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Abstract This contribution is an element of a research program devoted to the
analysis of a variant of the Vlasov–Poisson equation that we dubbed the Vlasov–
Dirac–Benney equation or in short V–D–B equation. As such it contains both new
results and efforts to synthesize previous observations. One of main links between
the different issues is the use of the energy of the system. In some cases such
energy becomes a convex functional and allows to extend to the present problem the
methods used in the study of conservation laws. Such use of the energy is closely
related to the Hamiltonian structure of the problem. Hence it is a pleasure to present
this article to Walter Craig in recognition to the pioneering work he made for our
community, among other things, on the relations between Hamiltonian systems and
Partial Differential Equations.

1 Introduction

This article extends a program (cf. [1, 2]) devoted to the mathematical analysis of an
avatar of the Vlasov–Poisson equation, where the “Coulomb potential” is replaced
by the Dirac mass. Since it was proposed by Benney [3] and Zakharov [28] for the
description of water waves, it is dubbed Vlasov–Dirac–Benney equation (or in short
V–D–B equation). Therefore the V–D–B equation reads
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2 C. Bardos and N. Besse

@tf C v ! rxf " rx!f ! rvf D 0 ; with !f .t; x/ D
Z

Rd
f .t; x; v/dv: (1)

And the classical conservation of mass and energy turn out to be given by the
formula,

@t

Z

Rd
v

f .t; x; v/dv Crx !
Z

Rd
v

vf .t; x; v/dv D 0;

@t

Z

Rd
x

Z

Rd
v

jvj2
2

f .t; x; v/dxdv D "
Z

Rd
x

rx!f .t; x/ !
Z

Rd
v

jvj2
2

rvf .t; x; v/dxdv

D
Z

Rd
x

!f .t; x/rx !
Z

Rd
v

vf .t; x; v/dxdv

D "
Z

Rd
x

!f .t; x/@t!f .t; x/dx;

or eventually

dE
dt

D d
dt

 
1

2

Z

Rd
x

dx

 Z

Rd
v

dv
jvj2
2

f .t; x; v/C .!f .t; x//2
!!

D 0:

1.1 Some Physical Motivations for the Introduction
of the Dirac Potential

One of the many physical motivations for the introduction of this equation is the
description of a plasma constituted of ions in a background of “adiabatic” electrons
which instantaneously reach a thermodynamical equilibrium (i.e. electrons follow
a Maxwell–Boltzmann distribution). Therefore the charge density of electrons is
given in term of the electrical potential ˚" by the formula

!! D !0e
! e˚"

kBTe ;

with kB the Boltzmann constant, e the electron charge and Te the equilibrium
temperature of electrons. Finally the parameter " represents the Debye length. Hence
the “Coulomb law” couples the electrical potential˚" to the charge density such that

" "2#˚" D !" " !0e! e˚"
kBTe ; with !" D

Z

Rd
v

f".t; x; v/dv:

Now since the electrical potential energy e˚" is supposed to be small in comparison
to the kinetic energy kBTe, i.e je˚"=.kBTe/j # 1, after linearization on the
exponential function, at first order we get
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Vlasov–Dirac–Benney Equation and Hamiltonian Structure 3

""2#˚" D !" " !0 C
e!0
kBTe

˚":

Setting " to zero (quasineutrality assumption) and since !0 and Te are supposed to
be constant, we obtain for the electric field E" the expression

E" D "rx˚" D
kBTe
e!0

rx

Z

Rd
v

f".t; x; v/dv;

which appears in the Vlasov equation (1).

1.2 Some Mathematical Motivations for this Analysis

Since in the Eq. (1) the electric field E is given in term of the electrons density
by an operator of order 1, while in the classical Vlasov–Poisson case it is given
by an operator of degree "1, the solution is much more dependent on the initial
data. Therefore, while for the classical Vlasov–Poisson equation the issue is the
large time asymptotic behavior, here what is at stake is the well-posedness of the
problem in term of the initial data. On the other hand since the electrical potential
is given by a purely local operator there exists a strong connection between the
dynamics of hyperbolic systems of conservation laws and the V–D–B equation. This
connection appears even more clearly when one uses for the Vlasov equation a
kinetic representation of the form (cf. Sect. 3.2)

f .t; x; v/ D
Z

M
!.t; x; $/ı.v " u.t; x; $//d$; (2)

which leads to non local “operator type” conservation laws.
For such conservation laws the invariants play an essential role and as expected,

they coincide (cf. Theorem 6) with the Lax–Godunov conserved quantities. When
such invariants turn out to be convex (with respect to the parameters of the
dynamics) they play the role of convex entropies and ensure the local-in-time
stability and well-posedness of the Cauchy problem.

As this is the case for the most general Vlasov equations (as explained for
instance in [22]) the present V–D–B equation can be viewed as a Hamiltonian
system related to the minimization of an energy. Moreover the same point of view
can be used to formalize the relations between classical and quantum mechanics via
semi-classical (WKB) limits and Wigner measure (cf. Sect. 6). Such convergence
will be always true at the formal level, or with analytical initial data. However,
as expected, proofs in the Distributions (or Sobolev) setting will be available only
when the limit enjoys the same stability i.e. mostly in the case where a convex
entropy is present. Even if the analyticity hypothesis is not “physical”, conclusions
that follow are important, and especially in the case of the one-dimensional space
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4 C. Bardos and N. Besse

variable. Then the cubic nonlinear Schrödinger equation and its generalization as
infinite systems of coupled nonlinear Schrödinger equations (cf. [28]) are integrable
systems with a rich algebraic structure including in particular the construction of
infinite family of conservation laws. In the semi-classical limits these structures
(at least for analytic initial data) do persist and make the one-dimensional-space-
variable V–D–B equation a quasi-integrable system in the sense of [28].

The paper is then organized as follows. First the emphasis is put on the one-
dimensional space variable which as quoted above contains more mathematical
structure and provides also more explicit examples. To underline the dimension
one in the corresponding equations, the symbol rx and rv are replaced by the
symbol @x and @v . In Sect. 2, the analysis of the linearized problems turns out to
be (and this should not be a surprise) in full agreement with the properties of the
fully nonlinear systems. Moreover this produces also a natural tool for the study of
nonlinear perturbations which is the object of the next section.

In the Sect. 3, the Hamiltonian structure and the fluid representation of the kinetic
V–D–B equation are described. In this setting, under strong analyticity hypothesis a
local-in-time stability result can be proven and this is the object of the Theorem 5.
To obtain stability results with finite order regularity, the entropies have to be
introduced and compared with the classical invariants of the Hamiltonian system.
This is the object of the Sect. 4 and Theorem 6. The next Sect. 5 is devoted to several
examples of application.

For the discussion of the semi-classical limits in the Sect. 6, we follow similar
route. First formal computations are given. Then there are validated with analyticity
hypothesis (cf. Theorem 9). Such results are compared with a theorem of Grenier
which is valid in any space variable, with Sobolev type regularity hypothesis, but
which concerns only the Wigner limit of “pure states” i.e. mono-kinetic solutions of
the V–D–B equation.

As a conclusion we return to the relation between Wigner limit and inverse
scattering.

2 Properties of the Linearized Problem and Consequences

Long time ago, it has been observed that x-independent solutions

v 7! G.v/ $ 0 with
Z

R
G.v/dv D 1;

are stationary solutions of the Vlasov–Poisson equation. Same simple observation
is also valid for the V–D–B equation. Writing

f .t; x; v/ D G.v/C Qf .t; x; v/;
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Vlasov–Dirac–Benney Equation and Hamiltonian Structure 5

retaining only the linear terms in Qf and omitting henceforth the tilde notation, one
obtains the evolution equation

@tf C vrxf " G0.v/@x!f .t; x/ D 0:

It then turns out that in one space dimension the spectral analysis, hence the stability,
can be described in term of the shape of the stationary profile v 7! G.v/. In
particular:

i) One can prove for the classical Vlasov–Poisson equation (this goes back to
Kruskal [19]) that if the profile has only one maximum (one bump profile) then
the solution is described in a convenient Hilbert space by a unitary group and
therefore is stable. This remark can be adapted to the V–D–B equation and is
shortly described below.

ii) In the presence of several extrema, a criterion due to Penrose [25] for the orig-
inal Vlasov–Poisson equation, gives the existence (resp. the non-existence) of
unstable generalized eigenvalues which may imply large time linear instabilities
(cf. [10] for this point of view). However for V–D–B equation, due to the
homogeneity of the dispersion relation, unstable modes whenever they exist are
of the form !.k/ D !"k with =!" 6D 0. Hence the relation to prove their
existence is not a simple adaptation of the Penrose criterion.

Below explicit examples given in [1] and [2] are recalled to show that the
well-posedness of the Cauchy problem depends on the structure of the function
v 7! G.v/. For some initial data the linearized problemmay have no solution even in
the sense of distributions. This remark extends to the nonlinear case which illustrates
the natural connections between the stability of the linearized and the full nonlinear
system.

2.1 The Stability for the One Bump Profile

To emphasize the role of the “bumps” in the stationary profile we recall below the
following

Theorem 1. Assume that the stationary profile v 7! G.v/ satisfies for some a 2 R,
the relation

G0.v/ WD "H.v/.v " a/ with H.v/ > 0: (3)

Then any smooth solution f .t; x; v/ of the linearized V–D–B equation

@tf .t; x; v/C v@xf .t; x; v/ " G0.v/@x!f .t; x/ D 0; (4)
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satisfies the energy identity,

d
dt

!Z

R#R
H!1.v/.f .t; x; v//2dxdv C

Z

R
.!.t; x//2dx

"
D 0:

The proof (cf. [19] and [1]) follows from the basic conservation laws of mass and
energy combined with the formula (3). From the above Theorem 1 one deduces the
following

Corollary 1. With the function v 7! G.v/ as in the Theorem 1, and denoting byH
the Hilbert space of functions f such that

Z

R#R
H!1.v/.f .t; x; v//2dxdv C

Z

R
.!.t; x//2dx <1;

the solutions of the Cauchy problem with initial data f0.x; v/ 2 H are described by
a unitary group of operators.

2.2 Synthesis of Plane Waves and Unstable Modes

Plane waves of the form,

ek.t; x; v/ D A.k; v/ exp .i.kx " !.k/t// ;

are solutions of the Eq. (4) whenever they satisfy the dispersion relation

."i!.k/C ikv/A.k; v/ " ik
!Z

R
A.k; v/dv

"
G0.v/ D 0;

or with !.k/ D !"k,

1 "
Z

R

G0.v/
v " !" dv D 0: (5)

Then for any !" solution of (5), the functions

f .t; x; v/ D
Z

R

G0.v/
v " !" O!.k/ ei.kx!k!!t/ dk;

are (if they exist) the unique solutions of the linear Cauchy problem with initial data

f .0; x; v/ D
Z

R

G0.v/
v " !" O!.k/ eikx dk:

nicolas.besse@univ-lorraine.fr



Vlasov–Dirac–Benney Equation and Hamiltonian Structure 7

As a consequence if there exists a !" solution of (5) with =!" 6D 0, the Cauchy
problem is ill-posed in any Sobolev space (because polynomial decreasing of
Fourier modes with any speed does not compensate exponential growth).

The following statement, which is an adapted version of the Penrose criterion
[25], illustrates the relation between multiple bumps and instabilities.

Theorem 2. Assume that the stationary profile

v 7! G.v/ $ 0; and
Z

R
G.v/dv D 1;

has a minimum for v D 0 and is even (i.e. G.v/ D G."v/), then for some " > 0
small enough, there is at least one non oscillatory unstable mode !" D iˇ for the
equation linearized near G" D "!1G."!1v/.

Proof. Introducing the "-dependent continuous function,

ˇ 7! I".ˇ/ D
Z

R

G0
".v/

v " iˇ
dv D

Z

R

G0
".v/.v C iˇ/
v2 C ˇ2

dv D
Z

R

G0
".v/v

v2 C ˇ2
dv;

for which one has,

I".1/ D 0; and I".0/ D
Z

R

G0
".v/

v
dv D

Z

R

G0
".v/ " G0

".0/

v
dv D

Z

R

G".v/
v2

dv:

The last integration by part is justified by the fact that G0.0/ D 0 and the
convergence at˙1 of the integral of v!2. Eventually one has

I".0/ D
Z

R

G".v/
v2

dv D 1

"2

Z

R

G.v/
v2

dv > 1; for " small enough:

Therefore by continuity there exists at least one !" D iˇ" solution of the dispersion
relation (5). ut

2.3 Consequences for the Original Nonlinear V–D–B Equation
with General Initial Data

Theorem 3. Let PHm be the space of functions f 2 L1.Rx;L1.Rv// with, for 1 %
` % m , derivatives @`xf 2 L2.RxIL1.Rv//.
For every m, the Cauchy problem for the dynamics S.t/ defined by the V–D–B
equation is not locally ( PHm 7! PH1) well-posed.
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Proof. Let be

%.t; x; v/ D
Z

G0.v/
v " !" O!.k/ ei.kx!!!kt/ dk:

A solution f .t; x; v; s/, with the initial data

f .0; x; v; s/ D G.v/C s%.0; x; v/;

for the nonlinear V–D–B equation gives

Qf .t; x; v/ D d
ds

f .t; x; v; s/jsD0;

as a solution for the linearized one. But we obtain a contradiction since Qf is not well
defined even in the distributional sense. ut

From the structure of the solution

f .t; x; v/ D
Z

R

G0.v/
v " !.k/=k O!.k/ ei.kx!!.k/t/ dk;

with w.k/ D w&k and =w" ¤ 0 one observes that the linear problem (and a fortiori
the nonlinear one) will be well-posed if the Fourier transform of initial data are
exponentially decreasing, which by use of Paley–Wiener Theorem [24] means that
initial data must be analytic in a strip. And this is in agreement with the following
forerunner result of Jabin and Nouri [17]:

Theorem 4 (Jabin-Nouri 2011). For any .x; v/ analytic function f0.x; v/ with

8˛; m ; n; sup
x

j@mx @nvf0.x; v/j.1C jvj/˛ D C.m; n/o.jvj/;

there exists, for a finite time T, an analytic solution of the Cauchy problem for the
V–D–B equation.

3 Hamiltonian Structure of the Vlasov Equation
and Application to Some Examples

3.1 Hamiltonian Structure

Below we just recall what would be essential for the present contribution. As it is
the case for the classical Vlasov–Poisson equation, one may (cf. [22]) start from the
conservation of the energy
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Vlasov–Dirac–Benney Equation and Hamiltonian Structure 9

E D
Z

Rd
x

Z

Rd
v

jvj2
2

f .t; x; v/dxdv C 1

2

Z

Rd
x

.!f .t; x//2dx ; !f .t; x/ D
Z

Rd
v

f .t; x; v/dv:

With the introduction of the Gâteaux derivative of this energy

ıE

ıf
D jvj2

2
C !f .t; x/;

and of the Poisson bracket

fg; f g D rvg ! rxf " rxg ! rvf ;

the V–D–B equation is equivalent to the “Hamiltonian system”

@t f D
#
f ;
ıE

ıf

$
: (6)

Remark 1. Following Benney [3], we can obtain a new family of invariants for
the one-dimensional Vlasov–Dirac–Benney and Vlasov–Poisson equations. To this
purpose, let us define the velocity moments of the distribution function f such that

@xA0 D E.t; x/ D "@x%.t; x/; and for n $ 1; AnŒf &.t; x/ D
Z

R
vnf .t; x; v/dv:

Velocity integration of V–D–B or V–P equations against polynomial in velocity
leads to the moment hierarchy

@tAn C @xAnC1 C n@xA0.x/@xAn!1 D 0: (7)

Defining the generating function f .t; xI z/ such that

f .t; xI z/ WD
X

n$0
An.t; x/zn;

it can be easily shown that the moment hierarchy (7) is equivalent to an equation on
the generating function f , given by

z@tf C @xf D .1 " L.zf //@xf .z D 0/; (8)

with L D z2@z. Now rescaling the differential operator L as "z2@z in (8), using a
recursive procedure which involves recursive multiplication of (8) by "z2 and its
z-differentiation, gathering terms of same power in " and making some summation
manipulations (cf. [3]), we obtain the following infinite system of conservation laws
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@

@t

0

@
X

n$0
Ln
!
znC1f nC1

.nC 1/Š

"1

AC @

@x

0

@
X

n$0
Ln
!

znf nC1

.nC 1/Š

"
" f .0/

1

A D 0: (9)

In (9) each power n of z yields a distinct conservation laws and invariant. These new
invariants for the one-dimensional V–D–B and V–P equations are thus polynomials
of % and velocity moments An, n $ 1.

3.2 Zakharov–Grenier Representation and Benney Equation

Observe also that it is always possible to write the solutions of the Vlasov equation
on the form (cf. [14, 28])

f .t; x; v/ D
Z

M
!.t; x; $/ı.v " u.t; x; $//d$; (10)

with .M; d$/ a probability space. These notations are consistent with the macro-
scopic definition of density and momentum, according to the formulas,

!.t; x/ D
Z

Rd
v

f .t; x; v/dv D
Z

M
!.t; x; $/d$;

!.t; x/u.t; x/ D
Z

Rd
v

vf .t; x; v/dv D
Z

M
u.t; x; $/!.t; x; $/d$:

Such decomposition is not unique and depends in particular on the form of this
decomposition at time t D 0. Moreover a distribution function f .t; x; v/ given by
(10) is a distributional solution of the V–D–B equation if and only if the functions
!.t; x; $/ and u.t; x; $/ are solutions of the system

@t!.t; x; $/Crx ! .!.t; x; $/u.t; x; $// D 0;

@t .!.t; x; $/u.t; x; $//Crx ! .!.t; x; $/u.t; x; $/˝ u.t; x; $//

C !.t; x; $/rx

Z

M
!.t; x; $/d$ D 0: (11)

In one space dimension with .M; d$/ being respectively the interval .0; 1/ and the
Lebesgue measure, the system (11) turns out to be the Benney system

@t!.t; x; $/C @x.!.t; x; $/u.t; x; $// D 0;

@tu.t; x; $/C u.t; x; $/@xu.t; x; $/C @x

Z 1

0

!.t; x; $/d$ D 0; (12)
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Vlasov–Dirac–Benney Equation and Hamiltonian Structure 11

which has been derived by Zakharov from the original Benney equation [3] by using
a Lagrangian parametrization (cf. [28]) as a model of water-waves for long waves.
Hence the name “Benney” in the title of this contribution.

3.3 Kinetic Representations

Replacing the Lebesgue measure by the counting measure on the discrete set

M D f1; 2; : : : ;N % 1g;

the formula (10) becomes the multi-kinetic representation

f .t; x; v/ D
X

1%n%N

!n.t; x/ı.v " un.t; x//:

In particular for N D 1 and in any space dimension, the mono-kinetic distribution

f .t; x; v/ D !.t; x/ı.v " u.t; x//;

is a solution of the V–D–B equation if and only if the moments !.t; x/ and u.t; x/
are solutions of an isentropic fluid equations,

@t!Crx ! .!u/ D 0 ; @t.!u/Crx ! .!u˝ u/Crx

!
!2

2

"
D 0; (13)

while in a one-dimensional space variable the multi-kinetic distribution function
f .t; x; v/ will be a solution of the V–D–B equation if and only if the unknowns
U D ..!1; !2; : : : ; !N/; .u1; u2; : : : ; uN// are solutions of the system of conservation
laws,

@t!n Crx.!nun/ D 0 ;

@t.!nun/C @x.!nu2n/C !n@x

% X

1%l%N

!l

&
D 0:

3.4 Waterbag Representation and Equations

Assume that the density profile v 7! f .t; x; v/, with 0 % f .t; x; v/ % 1, has only one
bump (say for v D (.t; x/). Then with

f C.t; x; v/ D f .t; x; v/ for v $ (.t; x/; and

f !.t; x; v/ D f .t; x; v/ for v % (.t; x/;
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12 C. Bardos and N. Besse

one defines on &0; 1Œ, two functions $ 7! v˙.t; x; $/ according to the formulas

f˙.t; x; v˙.t; x; $// D $; if $ % sup
v

f˙.t; x; v/;

v˙.t; x; $/ D 0; otherwise:

As it was observed in [5] the density profile f can be reconstructed according to the
standard formula (with Y denoting the Heaviside function)

f .t; x; v/ D
Z 1

0

ı.v " vC.t; x; $//Y.v " (.t; x//j@$vC.t; x; $/j$d$

C
Z 1

0

ı.v " v!.t; x; $//Y.(.t; x/ " v/j@$v!.t; x; $/j$d$;

or also as

f .t; x; v/ D
Z 1

0

.Y.vC.t; x; $/ " v/ " Y.v!.t; x; $/ " v//d$;

which is an exact weak solution of the V–D–B equation if and only if

@tv˙ C v˙@xv˙ C @x

Z 1

0

.vC.t; x; $/ " v!.t; x; $//d$ D 0: (14)

Remark 2. From the formulas (14) one deduces the relations

@t.vC " v!/C
.vC C v!/

2
@x.vC " v!/C .vC " v!/@x

.vC C v!/
2

D 0;

@t.@$v˙/C v˙@x@$v˙ C .@$v˙/@xv˙ D 0;

which imply that the following properties,

8$ 2 .0; 1/ v!.x; t; $/ % vC.x; t; $/;

$ 7! vC.x; t; $/ is decreasing and $ 7! v!.x; t; $/ is increasing; (15)

are preserved by the dynamics [1, 4, 8].

With the infinite set of $ -dependent densities ! and velocities u,

!.t; x; $/ D vC.t; x; $/ " v!.t; x; $/; u.t; x; $/ D 1

2
.vC.t; x; $/C v!.t; x; $//;

nicolas.besse@univ-lorraine.fr



Vlasov–Dirac–Benney Equation and Hamiltonian Structure 13

the .v!; vC/-system (14) is equivalent to the fluid type system,

@t!.t; x; $/C @x.!.t; x; $/u.t; x; $// D 0;

@tu.t; x; $/C @x

!
1

2
u2.t; x; $/C 1

8
!2.t; x; $/

"
C @x

Z 1

0
!.t; x; a/da D 0 : (16)

3.5 Hamiltonian Formulation of Fluid Representations

In fact fluid representations of the V–D–B equation, such as “mono-kinetic” model
(13), the Zakharov–Benney model (12) and the waterbag model (16), inherit of the
Hamiltonian structure of the V–D–B equation (6), with the energy E specified by
the fluid representation that we choose for the distribution function f . To this purpose
we introduce the matrixJ defined by

J D "
!
0 1

1 0

"
:

For the “mono-kinetic” model (13), setting m.t; x/ D .!.t; x/; u.t; x//T , we obtain
the Hamiltonian formulation

@tm D fm;E gMoK WD J @x
ıE

ım
;

leading to the Poisson bracket structure [22, 23],

fF.m/;G.m/gMoK D
Z

R
dx
ıF
ım

J @x
ıG
ım
:

For the Zakharov–Benney model (12), setting m.t; x; $/ D .!.t; x; $/; u.t; x; $//T ,
we obtain the Hamiltonian formulation

@tm D fm;E gZB WD J @x
ıE

ım
;

leading to the Poisson bracket structure

fF.m/;G.m/gZB D
Z 1

0

d$
Z

R
dx
ıF
ım

J @x
ıG
ım
:

For the waterbag model (16), setting m.t; x; $/ D .!.t; x; $/; u.t; x; $//T D .vC "
v!; ŒvC C v!&=2/T , we obtain the Hamiltonian formulation

@tm D fm;E gWB WD J @x
ıE

ım
;

nicolas.besse@univ-lorraine.fr



14 C. Bardos and N. Besse

leading to the Poisson bracket structure

fF.m/;G.m/gWB D
Z 1

0

d$
Z

R
dx
ıF
ım

J @x
ıG
ım
:

3.6 Analytic Well-Posedness for Solutions in Fluid
Representations

Following Safonov [26], one introduces the Hardy type spaces Hs of x-analytic
vector-valued functions U.t; z; $/ D .!.t; xC iy; $/; u.t; xC iy; $// defined on the
tube f.xC iy; $/ 2 Cd ' M W jyij < s; i D 1; : : : ; dg of the d-dimensional complex
plane Cd with norm,

kUk2s D sup
0%jyj%s; $2M

 Z

Rd

ˇ̌
ˇ̌'IC ."#x/

1=2
( d
2C1U.xC iy; $/

ˇ̌
ˇ̌
2

dx

!
;

and the Banach space X)s0 equiped with the norm,

kUk)s0 D sup
0%sC*t<s0

.s0 " s " *t/)kU.t/ks;

where ) $ 0, s0 > 0 and * > 0. Eventually one denotes byB
)
so.r/ the ball of radius

r in such space, i.e.

B) so.r/ D
(
U 2 X)s0 I sup

0%sC*t<s0
.s0 " s " *t/)kU.t/ks < r

)
: (17)

Observe that, for all the examples in a one-dimensional space variable, from the
“general Benney equation” (cf. Sect. 3.2) to the “waterbag” (cf. Sect. 3.4), the
Cauchy problem can be written in the form,

f .t; x; v/ D
Z

M
!.t; x; a/ı.v " u.t; x; $//d$;

U.t; x; $/ D .!.t; x; $/; u.t; x; $//; U.t; $/ D U.0; $/C
Z t

0

F .U/.+; $/d+;

(18)

whereF is an operator which satisfies the hypothesis of the Safonov version of the
Cauchy–Kowalewski Theorem (namely Assumptions 1.1 in [26]). Indeed one has
F .0/ D 0; For r > 0, the correspondence U 7! F .U/ is a continuous mapping of˚
U 2 Hs W kUk2s < r

)
into Hs0 with 0 < s0 < s < s0; and for any 0 < s0 < s < s0,

and for all U; V 2 Hs, with kUks < r, kVks < r, we have
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Vlasov–Dirac–Benney Equation and Hamiltonian Structure 15

kF .U/ " F .V/ks0 % C.r/
s " s0

kU " Vks:

Finally this leads to the following

Theorem 5. For solutions given by the formula (18) there exists * > 0 depending
only the dimension d, and the constant parameters s0 > 0, r > 0, and ) 2 .0; 1/
such that for any initial data

U.0; x; $/ D .!.0; x; $/; u.0; x; $// 2 H s0

with kU.0/ks0 < r, one has on the time interval .0; s0
*
/ a solution U.t; x; $/ 2

H s0!*t, with kU.t/ks0 " *t<r of the corresponding Cauchy problem.

Remark 3. In agreement with the representation formula (18), the Theorem 5
concerns (at variance with the Jabin–Nouri Theorem 4) solutions which are analytic
with respect to x and t but which can exhibit singularities in the v variable (Dirac
masses, sum of Dirac masses, step or Heaviside functions, etc : : :).

4 Entropy and Local-in-Time Stability in Sobolev Spaces

4.1 Energy, Conserved Quantities and Entropies

The energy takes the form

E .f / D 1

2

Z

R#R
jvj2f .t; x; v/dxdv C 1

2

Z

R
.!f .t; x//2dx;

which is the basic conserved quantity of the V–D–B equation written in the
Hamiltonian formalism according to the formula

@tf C
#
ıE

ıf
; f
$
D 0: (19)

Obviously the energy E .f / is not a convex function of f . However with the
representation

f .t; x; v/ D
Z

M
!.t; x; $/ı.v " u.t; x; $//d$;

this energy may become a convex functional of the variable U.t; x; $/ D .!.t; x; $/;
u.t; x; $// solution of the system

@tU C @xF.U/ D 0; (20)
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16 C. Bardos and N. Besse

where the application U 7! F.U/ is a twice continuously Gâteaux-differentiable
nonlinear unbounded operator in L2.M; d$/ WD L2.M; d$/ ' L2.M; d$/, with
domain D.F/ D L2 \ L1.M; d$/.

More generally, the invariants ,.f / D ,.U/ of the dynamics given by (19) or (20)
are characterized by the relation

0 D d
dt

Z

R
,.U/dx D

Z

R
dxDU,.U/@tU D

Z

R
dxDU,.U/DUF.U/@xU; (21)

where the symbol DU denotes the differential with respect to the variable U.
In the classical theory of conservation laws, solutions of (21) are called “conserved
quantities” and are associated to the notion of flux according to the formula
DU,.U/DUF.U/ D DUQ.U/ which implies the relation

D2U,.U/DUF.U/ D .DUF.U//TD2U,.U/;

i.e. the fact that D2U,.U/ is a symmetrizer for the conservation law and a positive
definite symmetrizer when u 7! ,.U/ is a convex function.

Extension of these considerations to the system (20) is the object of the next
theorem,

Theorem 6. Let us consider solutions .t; x; $/ 7! U.t; x; $/ of the system,

@tU C @xF.U/ D 0;

where the application U 7! F.U/ is a twice Gâteaux-differentiable local operator
(with respect to the variables .t; x/ which can be considered as fixed parameters)
in L1.M; d$/. For a twice Gâteaux-differentiable function U 7! ,.U/ defined on
Hs.RxIL1.M; d$// with value in R, the following assertions are equivalent:

i) DU,.U/DUF.U/ D DUQ.U/ is a flux.
ii) ,.U/ is a conserved quantity.
iii) D2U,.U/DUF.U/ is a symmetric (self-adjoint) operator.

Proof. ii) follows from i) by integration of the relation

@t,.U/ D "@xQ.U/:

If ,.U/ is a conserved quantity, one has

0 D d
dt

Z
,.U.t; x//dx D "

Z

R
DU,.U/DUF.U/@xU: (22)
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Vlasov–Dirac–Benney Equation and Hamiltonian Structure 17

Using Gâteaux-derivative of (22), we get for any vector-valued function V ,

0 D d
ds

!Z

R
DU,.U C sV/DU.F.U C sV//@x.U C sV/dx

"

jsD0

D
Z

R
D2U,.U/ŒV;DUF.U/@xU&dxC

Z

R
DU,.U/D2UF.U/ŒV; @xU&dx

C
Z

R
DU,.U/DUF.U/@xVdx;

D
Z

R
.@xU/T.DUF.U//TD2U,.U/VdxC

Z

R
fDU.DU,.U/DUF.U//

"D2U,.U/DUF.U/gŒV; @xU&dxC
Z

R
DU,.U/DUF.U/@xVdx;

D
Z

R
.@xU/T.DUF.U//TD2U,.U/Vdx "

Z

R
.@xU/TD2U,.U/DUF.U/Vdx

C
Z

R
@x.DU,.U/DUF.U//VdxC

Z

R
DU,.U/DUF.U/@xVdx;

D
Z

R
.@xU/T.DUF.U//TD2U,.U/Vdx "

Z

R
.@xU/TD2U,.U/DUF.U/Vdx;

which implies the Lax condition

D2U,.U/DUF.U/ D .DUF.U//TD2U,.U/; (23)

and shows that ii) implies iii). The proof of the assertion “iii) implies i)” is a
direct adaptation of the same property for functions depending of a finite number
of variables and is done as follows. Assume that U 7! R.U/ is a linear operator in
L1.M; d$/, withR.U/ D DU,.U/DUF.U/, then define Q.U/ by the formula

Q.U/ D
Z 1

0

R.sU/.U/ds;

and show with one integration by part and self-adjointness of DUR.U/, that one has
for any vector-valued function V ,

d
d+

Q.U C +V/j+D0
D R.U/.V/;

which explicitly means that U 7! R.U/ is the Gâteaux derivative of U 7! Q.U/.
It remains to show that DUR.U/ is self-adjoint, which follows from the Lax
condition (23), the obvious relation: for any vector-valued functions V and W one
has

.D2UF.U/V/W D .D2UF.U/W/V;
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18 C. Bardos and N. Besse

and the equation

DUR.U/ D DU.DU,.U/DUF.U// D D2U,.U/DUF.U/C DU,.U/D2UF.U/: ut

Remark 4. If we denote by the bracket f!; !gS , a generic Poisson bracket withS 2
fMoK; ZB; WBg and whose corresponding definitions are established in Sect. 3.5,
from the proof of Theorem 6 we get that

d
dt

Z

R
,.U/ dx D f,.U/;E .U/gS D 0;

which means that the invariant ,.U/ is an involution.

4.2 Stability of Mono-Kinetic and Multi-Kinetic Solutions

In any space dimension d, the energy

E .f / D 1

2

Z

Rd
x

.ju.t; x/j2 C !.t; x//!.t; x/dx;

of the isentropic system

@t!Crx ! .!u/ D 0;

@t.!u/Crx ! .!u˝ u/Crx

!
!2

2

"
D 0; (24)

(i.e. for a mono-kinetic solution f .t; x; v/ D !.t; x/ı.v " u.t; x//), is strictly convex
near any constant state U0 D .!0; u0/ with !0 > 0. Following the classical theory of
hyperbolic systems of conservation laws [9, 21], this implies the

Theorem 7. The Cauchy problem for the system (24) and initial data of the form
U0C QU0.x/with QU0.x/ 2 Hs.Rd/ and s > d=2C1, has for a finite time .0 < t < T&/,
a unique solution of the form U0.t; x/C QU.t; x/ with QU.t; x/ 2 C.0;TIHs.Rd//.

On the other hand in a one-dimensional space variable, the parameters of the multi-
kinetic representation U D ..!1; u1/; .!2; u2/; : : : ; .!N ; uN// are also solutions of a
system of 2N conservation laws,

@t!n C @x.!nun/ D 0 ;

@tun C @x

%u2n
2

&
C @x

% X

1%`%N

!`

&
D 0;
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Vlasov–Dirac–Benney Equation and Hamiltonian Structure 19

with an energy,

E .f / D 1

2

Z

Rx

 
X

1%n%N

!n.t; x/jun.t; x/j2 C
% X

1%n%N

!n.t; x/
&2
!
dx; (25)

which is not (as observed in details in [6]) always convex near a constant state.
For instance with N D 2, it is strictly convex near .!!; u!; !C; uC/ D

.1;"a; 1; a/ for a2 > 2, and not convex otherwise. Therefore the Theorem 7 can
be extended near constant states which ensure the convexity of E .U/, while for
perturbations near other initial states the Cauchy problem is ill-posed in any Sobolev
and stability requires analyticity of the initial perturbation as in the Theorem 5.

5 Local-in-Time Stability of the One Bump Profile Solution

As observed in the Sect. 3.4, the evolution of a one bump profile can be described
either with the velocity variables v˙.t; x; $/ or with the fluid variables U.t; x; $/ D
.!.t; x; $/; u.t; x; $// according to the equations,

@tv˙ C @x

%v2˙
2

&
C @x

Z 1

0

.vC.t; x; $/ " v!.t; x; $//d$ D 0 ; (26)

or with

!.t; x; $/ D vC.t; x; $/ " v".t; x; $/ and

u.t; x; $/ D .vC.t; x; $/C v".t; x; $//=2;

@t!.t; x; $/C @x.!.t; x; $/u.t; x; $// D 0;

@tu.t; x; $/C @x

!
1

2
u2.t; x; $/C 1

8
!2.t; x; $/

"
C @x

Z 1

0

!.t; x; a/da D 0: (27)

This system can be reformulated as

@tU C @xF.U/ D 0; (28)

with U.$/ 7! F.U/.$/ a twice Gâteaux-differentiable operator in L1.0; 1/. More-
over the energy of these solutions in the v˙.t; x; $/ or in the .!.t; x; $/; u.t; x; $//
representation is given by
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20 C. Bardos and N. Besse

E .f /.t/ D 1

2

!Z

R#R
v2f .t; x; v/dxdv C

Z

R

'
!f .t; x/

(2 dx
"

D
Z

Rx

*
1

6

Z 1

0

.v3C.t; x; $/ " v3!.t; x; $//d$

C1
2

!Z 1

0

.vC.t; x; $/ " v!.t; x; $//d$
"2#

dx;

D 1

2

Z

R

Z 1

0

!
!.t; x; $/u2.t; x; $/C 1

12
!3.t; x; $/

"
d$dx

C1
2

Z

R

!Z 1

0

!.t; x; $/d$
"2

dx: (29)

Therefore, equipped with a convex entropy (29), the system (27) has for the Cauchy
problem a unique solution according to the

Theorem 8. For any set of initial data

. Q!0.x; $/; u0.x; $// 2 L1.0; 1IH3.Rx//

there exists a finite time T such that the Cauchy problem

@t!.t; x; $/C @x.!.t; x; $/u.t; x; $// D 0;

@tu.t; x; $/C @x

!
1

2
u2.t; x; $/C 1

8
!2.t; x; $/

"
C @x

Z 1

0

!.t; x; a/da D 0;

!.0; x; $/ D CC Q!0.x; $/; u.0; x; $/ D u0.x; $/ with !.0; x; $/ $ c > 0;
(30)

has a unique solution .!.t; x; $/ D CC Q!.t; x; $/ $ c > 0; u.t; x; $// with

. Q!.t; x; $/; u.t; x; $// 2 L1.0;TIL1.0; 1IH3.Rx///:

Corollary 2. Let us consider an initial profile

f 0.x; v/ D Y.v/f 0C.x; v/C .1 " Y.v//f 0!.x; v/;

with f 0C.v/ decreasing and f 0!.v/ increasing such that the functions
.!0.x; $/; u0.x; $// given by the formulas,

f˙.v˙.$// D $; !0.x; $/ D vC.x; $/ " v!.x; $/;

and

u0.x; $/ D .vC.x; $/C v!.x; $//=2;
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satisfy the hypothesis of the Theorem 8. Then the distribution function,

f .t; x; v/ D
Z 1

0

.Y.vC.t; x; $/ " v/ " Y.v!.t; x; $/ " v//d$; (31)

is, for 0 < t < T (with T given by the Theorem 8), a solution of the problem

@tf C v@xf " @x
!Z

R
f .t; x; v/dv

"
@vf D 0;

with initial data f .0; x; v/ D f 0.x; v/.

Proof. With U.t; x; $/ D .!.t; x; $/; u.t; x; $//, the Cauchy problem (30) can be
written according to the formulas

@tU C @xF.U/ D 0;

F.U/ D

8
<̂

:̂

!.t; x; $/u.t; x; $/;

1

2
u2.t; x; $/C 1

8
!2.t; x; $/C

Z 1

0

!.t; x; a/da :

(32)

This system has the convex energy

,.U/ D 1

2

Z

R

Z 1

0

.!.t; x; $/u2.t; x; $/C 1

12
!3.t; x; $//d$dx

C 1

2

Z

R

!Z 1

0

!.t; x; $/d$
"2

dx:

Therefore (cf. Theorem 6)D2U,.U/ is a well defined positive symmetrizer and local-
in-time estimates can be obtained by considering the expression

@3x.@tU C DUF.U/@xU D 0/;

on which we can apply the symmetrizer integral operator D2U,.U/ from the left,
and proceeding as in the classical case (cf. [1, 9, 21]) to complete the proof of the
Theorem 8.

Now, given the functions v˙.t; x; $/, the fluid variables .!.t; x; $/; u.t; x; $// are
recovered by the formulas

v˙.t; x; $/ D u.t; x; $/˙ 1

2
!.t; x; $/:

Obviously one has vC.t; x; $/ $ v!.t; x; $/ and the equations

@t.@$v˙/C v˙@x.@$v˙/C .@$v˙/@xvx D 0;
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22 C. Bardos and N. Besse

imply that the monotonicity of the functions $ 7! v˙.t; x; $/ are preserved by the
dynamics [1, 4, 8]. Eventually one uses the formula (31) to reconstruct the solution
of the V–D–B equation. ut
Remark 5. Since the equivalent system (26) has also a convex entropy it can be
also diagonalized and this leads to a formulation in term of generalized Riemann
invariants giving also a stability result but with well adapted regularity of the initial
data with respect to the variable $ . This was done in [4] by N. Besse following a
method introduced by Teshukov [27].

Remark 6. With no surprise there is a good agreement between the results for
the linearized problem and the nonlinear one. The above theorems concerning the
“waterbag” and the “mono-kinetic” equations are the counterpart of the stability
results near a one bump profile which is the object of the Theorem 2. In particular for
the “mono-kinetic” equation this profile is a Dirac mass. Then direct computation
shows that the dispersion relation has no complex value solution [1]. The same
remarks is also valid for “multi-kinetic model”. For instance with N D 2, the
dispersion relation for the linearized model is

1 D
Z

R

G0.v/
v " ! dv D 1

.a " !/2 C
1

.aC !/2
;

which has real solutions if a2 > 2, and complex solutions, i.e. unstable modes,
otherwise.

6 Wigner or Semi-Classical Limit of Solutions
of the Nonlinear Schrödinger Equation

6.1 Formal Derivations

The connection of the Schrödinger equation with a self-consistent potential to the
Vlasov equation, via the Wigner limit, is at present very well documented. For
instance for the Schrödinger–Poisson equation, i.e. with a self-consistent defocusing
Coulomb type potential of the form

Z

Rd

1

jx " yj.d!2/ j .y/j
2dy

not only (with well adapted initial data) the problem is uniformly well-posed but
convergence of the Wigner transform, on an arbitrary large time is proven (cf. for
instance [20] or [12]).
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For the present discussion one starts with a family f !.t; x; $/g$2M , solution of
the following quadratic nonlinear Schrödinger equation

i!@t !.t; x; $/ D "!2

2
#x !.t; x; $/C

!Z

M
j !.t; x; $/j2d$

"
 !.t; x; $/:

Given the potential

V!.t; x/ D
Z

M
j !.t; x; $/j2d$;

the time-dependent equation

i!@t-!.t; x; $/ D "!2

2
#x-!.t; x; $/C V!.t; x/-!.t; x; $/;

defines by the formula

f-!.t; x; $/g$2M D U!.t/f-0.t; x; $/g$2M;

a family of unitary operators U!.t/ acting in the space L1.M IL2.0;TIL2.Rd
x///.

Then one introduces the projection operator

K!.t; x; y/ D
Z

M
 !.t; x; $/˝  !.t; y; $/d$;

with energy

E!.K!/ D Trace
!

"!2

2
#xK! C V!K!

"
<1:

The operator K! is a solution of the Von Neumann–Heisenberg equation,

d
dt
K! D " 1

i!
ŒH!;K!& D " 1

i!

*
ıE!
ıK!

.K!/;K!

+
;

with

H! D
!

"!2

2
#x C V!

"
:

Eventually for the Wigner transform of the Von Neumann–Heisenberg equation,
which involves the Weyl symbolW!.t; x; v/ defined by the Wigner transform of K!,

W!.t; x; v/ D
1

.2./d

Z

Rd
e!iy&vK!

%
t; xC !

2
y; x " !

2
y
&
dy;
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one has “at the formal level” (i.e. assuming all sufficient conditions to pass to the
limit) the following convergences as ! ! 0 (Wigner or semi-classical limit):

W!.t; x; v/ "! W.t; x; v/;

E!.K!/ "! 1

2

Z

Rd

 Z

Rd
jvj2W.t; x; v/dv C

!Z

Rd
W.t; x; v/dv

"2!
dx;

@tW C v ! rxW " rx

!Z

Rd
W.t; x;w/dw

"
! rvW D 0:

In order to consider “mixed states” as in [20] and connect with Zakharov–Grenier
formula (10), we now assume that the functions  !.t; x; $/ can be written as

 !.t; x; $/ D a!.t; x; $/ei
S!.t;x;$/

! ;

with a! and S! “uniformly regular” with respect to !, then for the Wigner transform
one has:

lim
!!0

W!.K!.t; x; y//

D lim
!!0

Z

M
d$

1

.2./d

Z

Rd
eiv&ya!.t; xC

!
2
y; $/ei

S!.t;xC!
2 y;$/

!

' a!.t; x " !
2
y; $/e!i

S!.t;x" !
2 y;$/

! dy

D
Z

M
ja.t; x; $/j2ı.v " rxS.t; x; $//d$ D

Z

M
!.t; x; $/ı.v " u.t; x; $//d$:

Taking “formally” the limit ! ! 0, one obtains with ! D lim!!0 a!a! and u D
lim!!0 rxS!,

@t!.t; x; $/Crx ! .!.t; x; $/u.t; x; $// D 0;

@tu.t; x; $/C u.t; x; $/ ! rxu.t; x; $/Crx

Z

M
!.t; x; a/da D 0; (33)

which is the Benney or V–D–B equation in the Zakharov–Grenier representation.
Moreover, on the other hand, with

 !.t; x; $/ D a!.t; x; $/ei
S!.t;x;$/

! ; and w!.t; x; $/ D rxS!.t; x; $/;

the equation

i!@t !.t; x; $/ D "!2

2
#x !.t; x; $/C

!Z

M
j !.t; x; $/j2d$

"
 !.t; x; $/;
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is equivalent to the system

@ta!.t; x; $/Cw!.t; x; $/ ! rxa!.t; x; $/C
1

2
a!.t; x; $/rx ! w!.t; x; $/

D i!
2
#xa!.t; x; $/ ;

@tw!.t; x; $/Cw!.t; x; $/ ! rxw!.t; x; $/Crx

Z

M
a!.t; x; $/a!.t; x; $/d$ D 0:

(34)

Remark 7. The above representation is a variant both of the Madelung transform
(where the amplitude a! is taken real) and of the WKB method which is a Taylor
expansion. As a consequence a!.t; x; $/ does not remain real for t 6D 0 and x real,
while w!.t; x; $/ D rxS!.t; x; $/ remains real for x real. This representation already
appeared in [7] and [13] . It was used by Grenier [15, 16] for the validation of the
semiclassical limit. Here we apply it both in the analytical and the Sobolev setting
(cf. Theorem 9 and Theorem 10) to validate the formal convergence by proving
convenient uniform a priori estimates. With no surprise these estimates are in full
agreement with the well-posedness or ill-posedness results given above for the V–
D–B equation.

6.2 Convergence Proof for Analytic Initial Data

With the notations introduced in the Sect. 3.6, the counterpart of the Theorem 5 turns
out to be the

Theorem 9. There exists * > 0, depending only on the dimension d, and the
constant parameters s0 > 0, r > 0 and ) 2 .0; 1/ (and in particular independent
of !) such that for any

.a!.0; x; $/;w!.0; x; $/ D rxS!.0; x; $// 2 H s; (35)

with jj.a!.0/;w!.0//jjs0 < r, there exists on the time interval .0; s0
*
/ a solution

.a!.t; x; $/;w!.t; x; $/ D rxS!.t; x; $// 2 H s0!*t;

with k.a!.t/;w!.t/kso!*t < r, of the problem (34) with initial data (35). Moreover
these solutions are uniformly bounded (with respect to !) in H s0!*t, so that they
converges, as ! ! 0, to the solutions of Zakharov–Benney equation (33) given by
the Theorem 5.

Proof. First observe that any function x 7! f .x/ defined for x 2 Rd, and which is
the restriction of an analytic function f .xC iy/, defined for jyij < s, (i D 1; : : : ; d),
can be represented (with the Payley–Wiener Theorem [24]) by the formula
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f .x/ D
Z

Rd
eix&/ Of .//d/;

with Of .// decaying exponentially for j/j ! 1 . Hence the complex conjugate

f .x/ D
Z

Rd
e!ix&/ Of .//d/;

is also the Fourier transform of a function with the same exponential decay and
therefore can be extended as analytic function in the complex domain according to
the formula:

f ".xC iy/ D
Z

Rd
e!i.xCiy/&/ Of .//d/: (36)

Of course such extension does not coincide with the complex conjugate of f .xC iy/
for y 6D 0, but it belongs to the same class (in term of regularity) of analytical
functions. With this remark in mind, one introduces the analytic extension .a!.t; xC
iy; $/; a"

!.t; xC iy; $/; w!.t; xC iy; $// of .a!.t; x; $/; a!.t; x; $/; w!.t; x; $// and
write the system (34) in the equivalent form: for z D xC iy 2 Cd,

@tw!.t; z; $/C w!.t; z; $/ ! rzw!.t; z; $/Crz

Z

M
a!.t; z; $/a"

!.t; z; $/d$ D 0;

@ta!.t; z; $/C w!.t; z; $/ ! rza!.t; z; $/C
1

2
a!.t; z; $/rz ! w!.t; z; $/

D i!
2
#za!.t; z; $/;

@ta"
!.t; z; $/C w!.t; z; $/ ! rza"

!.t; z; $/C
1

2
a"
!.t; z; $/rz ! w!.t; z; $/

D "i!
2
#za"

!.t; z; $/: (37)

With the notations

U D

0

@
w!.t; z; $/
a!.t; z; $/
a"
!.t; z; $/

1

A ; L! D

0

@
0

i!
2
#z

" i!
2
#z

1

A ;

and

F.U/ D "

0

@
w!.t; z; $/ ! rzw!.t; z; $/Crz

R
M a!.t; z; $/a"

!.t; z; $/d$
w!.t; z; $/ ! rza!.t; z; $/C 1

2
a!.t; z; $/rz ! w!.t; z; $/

w!.t; z; $/ ! rza"
!.t; z; $/C 1

2
a"
!.t; z; $/rz ! w!.t; z; $/

1

A ; (38)
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the system becomes

@tU D F.U/C L!.U/;

which, using a Duhamel’s formula, implies

U.t/ D etL!.U0/C
Z t

0

e.t!+/L!F.U.+//d+ D ˚.U/: (39)

Since F is bilinear (and linear with respect to the first-order derivative) and since
etL! is, for any !, a unitary operator in Hs, then for any 0 < s0 < s < s0, one has

ke.t!+/L!F.U.+//"e.t!+/L!F.V.+//ks0 % C
s " s0

kU.+/"V.+/ks.kU.+/ksCkV.+/ks/;

with C depending only on the dimension and in particular not on !. Next one uses
the k ! k)s0 -norm of the Banach space X)s0 , i.e.

kUk)s0 D sup
0%sC*t<s0

.s0 " s " *t/)kU.t/ks;

and following Safonov [26] shows that

k˚.U/ " ˚.V/k)s0 % 2)C1C.kU.+/ks C kV.+/ks/
)*

kU.+/ " V.+/k)s0 :

Hence for * chosen large enough (with respect to C and r), ˚ preserves the ball
B0

s0 .r/, and is a contraction in X)s0 \B0
s0 .r/. The rest of the proof follows. ut

Remark 8. The above proof is simpler than the forerunner result of Gérard [11],
and it also provides an extension to mixed states as considered by Lions and Paul
[20]. This is essentially due to the fact that [26] version of the Cauchy–Kowalewski
Theorem is very well adapted to the problem in the representation proposed by
Grenier [15, 16].

6.3 Convergence Proof for Finite Time with Finite
Sobolev Regularity

With no surprise, the stability result for the limit equation should find their
counterpart at the level of the convergence. In particular the local-in-time stability
in Sobolev spaces has been proven for the mono-kinetic solutions. Mono-kinetic
solutions correspond to the (! ! 0)-limit of the Wigner transform of a “pure WKB-
state”, i.e.
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W!
%
a!.t; x/ei

S!.t;x/
! ˝ a!.t; y/"e!i S!.t;y/!

&
"!
!!0

!.t; x/ı.v " u.t; x//:

The validity of such convergence comes from standard uniform estimates due to
Grenier [15, 16]. For comparison with the rest of the present contribution, this result
is recalled below.

Theorem 10 (Grenier [16]). Let s > d=2C 2, let S0.x/ 2 Hs.Rd/ and a0.x; !/ be
a sequence of functions uniformly bounded in Hs.Rd/. Then there exist T > 0, and
solutions

 !.t; x/ D a!.t; x/ei
S!.t;x/

! ;

to the Cauchy problem

i!@t ! D "!2

2
#x ! C j !j2 !;  !.0; x/ D a0.x; !/ei

S0!.x/
! :

Moreover, a!.t; x/ and S!.t; x/ are bounded in L1.0;TIHs.IRd// uniformly in !.

To prove this theorem, Grenier starts from the following system

@tw!.t; x/C w!.t; x/rxw!.t; x/Crx.˛
2
!.t; x/C ˇ2!.t; x// D 0;

@t˛!.t; x/C w!.t; x/ ! rx˛!.t; x/C
1

2
˛!.t; x/rx ! w!.t; x/ D "!

2
#xˇ!.t; x/;

@tˇ!.t; x/C w!.t; x/ ! rxˇ!.t; x/C
1

2
ˇ!.t; x/rx ! w!.t; x/ D

!
2
#x˛!.t; x/; (40)

which corresponds to the restriction to the real domain of (37) and where ˛!.t; x/
and ˇ!.t; x/ denote respectively the real and imaginary part of a!.t; x/. He observes
that this system can be symmetrized by a strictly positive matrix S and this will lead
to the standard a priori estimates of hyperbolic systems of conservation laws [9].
In fact the existence of such strictly positive symmetrizer is a consequence of the
fact that the mass (i.e. with !!.t; x/ D ˛!.t; x/2 C ˇ!.t; x/2) and the energy of
the system,

1

2

Z

Rd

'
w!.t; x/2 C !!.t; x/

(
!!.t; x/dx;

are a strictly convex invariants.
Hence in Rd with s > d=2 C 2, there exists an !-independent function

.a0.0; !/;w0.0; !// such that

k.a!.0; !/;w!.0; !//kHs "! k.a0.0; !/;w0.0; !//kHs ; as ! ! 0;
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and the system (40) has for t < T.k.a!.0; !/;w!.0; !//kHs/ a unique solution
satisfying the estimate

k.a!.t; !/;w!.t; !//kHs % C.k.a!.0; !/;w!.0; !//kHs/:

7 Conclusion

The fact that in the V–D–B equation, the operator,

f 7! Ef D "@x
Z

f .t; x; v/dv;

is local in x and of degree 1 has in the present contribution the following
consequences. The well-posedness of the Cauchy problem depends drastically on
the initial data and this is related to the convexity of the energy (in a convenient
class of solutions).

With such locality the notion of invariants in the sense of Hamiltonian systems,
and the notion of conserved quantities for conservation laws do coincide.

The V–D–B equation appears also as the semi-classical or Wigner limit (with
! ! 0) of solutions of the nonlinear self-consistent Schrödinger equation. Such
limit can formally be described and proven in the general case, i.e. for mixed WKB-
states initial data only when the initial data are analytic. Otherwise that would be in
contradiction with the cases where the limit Cauchy problem is not well-posed. On
the other hand it is only for pure WKB-states initial data that the limit (which will
be a mono-kinetic solution) is proven with finite Sobolev type regularity.

The above observations remain true in a one-dimensional space variable where
not only the nonlinear Schrödinger equation but also its generalization as system
of coupled equations (for mixed states) are integrable (cf. Zakharov [28]). This
confers to the V–D–B equation a status of quasi-integrable equation with an infinity
of invariant quantities, limit of the corresponding invariants at the level of the
Schrödinger equations. The above properties being in some sense algebraic, the
proof of convergence with analyticity hypothesis seems well adapted to such con-
siderations even if convergence proofs have been obtained (as in the d-dimensional
case) for a genuine scalar equation (not a system) either as above by the theorem of
Grenier, or in the spirit of scattering theory by Jin, Levermore and McLaughlin [18].
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