)
F

(
�t; tn+1, tn, tn−1, . . . , ;X(tn)

)
.

(50)

As before, we have to solve the following fixed-point problem to obtain the departure points X(tn),

X → G(X) := xi j − X − �t AM(s)
F (�t; tn+1, tn, tn−1, . . . ;X). (51)

Again, the problem G(X) = 0 is solved by using the Picard iteration.

6.2.1. Second-order schemes (AM2)
Assume that for all times tm , m ≤ n, the approximate solutions of the filling function f m and the corresponding advection 

field Fm are known. The second-order Adams–Moulton scheme reads [46],

AM(2)
F (�t;X) = 1

2

(
F(tn+1,xi j) + F(tn,X)

)
,

where F(tn+1, xi j) is obtained either via equation (36), by using the known grid values {∂(k)
t Fi j(tn)}k≥0, or through the 

second-order extrapolation in time,

F(tn+1,xi j) � 2F(tn,xi j) − F(tn−1,xi j).
13
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6.2.2. Fourth-order schemes (AM4)
Assume that for all times tm , m ≤ n, the approximate solutions of the filling function f m and the corresponding advection 

field Fm are known. The fourth-order Adams–Moulton scheme then reads [46],⎧⎪⎪⎪⎨⎪⎪⎪⎩
AM(4)

F (X) = 1

24

(
9F(tn+1,xi j) + 19F(tn,X) − 5F(tn−1,Xn−1) + F(tn−2,Xn−2)

)
Xn−1 = xi j + 4(xi j − X) − 2�t

(
2F(tn,X) + F(tn+1,xi j)

)
Xn−2 = xi j + 27(xi j − X) − 6�t

(
3F(tn,X) + 2F(tn+1,xi j)

)
.

The advection field F(tn+1, xi j) is obtained either via equation (36), by using the known grid values {∂k
t Fi j(tn)}k≥0, or through 

the fourth-order extrapolation in time,

F(tn+1,xi j) � 4F(tn,xi j) − 6F(tn−1,xi j) + 4F(tn−2,xi j) − F(tn−3,xi j).

6.3. Leap-frog schemes (LF2)

Unlike the Runge–Kutta schemes, leap-frog methods do not estimate the midpoint advection field using a time-Taylor 
series expansion. Instead, they rely on taking intermediate steps of the function f , from which the advection field can 
be computed. Here, we present an implicit second-order leap-frog scheme based on the semi-Lagrangian technique [46]. 
Assume that for all times tm , m ≤ n, the approximate solutions of the filling function f m and the corresponding advection 
field Fm are known. First, we estimate the midpoint solution f n+1/2 by solving the fixed-point problem,⎧⎨⎩Xn+1/2 − Xn − �t

2
F(tn,Xn) = 0

Xn+1/2 = xi j,

with the help of the Picard iteration and then interpolating the filling function at Xn to the mesh points xi j , namely,

f n+1/2(xi) = �h f n(Xn).

Next, from f n+1/2, the advection field Fn+1/2 is calculated, and then used to compute a new approximation of Xn by solving 
the fixed-point problem,⎧⎨⎩Xn+1 − Xn − �tF

(
tn+1/2,

Xn+1 + Xn

2

)
= 0

Xn+1 = xi j.

Finally, the solution at time tn+1 is given through interpolation, i.e.

f n+1(xi) = �h f n(Xn).

An explicit form of the second-order leap-frog scheme for solving the GHD advection equation was proposed in [3]. This 
scheme requires knowledge of the approximate solutions of the filling function both at time tn and tn+1/2. Given the latter, 
the advection field Fn+1/2 is calculated and the departure points Xn are obtained from the following scheme,⎧⎨⎩

Xn = xi j − �tF(tn+1/2,Xn+1/2)

Xn+1/2 = xi j − �t

2
F(tn+1/2,xi j).

(52)

Hence, the solution at time tn+1 is given through interpolation by

f n+1(xi) = �h f n(Xn). (53)

To obtain the solution at time tn+3/2, required for the next iteration, one must repeat the step described by equations (52)
and (53) with the newly obtained solution f n+1 replacing f n+1/2.

6.4. BSL-hybrid schemes for dissipative GHD

Given the departure points Xn found using BSL schemes for the GHD advection equation (1), solving the extended GHD 
equation (21) for a single time step requires integrating the nonlinear source term along the characteristics, namely

f n+1(xi j) = f n(Xn) +
tn+1∫
n

dτ N (τ ,X(τ ), f (τ )). (54)
t

14
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To this end, various time discretization methods can be employed to create BSL-hybrid schemes. In the following we will 
review a few such schemes.

6.4.1. The endpoint scheme
The simplest scheme consists of estimating the integral (54) by its endpoint, giving

f n+1(xi j) − f n(Xn) = �tN (tn,Xn).

6.4.2. The midpoint scheme
Alternatively, one can employ the source term at the midpoint of the time step to obtain,

f n+1(xi j) − f n(Xn) = �t

2

(
N (tn+1/2,xi j) +N (tn+1/2,Xn)

)
. (55)

Here, the midpoint along the trajectory is obtained by averaging the source term at its start and endpoint. This procedure 
improves the stability, yet retains the second-order accuracy, of the more standard scheme, which consists in evaluating 
N (tn+1/2) at the middle of the trajectory (xi j + Xn)/2, i.e. by substituting �tN (tn+1/2, (xi j + Xn)/2) to right-hand side of 
(55) (see [60]). The midpoint in time is approximated by linear extrapolation from the previous time step such as

N (tn+1/2,X) � 3

2
N (tn,X) − 1

2
N (tn−1,X).

Higher-order estimates of the temporal midpoint can be obtained by including additional previous time steps, however, 
such extrapolations may also be more prone to noise [60].

6.4.3. The two-time-level semi-Lagrangian scheme (SETTLS)
The extrapolation of the source term employed in the midpoint scheme can suffer from noise problems. An alternative 

scheme is the SETTLS scheme [44,60,87], given by

f n+1(xi j) − f n(Xn) = �t

2

(
N (tn,xi j) +N (tn+1,Xn)

)
.

Here, N (tn+1) is again approximated by linear extrapolation from the previous time step such as

N (tn+1,X) � 2N (tn,X) −N (tn−1,X).

6.4.4. The Crank–Nicolson scheme
Applying a trapezoidal quadrature rule to estimate the integral (54) yields [100],

f n+1(xi j) − f n(Xn) = �t

2

(
N (tn+1,xi j) +N (tn,Xn)

)
. (56)

Unlike the previous methods, the Crank–Nicolson method is implicit as the source term N (tn+1, xi j) depends on the un-
known f n+1(xi j). The problem (56) can be solved by using the Picard iteration. Note that repeatedly evaluating the source 
term is extremely costly. Therefore, in the benchmarks below, the tolerance for the convergence of the Picard iteration is 
set so that the scheme converges in few iterations, typically two or three.

Remark 2. For the inclusion of diffusion terms in (21), care must be taken of the fact that numerical diffusion results from 
the discretization of the advective part of the equation. This error is usually of the order of the applied method, so that a 
discretization of the diffusive term at the same order of accuracy is perturbed by a diffusion error at the same order. For 
this reason it is necessary to resolve the advection step with a method of higher order than the diffusive step. In our case 
that means it suffices to consider second order methods for the diffusion step.

7. Benchmark of BSL and BSL-hybrid schemes for solving the dissipative GHD equations

To benchmark the performance of the various schemes, we will examine the evolution of three particular conserved 
quantities, namely the particle number N , the energy E , and the entropy S given by the expressions

N(t) = 1

2π

∫
R

dz

∫
R

dθ 1dr(t, z, θ) f (t, z, θ), (57)

E(t) = 1

2π

∫
dz

∫
dθ

(
θ2 + V (z)

)
1dr(t, z, θ) f (t, z, θ), (58)
R R
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S(t) = 1

2π

∫
R

dz

∫
R

dθ 1dr(t, z, θ) f 2(t, z, θ). (59)

Note, the latter quantity corresponds to the entropy defined by (17) with �( f ) = f and is particularly sensitive to (numer-
ical) diffusion. To quantify the accuracy of each scheme, we compute the relative error of the conserved quantities w.r.t. 
their initial value, namely

EQ (t) = |Q (t) − Q (0)|
Q (0)

,

where Q (t) = {N(t), E(t), S(t)}.
For the benchmark, we will solve the ODE (43) for a relatively difficult problem, namely the Quantum Newton’s cradle 

setup [63,69,79]. The setup can be realized experimentally using ultracold atomic gases and constitutes one of the most 
remarkable demonstrations of integrability. In the Quantum Newton’s cradle setup, the system is initialized in a (nearly) 
harmonic, external potential V (z). Next, two large, opposite momenta are imparted onto the system, causing the initial 
(typically thermal) state to split into two atomic clouds oscillating in the external confinement. Every half-period of the 
cradle oscillation the clouds collide in the center of the potential. The ensuing interactions, encoded in the effective velocity, 
deform the clouds. Further, a small anharmonicity of the external potential can lead to the formation of very fine structures 
in the filling function, thus demanding high accuracy of the numerical solutions [26]. An example of this can be seen in 
Fig. 3.

In GHD simulations of experimental systems, the initial filling function f0 is often given by a thermal state obtained via 
the thermodynamic Bethe Ansatz [107]. However, for easier reproducibility, we instead let it be given by the expression

f0(z, θ) = 0.9

[
exp

(
− (θ − θB)2

2σ

)
+ exp

(
− (θ + θB)2

2σ

)]
exp

(
− z2

2σ

)
, (60)

where θB = 2 and σ = 1/
√

2. Further, we employ an external potential in the shape of a Gaussian, imitating the intensity 
profile of a laser beam typically used to generate the potential in an experimental setting

V (z) = 1

8
ω2η2

[
1 − exp

(
−2z2

η2

)]
.

For the benchmarks we set ω = 2 and η = 12. The coupling constant is set to c = 1. We will be expressing time in units 
of the oscillation period T = 2π/ω, and the simulations will be carried out for a duration of 10 periods. Whenever the 
time-Taylor expansion (36) is used to estimate the advection fields at future times, only the first order time derivatives of 
the advection fields are employed. All numerical schemes for solving the GHD equations are implemented using the iFluid 
framework [81].

7.1. BSL schemes for solving the advective GHD equation

For the benchmarks of the BSL schemes for solving the advective GHD equation, we employ uniformly spaced position 
and rapidity grids discretized into Nθ = Nz = 513 grid points. Such high resolution is necessary to properly resolve the fine 
structures appearing in the filling function f following dynamics (see Fig. 3). We test the accuracy of the various schemes 
for different time step resolutions, discretizing the evolution duration into Nsteps = 500, 1000, and 2000 time steps.

However, before comparing their accuracy, it is worth discussing the numerical cost of performing a single time step 
following the different schemes. Among all operations needed for performing a BSL time step of the GHD equation, the 
most numerically expensive one is, by far, solving the dressing equation (38). Calculating the effective velocity requires 
solving the dressing equation for both the rapidity derivative of the single-particle energy ∂θ ε(θ) and momentum ∂θ p(θ). 
Further, if the time-Taylor series expansion (36) is used to compute the advection fields at future times, additional dressing 
equations must be solved, as calculating the (first order) time derivatives of the advection fields requires dressing the source 
terms S w and Sb . Note, for the Lieb-Liniger model whose single-particle momentum reads p(θ) = θ , solving the dressing 
equation for the unit-cell 1dr is not necessary, as it is already given by the dressed rapidity derivative of the single-particle 
momentum.

When timing the different schemes, we find that the total cost of performing a single BSL step is indeed completely 
dominated by solving the dressing equation. In the implicit schemes, the advection fields (and their time derivatives) are 
calculated only once at each propagation step and then interpolated to the solution Xn at each iteration. In comparison to 
computing the fields, performing the phase space interpolation is a relatively cheap operation, resulting in a rather small 
difference in runtime between implicit and explicit schemes. Restricting ourselves to first-order time derivatives of the 
advection fields, we find the propagation step of higher-order Runge–Kutta schemes (RK2 and RK4) taking roughly twice 
the time to execute than the first-order scheme (RK1), as the latter does not employ estimates of the advection fields at 
intermediate times. Meanwhile, the leap-frog schemes perform an additional, intermediate step for every full time step, thus 
having to evaluate the effective velocity twice. Hence, for a full �t time step, the leap-frog schemes exhibit computation 
16



Fig. 3. Example of filling function f calculated for the quantum Newton’s cradle benchmark problem. The initial state (60) is propagated for 10 oscillation 
periods T of the cradle following BSL (hybrid) methods. Top row: Purely advective GHD calculation performed using explicit Runge–Kutta scheme of 
fourth order (RK4) with equally-spaced grids Nθ = Nz = 513 and Nsteps = 2000 time steps. Note all solutions for f obtained using higher-order methods 
appear visually very similar. Middle and bottom rows: Dissipative GHD calculations performed using BSL hybrid schemes (SETTLS + explicit RK4) with 
equally-spaced grids Nθ = Nz = 257 and Nsteps = 3000 time steps. The dissipative GHD equation is solved for the diffusion operator (middle row) and the 
Boltzmann-like collision integral (bottom row). Note the grids employed for the computation extend further than shown in the figure. Further, all solutions 
obtained for f appear visually very similar.

times similar to the higher-order Runge–Kutta schemes. Lastly, the Adams–Moulton schemes employing the time-Taylor 
series expansion show similar computational cost to the higher-order Runge–Kutta schemes. However, when employing 
an extrapolation of the advection fields using previous steps, the Adams–Moulton schemes obtain a numerical efficiency 
compared to the RK1 schemes, since only a single evaluation of the advection fields is needed.

Note that all these observations are specific to the problem of solving the GHD equation. In most other problems, com-
puting the advection fields does not represent such a significant fraction of the computational load, whereby a discernible 
difference in the runtime between implicit and explicit schemes would be found. Furthermore, for problems involving 
higher-dimensional systems, storing the full solution at multiple time-steps (needed for the Adams–Moulton schemes) may 
introduce significant overhead.

In Figs. 4, 5, and 6 we plot the benchmark results for the first order, second order, and fourth order BSL schemes, 
respectively.

Starting with the first order schemes of Fig. 4, we find that the explicit form of the RK1 algorithm performs extremely 
poorly, which is, perhaps, to be expected. In comparison, the implicit form yields much more accurate results, although 
the relative change in the conserved quantities is still fairly large. For the implicit scheme, we find the error of both the 
particle number and the entropy to exhibit rapid oscillations at a frequency corresponding to roughly half the period of 
the quantum Newton’s cradle. The oscillation frequency coincides with the overlap of the two atomic clouds in the center 
of the external trap, where interactions are much more significant than throughout the rest of the evolution. Therefore, as 
the clouds overlap in position, the numerical solution becomes more sensitive to errors and additional precision is often 
needed.

Compared to the first order schemes, the second order schemes, whose benchmarks are plotted in Fig. 5, are much more 
accurate. Comparing the implicit versus explicit schemes for the Runge–Kutta and leap-frog methods, we generally find 
the implicit schemes to perform better. In particular the implicit leap-frog scheme exhibits very low relative errors of all 
three conserved quantities calculated. Furthermore, the magnitudes of its errors remain fairly stable throughout the whole 
evolution duration, as opposed to most of the other schemes, whose associated errors increase steadily. Lastly, both of the 
two Adams–Moulton schemes exhibit worse performance than the Runge–Kutta schemes of same order. Between the two 
of them, the scheme employing the time-Taylor series expansion (36), as opposed to the linear extrapolation from previous 
time steps, to obtain the advection fields at time tn+1 is more accurate. However, when solving the GHD equation, the latter 
is much cheaper to perform numerically. Interestingly, all the implicit schemes tested exhibit the same oscillating behavior
in the errors of the benchmark quantities, while the explicit schemes appear much more stable in this regard.

Finally, in Fig. 6 we compare the different fourth-order schemes. In general, all schemes exhibit very high accuracy. For 
increasing number of time steps, we observe increasing accuracy and thus convergence of the schemes. At fixed number of 
time steps, we observe that both of the Runge–Kutta schemes perform better than the Adams–Moulton schemes. Contrary 
to the second-order schemes, the explicit Runge–Kutta scheme now performs better than its implicit counterpart, and 
F. Møller, N. Besse, I.E. Mazets et al. Journal of Computational Physics 493 (2023) 112431
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Fig. 4. Benchmark of first-order BSL schemes for the quantum Newton’s cradle problem. In the legend, the labels “imp” and “exp” indicate that the methods 
are implicit or explicit, respectively. The calculation is performed on equally-spaced grids with resolutions Nθ = Nz = 513 and for various number of time 
steps Nsteps . Plotted is the relative error of the particles number, total energy, and entropy.

Fig. 5. Benchmark of second-order BSL schemes for the quantum Newton’s cradle problem. In the legend, the labels “imp” and “exp” indicate that the 
methods are implicit or explicit, respectively. For the Adams–Moulton schemes (AM), the label “ext” denotes that the advection fields at the endpoint are 
obtained using extrapolation from previous time steps. Meanwhile, “T.e” indicates that the time-Taylor expansion series has been employed. The calculation 
is performed on equally-spaced grids with resolutions Nθ = Nz = 513 and for various number of time steps Nsteps . Plotted is the relative error of the 
particles number, total energy, and entropy.
18
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Fig. 6. Benchmark of fourth-order BSL schemes for the quantum Newton’s cradle problem. In the legend, the labels “imp” and “exp” indicate that the 
methods are implicit or explicit, respectively. For the Adams–Moulton schemes (AM), the label “ext” denotes that the advection fields at the endpoint are 
obtained using extrapolation from previous time steps. Meanwhile, “T.e” indicates that the time-Taylor expansion series has been employed. The calculation 
is performed on equally-spaced grids with resolutions Nθ = Nz = 513 and for various number of time steps Nsteps . Plotted is the relative error of the 
particles number, total energy, and entropy.

extrapolating of the advection fields from previous time steps yields better results for the Adams–Moulton scheme than 
employing the time-Taylor series expansion (36). The improvement of the explicit scheme is most likely due to the trick 
that we discovered, where the initial advection estimate of the Runge–Kutta method K1 is computed using the known state 
at time tn . Meanwhile, the worse performance of the Adams–Moulton scheme with time-Taylor series expanded advection 
fields might be due to the limited phase-space resolution. Indeed, when computing the successive time derivatives of the 
advection field F according to the recursive procedure of Section 3, derivatives in the position and rapidity variables of the 
filling function f are required. Here, the phase-space derivatives of f are obtained through finite-difference methods. At 
high enough time resolution, the limiting factor of the time-Taylor series expansion scheme may become the error of said 
finite-difference derivatives together with the limited phase-space resolution of the grid.

7.2. BSL-hybrid schemes for solving the dissipative GHD equations

For the benchmarks of the BSL-hybrid schemes for solving the dissipative GHD equations, we employ uniformly spaced 
position and rapidity grids discretized into Nθ = Nz = 257 grid points. Compared to the purely advective case, coarser grids 
can typically be employed when accounting for dissipation, as these effects tend to smooth out the filling function f follow-
ing dynamics. We test two dissipative nonlinear source terms, namely the diffusion operator (22) and the Boltzmann-type 
collision integral (27) governing transverse state-changing collisions. The two source terms have very different structures. 
The diffusion operator scales with the position gradient of the filling function, thus leading to a smearing of its edges. 
Meanwhile, the transverse excitations effectively destroy quasi-particles at high rapidities and re-create them at low rapidi-
ties, while de-excitations from transverse excited states lead to a general redistribution of quasi-particles across the (z, θ ) 
phase-space. Hence, although both source terms lead to eventual thermalization of the system, the exact mechanisms, and 
thus dynamics towards thermalization, differ. Examples of this can be seen in Fig. 3, where solutions for the filling function 
f for the two different source-terms are plotted.

We test the accuracy of the various schemes for different time step resolutions, discretizing the evolution duration into 
Nsteps = 2000, 2500, and 3000 time steps. To compute the departure points of the characteristics, the explicit form of the 
Runge–Kutta scheme of fourth order (RK4) is employed. In addition to computing the error of the particle number, total 
energy, and entropy, we also calculate and plot the minimum value of the filling function f .
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Fig. 7. Benchmark of BSL-hybrid schemes for solving the dissipative GHD equation, here with the diffusion kernel as the nonlinear dissipative term. The 
benchmarks are performed on quantum Newton’s cradle problem using the explicit RK4 method. The calculation is performed on equally-spaced grids with 
resolutions Nθ = Nz = 257 and for various number of time steps Nsteps . Plotted is the relative error of the particle number, total energy, and entropy, as 
well as the negative minimum value of the filling function f .

Compared to the pure BSL schemes, each time step of the BSL-hybrid schemes is much more numerically costly to per-
form due to the evaluation of the source terms. Hence, the endpoint, midpoint and SETTLS schemes all exhibit very similar 
runtimes, as the computation is completely dominated by the single calculation of the source term needed. Conversely, 
following the Crank-Nicolson scheme, the source term must be calculated anew at every iteration, making this scheme ex-
tremely expensive compared to the others. In order to keep the computational runtime at a reasonable limit, we set the 
limit of convergence for the Crank-Nicolson scheme at a level attainable after just 2-3 iterations.

7.2.1. Diffusion
Fig. 7 shows the benchmark results of solving the quantum Newton’s cradle problem accounting for diffusive effects. 

Comparing to the previous benchmarks of the explicit RK4 method for solving the purely advective GHD equation, we do 
not find any significant increase in the relative error of neither particle number N nor total energy E when accounting for 
diffusion. Meanwhile, the entropy increases significantly following diffusive dynamics, as expected. Lastly, we do observe 
that the filling function f at some points of the phase-space assumes negative values. Recall that the filling function rep-
resents the fraction of allowed local momentum states occupied. Hence, it should only assume values between 0 and 1. 
However, the magnitude of the negative values found following numerical propagation is very small. Comparing the differ-
ent hybrid schemes, not one single scheme consistently stands out in terms of accuracy, although for diffusive dynamics the 
midpoint scheme consistently appears slightly worse than the others.

7.2.2. Boltzmann-type collision integral
Unlike the case of diffusion (and most other instances of Boltzmann-type collision integrals), accounting for transverse 

excitations through a collision integral requires solving an additional set of differential equations, namely the rate equations 
for the excitation probabilities νn (28). For the endpoint scheme, eq. (28) is numerically solved as follows

νn(t
n+1) = νn(t

n) + �t
1

2
βn

[
�+

h (tn) − �+
p (tn)ν

βn
n (tn)

]
, (61)

while the remaining schemes employ midpoint estimates, such that

νn(t
n+1) = νn(t

n) + �t
1
βn

[
�+

h (tn+1/2) − �+
p (tn+1/2) ν

βn
n (tn+1/2)

]
, (62)
2
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Fig. 8. Benchmark of BSL-hybrid schemes for solving the dissipative GHD equation, here with the Boltzmann-type collision integral for transverse state-
changing collisions as the nonlinear dissipative term. The benchmarks are performed on quantum Newton’s cradle problem using the explicit RK4 method 
to obtain estimates of characteristics. The calculation is performed on equally-spaced grids with resolutions Nθ = Nz = 257 and for various number of time 
steps Nsteps . Plotted is the relative error of the particle number, total energy, and entropy, as well as the negative minimum value of the filling function f .

where the function values at time tn+1/2 = tn + �t/2 are obtained by using the time extrapolation scheme

�+
h (tn+1/2) = 3

2
�+

h (tn) − 1

2
�+

h (tn−1) . (63)

When accounting for atoms excited to transverse states beyond the ground state, we must also consider the associated 
transverse potential energy of the atoms when computing the total energy (58). An atom in the n’th transverse state (where 
n = 0 denotes the transverse ground state), has the transverse potential energy 2nl−2

⊥ (in units h̄ = 2m = 1). Thus, we can 
account for the transverse potential energy by adding the term 

∑
n νn2nl−2

⊥ to the external potential V (z) of eq. (58). For 
these benchmarks we set the parameter l⊥ = 1.

Because the collision integral is originally constructed in the conservative form, we here employ a slightly different BSL-
hybrid scheme: First, the advective GHD equation is solved using a BSL scheme to obtain the characteristic origin. Next, the 
filling function f is transformed into the quasi-particle distribution ρp, from which the collision integral is computed and 
accounted for. Finally, the resulting quasi-particle distribution is transformed back to the filling function, marking the end 
of a single propagation step.

Fig. 8 shows the benchmark results of solving the quantum Newton’s cradle problem accounting for transverse state-
changing collisions via the collision integral. Comparing to the previous benchmarks of the explicit RK4 method for solving 
the purely advective GHD equation, we do not find any significant increase in the relative error of neither particle number 
N when accounting for transverse state-changing collisions. Meanwhile, for all the schemes we find a very similar increase 
in the error of the total energy over time. As already discussed, simplifications made in the construction of the collision 
integral result in the energy no longer being explicitly conserved. The similarity of the error across all the tested schemes 
indicates that the source of the error is indeed due to the model, not the numerical solution. Furthermore, we argued that 
the error associated with the simplifications would be rather small in most cases. Indeed, the relative error of the total 
energy seen in Fig. 8 is only on the order of 0.1% following 10 oscillation periods of the Newton’s cradle. Lastly, we again 
observe an increase in the error of entropy, as expected, and the filling function f assuming negative values at some points 
of the (z, θ) phase-space. However, again the magnitude of the negative values is very small for all the schemes.
21



F. Møller, N. Besse, I.E. Mazets et al. Journal of Computational Physics 493 (2023) 112431
Table 1
Summary of the quantum Newton’s cradle benchmarks. For each solver, the relative error of N , E , and S integrated over the final 
oscillation of the cradle is reported. Each measure is computed for the benchmark featuring the highest time resolution. Additionally, 
the computational runtime of each scheme normalized to the runtime of the RK1 (explicit) scheme is listed. For each metric, the 
best performing solver is highlighted in bold.

Numerical scheme
∫

εN dτ
∫

εE dτ
∫

εS dτ Runtime

Advective GHD (1)
RK1 (implicit) 6.2e-3 2.9e-1 3.6e-3 1.1
RK1 (explicit) 2.5e0 3.0e0 2.5e0 1.0
RK2 (implicit) 1.8e-4 1.2e-4 1.7e-4 2.1
RK2 (explicit) 6.2e-5 8.3e-4 6.7e-4 2.0
RK4 (implicit) 9.8e-5 1.4e-4 1.1e-4 2.2
RK4 (explicit) 1.1e-4 2.5e-5 6.1e-5 2.1
LF2 (implicit) 4.2e-5 2.2e-4 1.9e-4 2.1
LF2 (explicit) 7.6e-4 1.8e-3 7.8e-4 2.0
AM2 (extrapolation) 1.2e-3 2.7e-3 1.6e-3 1.1
AM2 (expansion) 5.5e-4 9.9e-4 6.8e-4 2.1
AM4 (extrapolation) 4.9e-5 2.3e-4 3.2e-4 1.2
AM4 (expansion) 3.3e-4 6.1e-4 3.4e-4 2.2

Dissipative GHD (21): Collisions
Crank-Nicolson 2.7e-5 6.1e-3 5.9e-1 7.2
midpoint 6.7e-5 6.0e-3 5.9e-1 4.6
SETTLS 1.2e-4 6.0e-3 5.9e-1 4.6
endpoint 1.2e-4 5.8e-3 5.9e-1 4.4

Dissipative GHD (21): Diffusion
Crank-Nicolson 9.4e-5 1.8e-4 9.6e-1 8.1
midpoint 2.5e-4 3.4e-4 9.6e-1 4.4
SETTLS 6.5e-5 1.9e-4 9.6e-1 4.4
endpoint 8.9e-5 6.3e-5 9.6e-1 4.6

7.3. Summary of benchmarks

A summary of the benchmarks of the various schemes on the quantum Newton’s cradle problem can be seen in Table 1. 
Evaluating the accuracy of the numerical solutions is not straightforward, as no exact solution to the problem exists and the 
difficulty of solving the various equations, in particular the dressing equation, depends on the local state ϑ(z, t). Therefore, 
we quantify the accuracy of the schemes by integrating the relative error of the particle number, total energy, and entropy 
over the final (tenth) oscillation period of the cradle. Note, the measure is only computed for the benchmarks with the 
highest time resolution, that is Nsteps = 2000 for solving the purely advective GHD equation (1) and Nsteps = 3000 for 
the dissipative equation (21). For solving the advective equation, we find that the fourth order Runge–Kutta schemes, in 
particular the explicit variant, result in the lowest integrated error, i.e. the most accurate solution. Meanwhile, for solving 
the dissipative equations, all the implemented schemes exhibit similar levels of accuracy.

In the context of GHD, the by far most numerically expensive operation of performing a BSL time step is solving the 
dressing equation. The explicit RK1 scheme is by far the simplest of the schemes implemented, as each time step only in-
volves calculating the effective velocity (requiring the dressing equation to be solved twice), the calculation of the departure 
points via equation (44), and the final interpolation of the filling function. Among these operations, calculating the effective 
velocity far eclipses the computational runtime of the others. Therefore, we report the computationally runtime of each 
scheme in Table 1 in units of the runtime of the explicit RK1 scheme. As stated earlier, higher order schemes employing 
the exact derivatives of the velocity fields require solving the dressing equation an additional two times. Hence, for solv-
ing the purely advective BSL equation, we find the computational runtime of said schemes to be around twice that of the 
explicit RK1 scheme. Interestingly, the implicit and explicit schemes exhibit very similar runtimes; in each iteration of the 
implicit schemes, the velocity fields must be interpolated to new points in the phase-space, however, this is a relatively 
cheap operation compared to evaluating the field to begin with. Furthermore, going beyond second order in numerical 
scheme does not substantially increase the runtime, suggesting that GHD calculations may benefit from employing even 
higher order schemes. Importantly, for non-GHD applications, we would expect a notable difference in the runtime between 
implicit and explicit schemes and a notable increase in runtime as the scheme order increases. Additionally, we find that 
the Adams–Moulton schemes employing extrapolation from previous time points to obtain the velocity fields at time tn+1

are very efficient, as the effective velocity must only be evaluated once per time step. However, we again stress that the 
large discrepancy in runtime between the Adams–Moulton extrapolation schemes and the rest is specific to the GHD case. 
Finally, for solving the dissipative GHD equations, we find that all schemes, besides the Crank-Nicolson scheme, exhibit 
similar runtimes. The runtime of the latter is much higher, as both evaluating the collision integral and the diffusion kernel 
is computationally expensive and must be done in each iteration of the scheme.
22
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8. Conclusion and outlook

We present dissipative Generalized HydroDynamic (GHD) equations as a kinetic nonlinear PDE proven to be very useful 
to model accurately the dynamics observed in quantum experiments for quasi one-dimensional systems of cold atoms. 
Our main goal is to present, benchmark and discuss numerical methods for solving the GHD equations with a diffusion 
term or a Boltzmann type collision term. In particular, we design novel backward semi-Lagrangian (BSL) schemes of high-
order, namely implicit/explicit Runge–Kutta BSL schemes. Despite a growing interest for the (dissipative) GHD equations, 
accompanied by an abundant literature on the subject, it is the first time that these equations are solved with such high-
order numerical schemes. In order to prove the accuracy of these new numerical methods, we perform some comparisons 
with other schemes in the literature. Numerical simulations of the example of “quantum Newton’s cradle” setup show 
that implicit/explicit Runge–Kutta BSL schemes preserve a posteriori some integral invariants (number of quasi-particles, 
energy, entropies) of the system in an accurate and satisfactory manner. These observations prevail as well in the case of 
numerical methods including the dissipative terms as without them. Finally, our numerical simulations of the dissipative 
GHD equations are consistent with the thermalization processes observed in experimental quasi one-dimensional devices 
initialized with a quantum Newton’s cradle setup [79].

There are several future extensions of our work: First we can develop other high-order numerical schemes for solving the 
dressing operation, such as the continuous-Galerkin or discontinuous-Galerkin methods, but also some spectral (Fourier-like) 
methods to obtain a faster dressing transformation. Second we can devise other higher-order in time BSL-hybrid schemes for 
solving the dissipative GHD equations by using the strategy of exponential integrators [14,32,29,59,103,30,52,74,87]. We can 
also design higher-order schemes for the advection (Vlasov) operator by considering discontinuous-Galerkin schemes [31,58]
or, even better, semi-Lagrangian discontinuous-Galerkin methods [93,89,10]. In addition, we can consider other high-order 
and fast methods such as spectral methods (Fourier–Galerkin, discontinuous-Galerkin) or real methods (discrete-velocity) 
for solving the Boltzmann-like collision and diffusion operators [38,82,61,49,86]. Finally, it would be interesting to prove a 
H-theorem for the Boltzmann-type collision integral introduced in Section 2.2.2.
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Appendix A. Some properties of the GHD equations

In this appendix, we show some properties of the GHD equations written either in conservative form through equations 
(8)-(10) or in advective form through equations (1), (2) and (3).

A.1. Equation for the density of states ρs

Here, we show that the density of states ρs, defined by (11), satisfies the same equation as ρp, i.e.,

∂tρs + ∂z
(

veff ρs
)+ ∂θ

(
aeff ρs

) = 0. (64)
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Using definition (11) for ρs and definition (4) for the dressing operation, the density of states ρs rewrites as

ρs(θ) = 1

2π
+

∫
R

dθ ′ T (θ − θ ′)ρp(θ ′) = 1

2π
+ T ∗ ρp, (65)

where the symbol ∗ denotes the standard convolution in the rapidity variable θ . Using (65) equations (9)-(10) rewrites as

ρs veff = ∂θε

2π
+ T ∗ (veffρp), (66)

ρsaeff = −∂zε

2π
+ T ∗ (aeffρp). (67)

Using (65)-(67) and the properties of the convolution operation, we obtain from equation (8) for the density of quasi-particle 
ρp,

0 = T ∗ [∂tρp + ∂z(veffρp) + ∂θ (a
effρp)]

= ∂t(T ∗ ρp) + ∂z(T ∗ [veffρp]) + ∂θ (T ∗ [aeffρp])
= ∂t(ρs) + ∂z(ρs veff − ∂θε/(2π)) + ∂θ (ρsaeff + ∂zε/(2π))

= ∂t(ρs) + ∂z(ρs veff) + ∂θ (ρsaeff),

which is equation (64).

A.2. Integral invariants

Here, we show that the GHD equations preserve in time the total number of quasi-particles N defined by (14), the total 
density of states J defined by (15), the total energy E defined by (16), and the infinite number of entropies S defined by 
(16). We start with N and J . Time invariance of N and J is obvious from integration in the phase space (z, θ) of respectively 
the conservation law (8) for ρp and the conservation law (13) for ρs. For the time invariance of E , we first observe that for 
any functions θ �→ g ∈ L2(R) and θ �→ h ∈ L2(R), we have

〈(1 − T̂ f )g,h〉 = 〈g, (1 − f T̂ )h〉, (68)

where

〈g,h〉 =
∫
R

dθ g(θ)h(θ),

is the standard scalar product in L2(R). In other words, (68) means that (1 − T̂ f )T = (1 − f T̂ ), where the operator K̂ T is the 
transpose or adjoint operator of the operator K̂ induced by the scalar product 〈·, ·〉. Indeed relation (68) is a consequence of 
the following property of the convolution operator, 〈g ∗ T , h〉 = 〈g, T ∗h〉, with T an even function. Using (68) and definition 
(7) of the dressing operator, we obtain

〈 f gdr,h〉 = 〈g, f hdr〉. (69)

Indeed, using (68) and definition (7), we obtain

〈 f gdr,h〉 = 〈 f (1 − T̂ f )−1 g,h〉 = 〈(1 − T̂ f )−1 g, f h〉 = 〈g, (1 − T̂ f )−T f h〉 = 〈g, (1 − f T̂ )−1 f h〉
= 〈g, [ f (1 − T̂ f )(1/ f )]−1 f h〉 = 〈g, f (1 − T̂ f )−1h〉 = 〈g, f hdr〉.

Now, using integration by parts, the relation ρp = ρs f , the identity ρs = 1dr/(2π), the definitions (2)-(3), and the property 
(69), we obtain from the conservation law (8) for ρp,

d

dt
E(t) = d

dt

(∫
R

dz

∫
R

dθ ρpε
)

=
∫
R

dz

∫
R

dθ ∂tρpε

= −
∫

dz

∫
dθ {∂z(ρp veff) + ∂θ (ρpaeff)}ε
R R
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=
∫
R

dz

∫
R

dθ {ρp veff∂zε + ρpaeff∂θε}

= 1

2π

∫
R

dz

∫
R

dθ f {1dr veff∂zε + 1draeff∂θε}

= 1

2π

∫
R

dz

∫
R

dθ f {(∂θ ε)dr∂zε + (−∂zε)dr∂θε}

= 0.

For the time invariance of S , using an integration by parts, and equations (1) and (8), we obtain

d

dt
S(t) = d

dt

(∫
R

dz

∫
R

dθ ρp�( f )
)

=
∫
R

dz

∫
R

dθ {�( f )∂tρp + ρp�′( f )∂t f

= −
∫
R

dz

∫
R

dθ {�( f )[∂z(veff ρp) + ∂θ (a
eff ρp)] + ρp�′( f )[veff∂z f + aeff∂θ f ]}

= 0.

Appendix B. Integral invariants for the dissipative GHD equations with the diffusion operator

In this appendix, we prove that the dissipative GHD equations, where the right-hand side is given by the diffusion 
operator viz. equations (25)-(26), preserves the total number of quasi-particles N defined by (14), and the total energy 
E defined by (16). Since in Appendix A.2 we have already shown the conservation of the total number of quasi-particle 
and of the total energy for the transport part, i.e. for the left-hand side of equation (25), it only remains to show that 
these quantities are preserved by the diffusion operator (26). From the conservative form of the diffusion operator (26), an 
integration of the latter in the phase space (z, θ) gives straightforwardly the conservation of the total number quasi-particles 
N . We now show the conservation of the total energy E in the case where the potential W , entering in the definition of 
the single-particle energy ε given by (20), is independent of the rapidity variable θ , namely W (z, θ) = V (z). Taking the 
diffusion operator (26), multiplying it by ε , integrating the result in the phase space (z, θ) and using an integration by parts 
in the position variable z, we obtain∫

R

dz

∫
R

dθ εDρp [ρp] =
∫
R

dz

∫
R

dθ (−∂z V )(1 − f T̂ )−1ρs D̂ρ−1
s (1 − f T̂ )−1ρp. (70)

Using transposition (68), definition (3), and since gdr = (1 − T̂ f )−1 g , for any function g , we obtain from (70),∫
R

dz

∫
R

dθ εDρp [ρp] =
∫
R

dz

∫
R

dθ
[
(1 − T̂ f )−1(−∂z V )

]
ρs D̂ρ−1

s (1 − f T̂ )−1ρp

=
∫
R

dz

∫
R

dθ (−∂zε)drρs D̂ρ−1
s (1 − f T̂ )−1ρp

= 1

2π

∫
R

dz

∫
R

dθ aeffρ2
s D̂ρ−1

s (1 − f T̂ )−1ρp. (71)

Since the potential V = V (z) depends only on the position variable z, we have aeff = −∂z V . Using this and setting g :=
ρ−1

s (1 − f T̂ )−1ρp, equation (71) becomes∫
dz

∫
dθ εDρp [ρp] = 1

2π

∫
dz (−∂z V )

∫
dθ ρ2

s D̂ g. (72)
R R R R
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Now, inserting the definition (23) for the kernel D into equation (72), we obtain∫
R

dz

∫
R

dθ εDρp [ρp] = 1

2π

∫
R

dz (−∂z V )

∫
R

dθ

∫
R

dα g(α)
[
δ(θ − α)

∫
R

dγ W (γ ,α) − W (θ,α)
]

= 1

2π

∫
R

dz (−∂z V )

(∫
R

dγ

∫
R

dα g(α)W (γ ,α) −
∫
R

dθ

∫
R

dα g(α)W (θ,α)

)
= 0,

which ends the proof of the conservation of the total energy E .

Appendix C. Construction of Boltzmann collision integral for transverse state-changing collisions

In this appendix, we outline the construction of the Boltzmann-type collision integral, originally featured in [79]. Given 
a perturbation to an integrable Hamiltonian, which only respect a few of the conservation laws of the unperturbed Hamil-
tonian, an associated collision integral can be formally derived following perturbation theory [48,43]. The conservation laws 
of the perturbation (typically number of particles, momentum, and energy) are explicitly included in the derivation, often 
determining the rapidities involved in the scattering process. However, for most experimentally relevant processes, such 
formal derivation is infeasible and one must construct the collision integral following a more phenomenological approach, 
as well shall do here.

Assuming the majority of atoms remains in the transverse ground state, we can restrict our treatment to the three 
lowest states of the transverse potential, here denoted by the indices n = 0, 1, 2. Within this effective three-level system, 
two excitation (and de-excitation) events are possible by virtue of parity: (1) Two atoms in the ground state collide and 
both are excited to the first excited state, or (2) two atoms in the ground state collide and only one is excited to the second 
excited state. Similar selection rules exist for de-exciting collisions.

Consider a state-changing collision of two quasi-particles with rapidities θ and θ ′ , and let θ± and θ ′± be their rapidities 
following the collisions. Here, the subscript “−” denotes an exciting collision, while “+” denotes a de-exciting one. Following 
conservation of energy we must have

θ2 + (θ ′)2 = θ2± + (θ ′±)2 ∓ 4l−2
⊥ + �E(θ, θ ′, θ±, θ ′±),

The term ∓4l−2
⊥ denotes the change in transverse potential energy following the state-changing collision. Meanwhile, the 

conservation of momentum implies

θ + θ ′ = θ± + θ ′± + �P (θ, θ ′, θ±, θ ′±).

The terms �E and �P describe a shift in the total energy and momentum, respectively, resulting from a reconfiguration 
of all local rapidities following the collision. This effect is captured by the so-called backflow function, and is a result of 
the 1D system being intrinsically strongly correlated [64]. Finding the post-collision rapidities in the presence of backflow 
is rather difficult, as the backflow itself is a functional of the current state of the system (characterized by ρp or f ). 
Therefore, to construct a numerically tractable model, the effect of the backflow was ignored in [79]. Note that for most 
experimentally relevant systems this is a reasonable approximation. Neglecting the backflow, the post-collision rapidities 
becomes independent of the state and read θ± = 1

2 (θ + θ ′) + 1
2 (θ − θ ′)

√
1 ± 8/[(θ − θ ′)l⊥]2 and θ ′± = 1

2 (θ + θ ′) − 1
2 (θ −

θ ′)
√

1 ± 8/[(θ − θ ′)l⊥]2. Simplifying the scattering event to that of just two atoms colliding in a waveguide, the resulting 
scattering cross section reads

P	(θ1, θ2) = 4c2θ1θ2

θ2
1 θ2

2 + c2(θ1 + θ2)2
.

Following these considerations, the Boltzmann collision integral can be constructed. Within GHD, Boltzmann collision in-
tegrals are typically constructed in the conservative form in order to explicitly assure the conservation of particle number. 
For the transverse state-changing collisions, each possible excitation (and de-excitation) event has its own corresponding 
collision integral I±

p,h[ρp]. Each of these collision integrals describes the destruction of two quasi-particles (i.e. the creation 
of two holes) at the incoming rapidities and creation of two quasi-particles at the outgoing ones, thus conserving the to-
tal number of particles. The expressions for these collisions integrals can be found in Section 2.2.2. Although a number 
of simplifications were made in order to arrive at the collision integral, it has been demonstrated to successfully describe 
experimental observations [79].
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