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We present a new numerical method to solve the Vlasov-Darwin and Vlasov-Poisswell systems which are approximations
of the Vlasov-Maxwell equation in the asymptotic limit of the infinite speed of light. These systems model low-frequency
electromagnetic phenomena in plasmas, and thus “light waves” are somewhat supressed, which in turn allows the numerical
discretization to dispense with the Courant-Friedrichs-Lewy condition on the time step. We construct a numerical scheme
based on semi-Lagrangian methods and time splitting techniques. We develop a four-dimensional phase space algorithm
for the distribution function while the electromagnetic field is solved on a two-dimensional Cartesian grid. Finally, we
present two nontrivial test cases: (a) the wave Landau damping and (b) the electromagnetic beam-plasma instability. For
these cases our numerical scheme works very well and is in agreement with analytic kinetic theory.

Keywords: Vlasov-Darwin model, Vlasov-Poisswell model, semi-Lagrangian methods, low-frequency electromagnetic
phenomena

1. Introduction

The physics of plasma and charged particle beams in-
volves the interaction of charged particles through their
self-induced electromagnetic fields. A description of these
phenomena at the microscopic level through the law of dy-
namics is not usable for numerical simulations due to the
huge amount of particles involved. Therefore, approxi-
mate models have to be used. Such models are generally
of two kinds: kinetic models, which allow for nonequi-
librium velocity distributions, and fluid models which are
macroscopic models, valid when the particles are at a ther-
modynamical equilibrium.

Kinetic models, such as the Vlasov equation, are nec-
essary to account for a wide range of physical phenomena.
The Vlasov equation needs to be coupled nonlinearly to a
model describing the evolution of the self-induced elec-

tromagnetic fields. Such a model is given by Maxwell’s
equations. However, in some cases, it is not necessary to
solve the numerically relatively costly Maxwell equations,
as approximate models which still describe the relevant
physics can be solved more efficiently.

One of these well-known approximate models which
has been used in accelerator physics as well as in plasma
physics is the Darwin model (Borodachev, 2005; Gib-
bons and Hewett, 1995; Gibbons and Hewett, 1997; Lee
et al., 2001; Schmitz and Grauer, 2006; Sonnendrucker
et al., 1995). It is obtained from Maxwell’s equations
by neglecting the solenoidal, i.e., divergence-free part of
the displacement current in Ampère’s law. This procedure
transforms the hyperbolic Maxwell equations into a set of
three elliptic equations and thus adds some regularization
features in the model as well as removes a time-step con-
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straint for the stability of explicit numerical schemes.

In contrast to the “quasi-static model” (Maxwell
equations where all times derivates are supressed; in other
words, it is the model formed by the electrostic and
magnetostatic equations), the Darwin model is consis-
tent with the charge conservation or continuity equation
that results from the Vlasov equation. This is also the
case of an even simpler model, called “Poisswell”, which
has been recently introduced by Masmoudi and Mauser
(2001) as a “first-order” relativistic correction to the Pois-
son equation, for the sake of a consistent coupling to the
Pauli equation as a first-order relativistic correction of the
Schrödinger equation.

The numerical solution of the Vlasov equation is
mostly performed with Particle-In-Cell (PIC) methods,
which have the advantage of giving qualitatively accu-
rate solutions at a relatively low cost. Vlasov-Darwin PIC
methods were developed in (Gibbons and Hewett, 1995;
Gibbons and Hewett, 1997; Sonnendrucker et al., 1995).
However, when higher accuracy is required, it is often use-
ful to solve the Vlasov equation on a phase space grid.
Such a method for the Vlasov-Darwin model has been in-
troduced very recently (Schmitz and Grauer, 2006). It is
based on a flux conservative scheme (Fijalkow, 1999; Fil-
bet et al., 2000; Sabatier et al., 1990). Our aim is to
present an alternative numerical method for the Vlasov-
Darwin and also Vlasov-Poisswell models which is based
on a semi-Lagrangian method for the Vlasov equation. Fi-
nally, we mention some analytic works on the Vlasov-
Darwin model. The existence of a global-in-time weak
solution is proven in (Benachour et al., 2003) in the case
of small initial data. In (Pallard, 2006), the author in-
vestigates global-in-time weak solutions for general ini-
tial data and proves the existence of a unique local-in-
time strong solution for smooth data. In (Degond and
Raviart, 1992; Raviart and Sonnendrücker, 1996), the au-
thors make an asymptotic study of the Maxwell equa-
tions and show that the Darwin model approximates the
Maxwell system up to the second order with respect to the
small parameter v/c. Finally, in (Bauer and Kunze, 2005),
there is a proof of the convergence of the Vlasov-Maxwell
system towards the Vlasov-Darwin system in the New-
tonian limit c → ∞, with a convergence rate of O(c−3).

This paper is organized as follows: First, we intro-
duce and derive the Darwin and Poisswell models from
Maxwell’s equations. Then, we present the numerical
method that we use for the solution of the Vlasov-Darwin
and Poisswell equations. It is based on a time split semi-
Lagrangian method for the Vlasov equation and classical
finite difference or finite element methods for the field
equations. Finally, we validate our scheme by presenting
numerical results for the Landau damping and the electro-
magnetic beam plasma instability test cases.

2. Vlasov-Darwin and Vlasov-Poisswell
Models

Let L be the characteristic length of the problem, τ its
characteristic time and c the speed of light. Then ε =
L/τc is a dimensionless parameter and the corresponding
dimensionless relativistic Vlasov equation is

∂tf + v(ξ) · ∇xf + F (t, x, ξ) · ∇ξf = 0, (1)

where f(t, x, ξ) represents the distribution function of
one species of particles (ions, electrons), depending on
time t, position x, and momentum ξ. The force field
F (t, x, ξ) is given here by the Lorentz force

F (t, x, ξ) = q(E + εv(ξ) × B), (2)

where q = ±1 is the sign of the charge. The relativistic
velocity of particles v(ξ) is given by

v(ξ) =
ξ

γ(ξ)
=

ξ√
1 + ε2|ξ|2 . (3)

From the distribution function f , we compute the
charge and the current densities

ρ(t, x) = q

∫
R3

f
(
t, x, ξ)

)
dξ,

j(t, x) = q

∫
R3

v(ξ)f(t, x, ξ) dξ, (4)

respectively. The electromagnetic field (E, B) has to
solve some field equations of which the charge density ρ
and current density j are the source terms. Moreover, the
field equations for (E, B) must satisfy the charge conser-
vation equation

∂tρ + ∇ · j = 0,

which is obtained by integrating the Vlasov equation (1)
with respect to ξ. This compatibility condition is nec-
essary to couple the Vlasov equation to electromagnetic
field equations.

Now we present two models of the electromagnetic
field whose common feature is the fact that they only take
into account the “low-frequency part” of the electromag-
netic field.

2.1. Darwin Model. The Darwin approximation of
Maxwell’s equations is introduced in order to remove the
time scale of light waves. This model eliminates high
frequency electromagnetic waves, but keeps an important
part of the physics in the low-frequency range. The elec-
tric field E is decomposed into two parts, i.e., an irrota-
tional part Eirr, which is curl free, and a solenoidal part
Esol, which is divergence free, i.e., E = Eirr + Esol,
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where ∇ × Eirr = 0 and ∇ · Esol = 0. Furthermore, as
∇ × Eirr = 0, we can write Eirr = −∇φ. The Darwin
approximation consists in dropping the solenoidal part of
the displacement current from Ampère’s law written here
in an adimensional form:

1
ε
∇× B = j + ∂tEirr + /∂tEsol , (5)

where ε = L/τc with L being the characteristic length of
the problem, τ its characteristic time, e.g., the frequency
in which we are interested, and c the velocity of light. By
taking the curl of this equation, since ∇·B = 0, we obtain

−ΔB = ε∇× j. (6)

By dropping only the solenoidal part of the displace-
ment current, charge conservation is retained in the Dar-
win model.

Taking the curl of Faraday’s law and using the time
derivate of Ampère’s law, we obtain an elliptic equation
for Esol:

−ΔEsol = −ε2
(
∂tj + ∂2

t Eirr

)
(7)

= −ε2 (∂tj − ∂tjirr)
= −ε2∂tjsol,

where we used ∇ · Esol = 0 and set

j = jirr + jsol, ∂tEirr + jirr = 0. (8)

Finally, the Poisson law, ∇·Eirr = ρ, gives Poisson’s
equation for the electrostatic potential

−Δφ = ρ. (9)

Instead of Maxwell’s equations, which are hyperbolic, we
now have three elliptic equations. Thus the (CFL) condi-
tion on stability no longer constrains the time step.

Using a formal Hilbert expansion of E and B with
respect to ε,

E = E0 + εE1 + · · · ,

B = B0 + εB1 + · · · , (10)

it was shown (Degond and Raviart, 1992; Raviart and
Sonnendrücker, 1996) that the “quasistatic approxima-
tion”, which consists in neglecting all time derivatives in
Maxwell’s equation, is a simple first-order approximation
of Maxwell equations, i.e., E0 and B0 are the same but
E1 and B1 differ. Such a formal asymptotic expansion
shows that the Darwin model coincides with Maxwell’s
equations up to the second order. Note that the “quasi-
static model” which adds the magnetostatic equation for
the magnetic field to the Poisson equation has the draw-
back that its coupling to the Vlasov equation is inconsis-
tent with charge conservation.

Therefore, the Darwin approximation is justified for
small ε, e.g., in the nonrelativistic regime. In some sit-
uations, especially in magnetized plasma, it is essential
to keep the first-order term, which will support electro-
magnetic phenomena. These includes Alfven waves, ion
micro-instabilities, filamentation instabilities, electromag-
netic beam-plasma instabilities (Califano et al., 1998) and
tearing instabilities (Taguchi et al., 2001).

2.2. Poisswell Model. In the previous section we
have seen that the Darwin field-model is an approxima-
tion of the second order in ε of Maxwell’s equations that
yields a good model when coupled to the Vlasov equation,
whereas the “quasistatic model” is not a good first-order
model given by a slightly different formulation that we
call the Poisswell field-model. This model was introduced
in quantum mechanics (Masmoudi and Mauser, 2001) to
add the self-consistent electromagnetic field of the or-
der ε to the Pauli wave-function equation which is also
an approximation of the order ε of the Dirac equation.
Let us first recall Maxwell’s equations with the scaling
ε = L/τc:

∇× B = ε(j + ∂tE), ∇ · E = ρ, (11)

ε∂tB + ∇× E = 0, ∇ · B = 0. (12)

If we introduce the potentials φ and A, the electro-
magnetic field is defined as

E = −∇φ − ε∂tA, B = ∇× A. (13)

In order for the field to be well determined by the poten-
tials, we have to add a gauge. We choose the Lorentz
gauge which, in our scaling, is

ε∂tφ + ∇ · A = 0. (14)

We will see that the Lorentz gauge allows us to recover
the charge conservation equation. If we plug the ex-
pansion (10) and the following Hilbert expansions for φ
and A:

A = A0 + εA1 + · · · , φ = φ0 + εφ1 + · · · (15)

into (11), (12) and (13), (14), and collect terms of equal
powers in ε, we get

O(1):

∇× E0 = 0, ∇ · E0 = ρ, (16)

∇× B0 = 0, ∇ · B0 = 0 hence B0 = 0, (17)

E0 = −∇φ0, (18)

O(ε):

∇× B1 = ∂tE0 + j, ∇ · B1 = 0, (19)

∇× E1 = 0, ∇ · E1 = 0 hence E1 = 0, (20)

∂tφ0 + ∇ · A1 = 0. (21)
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We have A = εA1 + O(ε2) since A0 = 0, and φ =
φ0 + O(ε2) since φ1 = 0 from (17) and (20). From (16)
and (18) on the one hand and from (19), (21) and (18) on
the other hand, we get the following “Poisswell system”
as the approximation of the Maxwell equation (11)–(12)
at order ε:

−Δφ = ρ, −ΔA = εj. (22)

Since B0 and A0 vanish, the magnetic field/potential B,
A is relativistic at order ε and, consequently, the scaled
Lorentz force is relativistic at order ε2. If we differenti-
ate (22) with respect to time, multiply it by ε and add the
result to the divergence of (9), we get

−ε(∂tρ + ∇ · j) = Δ(ε∂tφ + ∇ · A) = 0.

Thus we recover the equation of charge conservation
and the “Poisswell model” is compatible with the Vlasov
equation, which is not the case for the “quasistatic equa-
tion.” Finally, if we take the curl of (22), we get the equa-
tion for the magnetic field

−ΔB = ε∇× j, (23)

which is the same as for the Darwin model (6). If we
differentiate (22) with respect to time, we get an equation
for −ε∂tA, the second part of the electric field (13) of the
Poisswell model

−Δ(−ε∂tA) = −ε2∂tj. (24)

Note the difference between this result and Eqn. (7)
for the solenoidal part of the electric field of the Dar-
win model. In fact, these two electrical fields are differ-
ent. One is divergence free (Esol) and the other is not
(−ε∂tA). In fact, the gauge for the potentials associated
to the Darwin electromagnetic field is the Coulomb gauge
(∇ · A = 0), whereas for the Poisswell model it is the
Lorentz gauge. It is interesting to observe that this choice
of the gauge is the good one—intuitively, one might think
that the Coulomb gauge, which is the nonrelatvistic limit
of the Lorentz gauge, fits better to a “first-order” nonrela-
tivistic model.

3. Numerical Approximation

In this section we recall the semi-Lagrangian method with
a time splitting strategy (Strang splitting is often a natural
choice). Next we focus on particular problems posed by
the Darwin and Poisswell models. Finally, we state the
complete algorithm.

3.1. Semi-Lagrangian Method with Time Splitting.
The integration of the Vlasov equation using a semi-
Lagrangian method and time splitting à la Strang was
widely used (Bégué et al., 1999; Besse, 2004; Besse

and Mehrenberger, 2006; Besse and Sonnendrücker, 2003;
Cheng and Knorr, 1976). Roughly speaking, it consists
in splitting the full transport operator into two transport
operators—the first in the physical space, the second in
the velocity or momentum space—and solving them suc-
cessively in a right order to get a high-order approxima-
tion in time of the complete transport operator. Let Mh

be a discretization of the phase space and fn
h an approxi-

mation of f at time tn on Mh. The general algorithm to
compute fn+1

h consists of the following three steps:

Step 1. Half time advection in physical space. This step
consists in solving the equation

∂tf + v(ξ) · ∂xf = 0, t ∈ [tn, tn+1/2], (25)

f(tn) = fn
h .

In order to solve (25), we integrate its associated charac-
teristic curve equation

dX

dt
(t) = v

(
Ξ(t)

)
on the time interval [tn, tn+1/2]. Then we get

Xn − Xn+1/2 =

tn∫
tn+1/2

v
(
Ξ(t)

)
dt

=

tn∫
tn+1/2

v
(
Ξ(tn)

)
dt + O(Δt2)

� −v(Ξn)Δt/2,

where (Xn+1/2,Ξn) ∈ Mh, and Xn is the origin of
the characteristic curve we look for. Therefore, the new
distribution function is such that

f�
h(x, ξ) := f̃

n+1/2
h (Xn+1/2,Ξn)

= fn
h (Xn,Ξn), ∀(x, ξ) ∈ Mh.

Step 2. Time advection in velocity space. This step con-
sists in solving the equation

∂tf + F (t, x, ξ) · ∂ξf = 0, t ∈ [tn, tn+1], (26)

f(tn) = f�
h .

In order to solve (26), we integrate its associated charac-
teristic curve equation

dΞ
dt

(t) = F
(
t, X(t),Ξ(t)

)
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over the time interval [tn, tn+1]. Then we get

Ξn+1 − Ξn =

tn+1∫
tn

F
(
t, X(t),Ξ(t)

)
dt

=

tn+1∫
tn

F
(
tn+1/2, X(tn+1/2),Ξ(tn+1/2)

)
dt

+ O(Δt3)
� F (tn+1/2, Xn+1/2,Ξn+1/2)Δt,

where (Xn+1/2,Ξn+1) ∈ Mh and Ξn is the origin of
the characteristic curve we look for. As we do not know
Ξn+1/2, we replace it by the second order approximation
in time Ξn+1/2 = {Ξn + Ξn+1}/2 + O(Δt2). Then the
previous equation becomes

Ξn+1 − Ξn

= F
(
tn+1/2, Xn+1/2, {Ξn + Ξn+1}/2

)
Δt. (27)

In the case of the nonrelativistic Vlasov model, (27)
can be inverted explicitly. The solution is decomposed
into a translation due to the electric field and a rotation
due to the magnetic field. In contrast to the case of the rel-
ativistic Vlasov equation, we have to solve a fixed-point
problem (e.g., a Newton algorithm) because of the pres-
ence of the nonlinear term γ(ξ). Nevertheless, this fixed-
point problem can be avoided if we integrate the charac-
teristic curves by splitting (e.g., the Strang splitting). This
is due to the electric field (translation) and the magnetic
field (rotation) because during the rotation it is easy to
show that the term γ(ξ) remains constant. Therefore, the
new distribution function is such that

f��
h (x, ξ) := f̂

n+1/2
h (Xn+1/2,Ξn+1)

= f�
h(Xn+1/2,Ξn), ∀(x, ξ) ∈ Mh.

Step 3. Half time advection in physical space. This step
consists in solving

∂tf + v(ξ) · ∂xf = 0, t ∈ [tn+1/2, tn+1], (28)

f(tn+1/2) = f��
h .

In order to solve (28), we integrate its associated charac-
teristic curve equation

dX

dt
(t) = v

(
Ξ(t)

)

over the time interval [tn+1/2, tn+1]. Then we get

Xn+1 − Xn+1/2 =

tn+1∫
tn+1/2

v
(
Ξ(t)

)
dt

=

tn+1∫
tn+1/2

v
(
Ξ(tn+1)

)
dt+O(Δt2)

� v(Ξn+1)Δt/2,

where (Xn+1,Ξn+1) ∈ Mh and Xn+1/2 is the origin of
the characteristic curve we look for. Therefore, the new
distribution function is such that

fn+1
h (x, ξ) = fn+1

h (Xn+1,Ξn+1)

= f��
h (Xn+1/2,Ξn+1), ∀(x, ξ) ∈ Mh.

In this algorithm, which is of the second order in time
(Besse, 2004; Besse and Mehrenberger, 2006), we note
that there remains to compute a “good” approximation of
F (tn+1/2, ·, ·). It is the aim of the next section.

3.2. Properties of the Vlasov-{Darwin, Poisswell}
Models. In order to have a good approximation of the
force field F n+1/2 = F (tn+1/2, ·, ·), we have to compute

Bn+1/2, −∇φn+1/2, E
n+1/2
sol and −ε∂tA

n+1/2.

3.2.1. Computation of Bn+1/2 and −∇−∇−∇φn+1/2.
Let us first compute ∂tρ and ∂tj. If we multiply (1) by
q and integrate the result, we get

∂tρ = −q

∫
R3

v · ∇xf dξ. (29)

If we multiply (1) by qv and integrate the result, then, after
some algebra, we get

∂tj = −q

∫
R3

v(v·∇xf) dξ+q(ργE+εjγ×B)−Kε,1E,

(30)
where

ργk = q

∫
R3

f
dξ

γk
, jγk = q

∫
R3

vf
dξ

γk
,

Kε,k = ε2q2

∫
R3

(v ⊗ v)f
dξ

γk
, k ∈ N.

(31)

The first way to get an approximation to ρn+1/2 is
to integrate with respect to ξ the distribution function
f̃n+1/2 = fn(x − vΔt/2, ξ). Therefore, we get

ρn+1/2 � q

∫
R3

f̃n+1/2 dξ. (32)
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Another way is to integrate (29) over the time interval
[tn, tn+1/2]. Then we get

ρn+1/2 = ρn − q
Δt

2

∫
R3

v · ∇xfn dξ + O(Δt2). (33)

In fact, the computations of ρn+1/2 given by (32)
and (33) are equivalent up to the second order in time be-
cause, if we use a Taylor expansion of f̃n+1/2, then we
get

f̃n+1/2 = fn − Δt

2
v · ∇xfn + O(Δt2). (34)

If we plug (34) into (32), then we obtain (33). Once
we know ρn+1/2, we can get φn+1/2 by solving (9) with
any classical methods (spectral methods, finite difference
methods, finite element methods, etc.). Next, we aim to
compute jn+1/2. Let us define

j̃n+1/2 = q

∫
R3

vf̃n+1/2 dξ. (35)

Then one way to compute jn+1/2 is

jn+1/2� j̃n+1/2+q
Δt

2
(ρn

γEn+εjn
γ ×Bn)−Δt

2
Kn

ε,1E
n.

(36)
A second alternative is to integrate (30) over the time in-
terval [tn, tn+1/2]. Consequently, we get

jn+1/2 = jn − q
Δt

2

∫
R3

v(v · ∇xfn) dξ

+ q
Δt

2
(ρn

γEn + εjn
γ × Bn)

− Δt

2
Kn

ε,1E
n + O(Δt2). (37)

Once again the approximations of jn+1/2 given
by (36) and (37) are equivalent up to the second order
in time because, if we plug the Taylor expansion (34) of
f̃n+1/2 into (36), then using (35), we obtain (37). Having
computed jn+1/2, we can get Bn+1/2 by solving (6) with
any classical numerical method. Note that in the nonrela-
tivistic case all the terms involving Kε,1 disappear, ργ and
jγ tending to ρ and j, respectively.

3.2.2. Computation of E
n+1/2
sol and −ε∂tA

n+1/2.
We only treat the case of Esol, because from (24) we see
that the case of −ε∂tA is the same as that of Esol pro-
vided that we drop the term −ε2∂2

t Eirr in (7). From (7)
and (30) we get

−ΔEsol = ε2
(
q

∫
R3

v(v ·∇xf) dξ−q(ργE+εjγ × B)

+ Kε,1E − ∂2
t Eirr

)
. (38)

If we separate the solenoidal and irrotationnal parts of the
electric field on the right-hand side of (38), then we obtain
the following Helmholtz equation:

−ΔEsol + K̃εEsol = S, (39)

where

K̃ε = ε2 (qργI − Kε,1)

and

S = ε2q

∫
R3

v(v · ∇xf) dξ − ε2q(ργEirr

+ εjγ × B) + ε2Kε,1Eirr − ε2∂2
t Eirr. (40)

In order to get E
n+1/2
sol , we have to solve (39) at time

tn+1/2 and, therefore, we have to compute K̃
n+1/2
ε and

Sn+1/2. Let us first treat the source term Sn+1/2. It con-
tains the term

− ε2q
(
ρn+1/2

γ E
n+1/2
irr + εjn+1/2

γ × Bn+1/2
)

+ ε2K
n+1/2
ε,1 E

n+1/2
irr , (41)

for which we have to compute K
n+1/2
ε,1 , ρ

n+1/2
γ and

j
n+1/2
γ . We shall deal with the term K

n+1/2
ε,1 later. Let

us focus on ρ
n+1/2
γ and j

n+1/2
γ . If we divide (1) by γ and

integrate it with respect to ξ and the last term by parts, we
get, as ∇ξ · F = 0,

∂t

⎛⎝∫
R3

f
dξ

γ

⎞⎠=−
∫
R3

v ·∇xf
dξ

γ
−ε2

∫
R3

F ·vf
dξ

γ2
. (42)

Integrating (42) over the time interval [tn, tn+1/2]
and using (34), we get

ρn+1/2
γ =

∫
R3

f̃n+1/2 dξ

γ
− ε2q2 Δt

2

∫
R3

En · vfn dξ

γ2

+ O(Δt2)

= ρ̃n+1/2
γ − ε2q

Δt

2
jn

γ2 · En + O(Δt2). (43)

If we multiply (1) by ξ/γ and integrate the result, the
last term by parts, with respect to ξ, we get

∂t

⎛⎝∫
R3

vf
dξ

γ

⎞⎠ = −
∫
R3

v(v · ∇xf)
dξ

γ

+
∫
R3

[I − 2ε2v ⊗ v]F f
dξ

γ2
. (44)
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Integrating (44) over the time interval [tn, tn+1/2] and us-
ing (34), we get

jn+1/2
γ =

∫
R3

vf̃n+1/2 dξ

γ
+q

Δt

2

(
ρn+1

γ2 En+εjn
γ2×Bn

)
− ΔtKn

ε,2E
n + O(Δt2)

= j̃n+1/2
γ + q

Δt

2

(
ρn+1

γ2 En + εjn
γ2 × Bn

)
− ΔtKn

ε,2E
n + O(Δt2). (45)

Note that ρ
n+1/2
γ (resp. j

n+1/2
γ ) is the same as

ρn+1/2 (resp. jn+1/2) in the nonrelativistic case. Let us
now look at the term −ε2∂2

t E
n+1/2
irr . One way is to use a

finite difference scheme of the second order in time,

∂2
t E

n+1/2
irr

=
2E

n+1/2
irr − 5En

irr + 4E
n−1/2
irr − En−1

irr

2Δt2
+O(Δt2).

An alternative is to take a central finite difference scheme
in time in (8), as was done in (Borodachev, 2005). Then
we have

j
n+1/2
irr +

E
n+1/2
irr − E

n−1/2
irr

Δt
= 0. (46)

Now we look for the equivalent equation of the
scheme (46) by studying its consistency. To this end, we
plug the Taylor expansion

E
n−1/2
irr

= E
n+1/2
irr −Δt∂tE

n+1/2
irr +

Δt2

2
∂2

t E
n+1/2
irr +O(Δt3)

into (46), and we obtain

2
Δt

(
j

n+1/2
irr +

E
n+1/2
irr − E

n−1/2
irr

Δt

)
= ∂2

t E
n+1/2
irr + O(Δt2), (47)

which gives an approximation of ∂2
t E

n+1/2
irr of the second

order in time. In order to apply (47), we have to compute
j

n+1/2
irr . This can be done in the following way: As the

current can be decomposed as j = jirr + jsol with ∇ ·
jsol = 0 and ∇× jirr = 0, we get

0 = ∇×∇×jirr=−Δjirr+∇(∇ · jirr)
= −Δjirr+∇(∇ · j).

Thus, to obtain j
n+1/2
irr , we have to solve the elliptic prob-

lem
Δj

n+1/2
irr = ∇(∇ · jn+1/2) (48)

with any classical numerical method. Now let us compute
the term

ε2q

∫
R3

v(v · ∇xfn+1/2) dξ.

If we take the gradient of the Vlasov equation (1)
with respect to x, take the scalar product with the velocity
v, multiply the result by v and integrate with respect to ξ,
then after some algebra (integration by parts) we get

∂t

⎛⎝∫
R3

v(v · ∇xf) dξ

⎞⎠
= −

∫
R3

v(vT∇2
xfv) dξ +

∫
R3

v∇x · (F f)
dξ

γ

+
∫
R3

∇T
x(F f)v

dξ

γ

− 2ε2

∫
R3

v ⊗ v : ∇x(F f)v
dξ

γ
. (49)

If we integrate (49) over the time interval [tn, tn+1/2], we
obtain∫
R3

v(v · ∇xfn+1/2) dξ

=
∫
R3

v(v · ∇xfn) dξ − Δt

2

∫
R3

v(vT∇2
xfnv) dξ

+
Δt

2

∫
R3

[
v∇x · (F nfn) + ∇T

x (F nfn)v
]dξ

γ

− ε2Δt

∫
R3

v ⊗ v : ∇x(F nfn)v
dξ

γ
+ O(Δt2),

which is equivalent up to the second order in time to∫
R3

v(v · ∇xfn+1/2) dξ

=
∫
R3

v(v · ∇xf̃n+1/2) dξ

+
Δt

2

∫
R3

v∇x · (F nfn)
dξ

γ

+
Δt

2

∫
R3

∇T
x(F nfn)v

dξ

γ

− ε2Δt

∫
R3

v ⊗ v : ∇x(F nfn)v
dξ

γ
+ O(Δt2).

(50)

Note that in (50) we have used (34), and that the
last integral term in (50) disappears in the nonrelativis-
tic case. Equation (50) involves only the gradients of the
electromagnetic field which can be evaluated by finite dif-
ference or finite element methods and some moments in
the velocity of the distribution function and its gradients
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with respect to x. Those can be evaluated by differentiat-
ing the interpolation operator used to approximate the dis-
tribution function and replacing the velocity integrals by
some quadrature formulae. In (39) and (41), we have to
compute Kε,1 at time tn+1/2, where its definition is given
in (31). If we multiply the Vlasov equation (1) by v⊗v/γ
and integrate the result with respect to ξ, then after some
algebra (integration by parts) we get

∂t

⎛⎝∫
R3

v ⊗ vf
dξ

γ

⎞⎠
= −

∫
R3

(v ⊗ v)(v · ∇xf)
dξ

γ

+
∫
R3

(v ⊗ F + v ⊗ F

−3ε2(v ⊗ v)(F · v)
)
f

dξ

γ2
. (51)

Using (34), the integration of (51) over the time interval
[tn, tn+1/2] gives∫

R3

v ⊗ vfn+1/2 dξ

γ

=
∫
R3

v ⊗ vf̃n+1/2 dξ

γ

+
Δt

2

∫
R3

(v ⊗ F n + v ⊗ F n

−3ε2(v ⊗ v)(F n · v)
)
fn dξ

γ2
+ O(Δt2). (52)

Note that the term K
n+1/2
ε,1 disappears in the nonrelativis-

tic case.

3.3. Complete Numerical Scheme. In this section we
summarize the complete algorithm for the approximation
of the Vlasov-Darwin and Vlasov-Poisswell models. Let
us suppose that we know fn

h being an approximation of
the distribution function f at time tn, and for the Vlasov-
Darwin system we only suppose in addition that we know
approximations of the irrotationnal part of the electric
field at time tn−1/2, E

n−1/2
irr,h and at time tn−1, En−1

irr,h.

Step 1. Compute:

ρn
γk,h =q

∫
R3

fn
h

dξ

γk
, jn

γk,h =q

∫
R3

vfn
h

dξ

γk
, k ∈ {0, 1, 2}.

Solve:

En
irr,h = ∇Δ−1ρn

h, Bn
h = −εΔ−1∇× jn

h ,

jn
irr,h = Δ−1∇(∇ · jn

h ).

Compute:

Kn
ε,k = ε2q2

∫
R3

(v ⊗ v)fn
h

dξ

γk
, k ∈ {1, 2},

K̃n
ε = ε2

(
qρn

γ,hI − Kn
ε,1

)
,

Sn
D = ε2q

∫
R3

v(v · ∇xfn
h ) dξ

− ε2q(ρn
γ,hEn

irr,h + εjn
γ,h × Bn

h )
+ Kn

ε,1E
n
irr,h

− ε2 2
Δt

(
jn
irr,h +

En
irr,h − En−1

irr,h

Δt

)
,

Sn
P = ε2q

∫
R3

v(v · ∇xfn
h ) dξ

− ε2q(ρn
γ,hEn

irr,h + εjn
γ,h × Bn

h )
+ Kn

ε,1E
n
irr,h,

Solve:

En
sol,h = (−Δ + K̃n

ε )−1Sn
D,

−ε∂tA
n
h = (−Δ + K̃n

ε )−1Sn
P .

Option (a): here we can compute j
n+1/2
h , j

n+1/2
γ,h , ρ

n+1/2
γ,h

as

j
n+1/2
h = jn

h − q
Δt

2

∫
R3

v(v · ∇xfn
h ) dξ

+ q
Δt

2
(ρn

γ,hEn
h + εjn

γ,h × Bn
h ) − Δt

2
Kn

ε,1E
n
h ,

ρ
n+1/2
γ,h = ρn

γ,h − q
Δt

2

∫
R3

v · ∇xfn
h

dξ

γ

− ε2q
Δt

2
jn

γ2,h · En
h ,

j
n+1/2
γ,h = jn

γ,h − q
Δt

2

∫
R3

v(v · ∇xfn
h )

dξ

γ

+ q
Δt

2
(ρn

γ2,hEn
h +εjn

γ2,h × Bn
h )−ΔtKn

ε,2E
n
h .

Step 2. Perform a half-time step advection in physical
space:

f̃
n+1/2
h (x, ξ) = fn

h (x−v(ξ)Δt/2, ξ), ∀(x, ξ) ∈ Mh.

Step 3. Compute:

ρ̃
n+1/2
h = q

∫
R3

f̃
n+1/2
h dξ, ρ̃

n+1/2
γ,h = q

∫
R3

f̃
n+1/2
h

dξ

γ
,
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j̃
n+1/2

γk,h
= q

∫
R3

vf̃
n+1/2
h

dξ

γk
, k ∈ {1, 2}.

Option (b): here we can also compute j
n+1/2
h , j

n+1/2
γ,h ,

ρ
n+1/2
γ,h as

j
n+1/2
h = j̃

n+1/2
γ,h + q

Δt

2
(ρn

γ,hEn
h + εjn

γ,h × Bn
h )

− Δt

2
Kn

ε,1E
n
h ,

ρ
n+1/2
γ,h = ρ̃

n+1/2
γ,h − ε2q

Δt

2
jn

γ2,h · En
h ,

j
n+1/2
γ,h = j̃

n+1/2
γ2,h + q

Δt

2
(ρn

γ2,hEn
h + εjn

γ2,h × Bn
h )

− ΔtKn
ε,2E

n
h .

Solve:

E
n+1/2
irr,h =∇Δ−1ρ

n+1/2
h , B

n+1/2
h =−εΔ−1∇×j

n+1/2
h ,

j
n+1/2
irr,h = Δ−1∇(∇ · jn+1/2

h ).

Compute:

K
n+1/2
ε,1 : evaluate the integral (52) by replacing f̃n+1/2

by f̃
n+1/2
h , fn by fn

h and F n by F n
h .

K̃n+1/2
ε = ε2

(
qρ

n+1/2
γ,h I − K

n+1/2
ε,1

)
.∫

R3

v(v · ∇xf
n+1/2
h ) dξ: evaluate the integral (50) by re-

placing f̃n+1/2 by f̃
n+1/2
h , fn by fn

h and F n by F n
h .

S
n+1/2
D = ε2q

∫
R3

v(v · ∇xf
n+1/2
h ) dξ

− ε2q(ρn+1/2
γ,h E

n+1/2
irr,h + εj

n+1/2
γ,h × B

n+1/2
h )

+ K
n+1/2
ε,1 E

n+1/2
irr,h

− ε2 2
Δt

(
j

n+1/2
irr,h +

E
n+1/2
irr,h − E

n−1/2
irr,h

Δt

)
,

S
n+1/2
P = ε2q

∫
R3

v(v · ∇xf
n+1/2
h ) dξ

− ε2q(ρn+1/2
γ,h E

n+1/2
irr,h + εj

n+1/2
γ,h × B

n+1/2
h )

+ K
n+1/2
ε,1 E

n+1/2
irr,h .

Solve:

E
n+1/2
sol,h = (−Δ + K̃n+1/2

ε )−1S
n+1/2
D ,

−ε∂tA
n+1/2
h = (−Δ + K̃n+1/2

ε )−1S
n+1/2
P .

Step 4. Perform a full-time step advection in velocity
space:

Solve: search for ξ� such as

ξ − ξ� = F
n+1/2
h (x, (ξ + ξ�)/2)Δt.

Compute:

f̂
n+1/2
h (x, ξ) = f̃

n+1/2
h (x, ξ�), ∀(x, ξ) ∈ Mh.

Step 5. Perform half-time step advection in physical
space:

fn+1
h (x, ξ)

= f̂
n+1/2
h (x − v(ξ)Δt/2, ξ), ∀(x, ξ) ∈ Mh.

4. Numerical Results

In this section we present numerical results obtained by
the algorithm described in the previous section for two
physical test cases. One of them is the Landau damping
of longitudinal plasma waves. This test case is considered
in order to demonstrate that our scheme reproduces the
theoretical damping of Langmuir waves which should not
be modified by taking into accout a self-consistent low-
frequency magnetic field. The second case is the elec-
tromagnetic beam-plasma instability (EMBP). Here we
choose a model with a magnetic field parallel to the z-axis,
i.e., only one nonzero component B = (Bz), while the
electric field E = (Ex, Ey) is transversal to Bz , and parti-
cles can move in the x−y plane. The electromagnetic field
(Ex, Ey, Bz) depends on the x and y variables while the
distribution function f = f(t, x, y, vx, vy) reflects a four-
dimensional phase space. Here we choose to work in the
nonrelativistic setting because ε = L/τc = v̄/c (where v̄
is the characteristic velocity of the problem) should be suf-
ficiently small for the Vlasov-{Darwin, Poisswell} mod-
els to be valid. Besides, we use the B-splines interpolation
to reconstruct the distribution function on the phase space
grid and interpolate its values at the origin of the charac-
teristic set.

4.1. Landau Damping Test Case. The initial condi-
tion is

f(0, x, v) =
1
2π

(
1 + α cos(kxx) cos(kyy)

)
e−

v2
x+v2

y
2

for all couples (x, y) in the box [0, L]2 and for all couples
(vx, vy) in the plane R

2, where α = 5 · 10−2 is the inten-
sity of the perturbation. The boundary conditions are peri-
odic. The initial distribution function represents a plasma
at the thermodynamical equilibrium affected by a small
perturbation in physical space which will generate a small
longitudinal electrostatic field. The spatial box period is
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L = 4π and vmax = 8 is the velocity above for which
we suppose that the distribution function is null. The time
step Δt = 1/8 and the final time is T = 20ω−1

p . The
parameter ε is equal to 0.01. The discretization in the
physical space is 64 points per direction and in the ve-
locity space it is 128 points per direction. We observe
that the electrical energy decreases exponentially in time
with the rate γ = −0.400 and the pulsation ω = 1.69,
as it is predicted by the linear Landau theory. We observe
that the Vlasov-Darwin and Vlasov-Poisswell models pro-
duce the same results. The Landau damping is a kinetic
effect which takes place where the phase velocity of the
electrostatic field is close to the thermal velocity of the
particles. It consists in an exchange of energy from the
electrostatic waves to the particles (at least in the linear
regime) when the phase velocity and the thermal veloc-
ity are of the same orders. Therefore, the Vlasov-Darwin
and Vlasov-Poisswell models should reproduce the same
behavior (Fig. 1).

4.2. Electromagnetic Beam-Plasma Instability Test
Case. The initial condition is

f(0, x, v)

=
1
2π

(
1 + α cos(kxx) cos(kyy)

)
×
(

n0,1

vth,1
2
e
− (vx−v0,1)2+v2

y

2v2
th,1 +

n0,2

vth,2
2
e
− (vx−v0,2)2+v2

y

2vth,2
2

)

for all pairs (x, y) in the box [0, L]2 and for all pairs
(vx, vy) in the plane R

2, where v0,1 and v0,2 are the drift
velocity of the beam and the drift velocity of the plasma,
respectively. Here vth,1 and vth,2 are the thermal veloci-
ties, and n0,1 and n0,2 are the initial densities of the beam
and the plasma, respectively. The boundary conditions are
periodic. The paratieters n0,1, n0,2, v0,1 and v0,2 are cho-
sen such that the total density is one and the total net cur-
rent is zero. Then we have

n0,1 + n0,2 = 1, n0,1v0,1 + n0,2v0,2 = 0.

We suppose that the initial densities are homoge-
neous, i.e., n0,1 and n0,2 do not depend on physical space
variables. This initial condition models two initially inter-
penetrating currents, one carried by a fast electrond beam
and the other carried by a cold plasma. In order to get the
theoritical growth rate of this instability, we start with the
fluid equation for the motion of the particles:

∂tρa+∇·ja = 0, ∂tξa+(ξa ·∇)ξa = q(E+εva×B),

where ja = qnava = ρava, with a = {1, 2}. The fluid
equations are coupled to the electromagnetic field by us-
ing the Darwin or the Poisswell model. After lineariz-
ing the model formed by the nonrelativistic fluid equation
and the electromagnetic field equations, using q = −1,
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Fig. 1. Evolution of the logarithm of the electric energy
in the case of the Landau damping: (a) Vlasov-
Darwin, (b)Vlasov-Poisswell.

j =
∑

a ja and ρ =
∑

a ρa, the growth rate of the EMBP
instability for the Vlasov-Darwin system is determined by
the imaginary parts of the zeros (in the variable ω) of the
polynomial defined as the determinant of the dispersion
matrix (??). In the case of the Vlasov-Poisswell model
the dispersion matrix is given by (53).

We take L = 4π (kx = 0.5, ky = 0.5) , ε = 0.01
and Δt = 1/4. For the symmetric case we take the
parameters n0,1 = n0,2 = 0.5, v0,1 = −v0,2 = 1,
vth,1 = vth,2 = 0.1, α = 10−10, and vmax = 3. The



Numerical approximation of self-consistent Vlasov models for low-frequency electromagnetic phenomena 371

Dd(B0, ρ0,a, v0,a, ω, k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i(k · v0,1 − ω) 0 εB0 0
0 i(k · v0,2 − ω) 0 εB0

−εB0 0 i(k · v0,1 − ω) 0
0 −εB0 0 i(k · v0,2 − ω)

−ρ0,1kx 0 −ρ0,1ky 0
0 −ρ0,2kx 0 −ρ0,2ky

iε2ρ0,1ω iε2ρ0,2ω 0 0
0 0 iε2ρ0,1ω iε2ρ0,2ω

0 0 0 0
0 0 0 0

−iεkyρ0,1 −iεkyρ0,2 iεkxρ0,1 iεkxρ0,2

0 0 1 0 1 0 εv0,1y

0 0 1 0 1 0 εv0,2y

0 0 0 1 0 1 −εv0,1x

0 0 0 1 0 1 −εv0,2x

k · v0,1 − ω 0 0 0 0 0 0
0 k · v0,2 − ω 0 0 0 0 0

iε2v0,1x
ω iε2v0,2x

ω −|k|2 0 ε2ω2 0 0
iε2v0,1y

ω iε2v0,2y
ω 0 −|k|2 0 ε2ω2 0

1 1 0 0 −ikx −iky 0
0 0 0 0 −ky kx 0

iεk × v0,1 iεk × v0,2 0 0 0 0 −|k|2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Dp(ρ0,a, v0,a, ω, k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k · v0,1 − ω 0 0 0
0 k · v0,1 − ω 0 0
0 0 k · v0,1 − ω 0
0 0 0 k · v0,1 − ω

ρ0,1kx 0 ρ0,1ky 0
0 ρ0,2kx 0 ρ0,2ky

0 0 0 0
ερ0,1 ερ0,2 0 0

0 0 ερ0,1 ερ0,2

0 0 −kx −εkyv0,1y
εkxv0,1y

0 0 −kx −εkyv0,2y
εkxv0,2y

0 0 −ky εkyv0,1x
−εkxv0,1x

0 0 −ky εkyv0,2x
−εkxv0,2x

k · v0,1 − ω 0 0 0 0
0 k · v0,2 − ω 0 0 0
1 1 −|k|2 0 0

εv0,1x
εv0,2x

0 −|k|2 0
εv0,1y

εv0,2y
0 0 −|k|2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (53)
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Fig. 2. Evolution of the logarithm of the magnetic energy in the
case of symmetric electromagnetic beam-plasma insta-
bility: (a) Vlasov-Darwin, (b) Vlasov-Poisswell.

discretization in the physical space is 64 points per direc-
tion and in the velocity space it is 128 points per direction.
In order to get the fluid growth rate of the electromag-
netic beam plasma instability we solve the equation (in
the variable ω) det(Dd(B0, ρ0,a, v0,a, ω, k)) = 0 for the
Vlasov-Darwin model and det(Dp(ρ0,a, v0,a, ω, k)) = 0
for the Vlasov-Poisswell system. Then we find that the
nonzero imaginary parts of the roots are for both systems
γ = 0.340. For the nonsymmetric case we take the pa-
rameters n0,1 = 10/11, n0,2 = 1/11, v0,1 = −0.1
v0,2 = 1, vth,1 = vth,2 = 0.05, α = 10−6 and vmax = 2.

The discretization in the physical space is 64 points per di-
rection and in the velocity space it is 256 points per direc-
tion. The growth rate of the electromagnetic beam-plasma
instabilty is for both system γ = 0.161.
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Fig. 3. Evolution of the logarithm of the magnetic energy in the
case of nonsymmetric electromagnetic beam-plasma in-
stability: (a) Vlasov-Darwin, (b) Vlasov-Poisswell.

5. Conclusion

We have introduced and tested numerical schemes to
solve the Vlasov-Darwin and Vlasov-Poisswell systems
as approximations of Vlasov-Maxwell systems for low-
frequency simulation of kinetic plasma. The results of
the numerical simulations show that our new algorithm
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works well and yields good agreement with linear theory
in a four-dimensional phase space code. In the future we
intend to perform two-dimensional simulation where vec-
tor quantities will retain all the three components. This
will allow us to analyze the evolution of an initially solid
cylindrical, hot electron beam propagating in an overdense
plasma and study the filamention of the beam (the beam
breaks up into several beamlets via a mechanism similar
to a tearing instability) which appears in laser-plasma in-
teraction problems (Taguchi et al., 2001). Moreover, this
will allow us to study magnetic reconnection which is of
central interest for phenomena regarding both astrophysi-
cal environments (solar flares (Kulsrud, 1998), solar wind-
magnetosphere interaction (Coppi et al., 1996)) and mag-
netically confined plasmas for fusion research (Ottaviani
and Porcelli, 1993).
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