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Abstract: In this paper we investigate the regularity in time of the volume-preserving
geodesic flow, which is associated with the incompressible Euler equations on a com-
pact d-dimensional Riemannian manifold with boundary. Our result, which completes
the local-in-time well-posedness theory of Ebin and Marsden (Ann Math 92:102–163,
1970), states roughly that the time smoothness of geodesic curves is only limited by the
smoothness of the manifold. Such regularity is measured in a broad class of ultradiffer-
entiable functions, which includes the real analytic and Gevrey classes. A by-product of
this simple and constructive proof is new ideas to design high-order semi-Lagrangian
methods for integrating the incompressible Euler equations on a manifold.

1. Introduction and Main Result

As far as it concerns time regularity, there is a remarkable difference between the Eu-
lerian and Lagrangian solutions to the incompressible Euler equations in the spatial
non-too-smooth regime. For instance, in Eulerian coordinates if we consider solutions
as a function of time with values in Hölder spaces, then this function is everywhere
discontinuous in time for generic initial data [43,44]. On the contrary, in Lagrangian
coordinates, where one is focusing on Lagrangian trajectories, an initial velocity field
with limited smoothness (typically in Sobolev or Hölder classes with suitable indexes
of regularity) launches geodesic curves, which are analytic in time. In Euclidean space
such results have been known for about 20 years and are still studied until very recently
[8,14,16,24,25,28,33,35,51–53,56]. For a brief history on how the issue of Lagrangian
analyticity in ideal hydrodynamics was tackled so far, we refer the reader to [8].

To the best of our knowledge no time-regularity results for the Euler geodesic flow on
a d-dimensional Riemaniann manifold seem available in the literature. Roughly speak-
ing, our result states that an initial velocity with finite Sobolev regularity initiates a
geodesic flow whose time regularity is given by the regularity of the manifold (see The-
orem 2). This regularity is described by a broad class of ultradifferentiable functions,
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which encompasses the real analytic and Gevrey classes. For such study it is convenient
to recall briefly the Arnold’s geometric reinterpretation of the hydrodynamics of an ideal
incompressible fluid [4]. Let M be a smooth compact Riemannian manifold of dimen-
sion d with boundary ∂M , usually called a Riemannian ∂-manifold (see, e.g., [50]). We
will come back later on the precise regularity needed for M . In the Arnold geometric
interpretation of the incompressible Euler equations [4,5], the solutions can be viewed
as geodesics (i.e., extrema) of the right-invariant Riemannian metric given by the ki-
netic energy on the infinite-dimensional group of volume-preserving diffeomorphisms.
Indeed, following [4], we define SDiff(M, μ) as the infinite-dimensional group of dif-
feomorphisms η : M → M preserving the metric volume form μ, i.e., η∗μ = μ. Here
η∗ denotes the pullback operator associated with the diffeomorphism η. The standard
notation and definitions of differential geometry that we use here are briefly recalled
in “Appendix A”. Since it is more convenient to work with Hilbert spaces (see [19]),
we considerDs(M, μ) the infinite-dimensional group of diffeomorphisms of M , which
preserve the Riemannian volume formμ and, which are of Sobolev class Hs . Its tangent
space TηDs(M, μ) at a point η consists of Hs sections V of the pullback bundle η∗T M ,
whose right-translations V ◦η−1 to the identity element e are the divergence-free vector
fields on M that are parallel to the boundary ∂M . In other words, we can associated with
the groupDs(M, μ) the Lie algebra g := TeDs(M, μ), which consists of all vector fields
u satisfying ∇iu

i = 0, on M , and (u, ν)g = 0, on ∂M . Here ∇ denotes the covariant
derivative, while (·, ·)g stands for the Riemannian metric defined by the metric tensor g
(see “Appendix A”). In fluid dynamics the space TDs(M, μ) represents the Lagrangian
(material) description, while the space g represents the Eulerian (spatial) description.
The L2 inner product for vector field,

〈X,Y 〉L2(M) =
∫
M

(X,Y )g μ, X,Y ∈ g, (1)

defines a right-invariant metric onDs(M, μ). Right-invariance comes from the property
that V ◦ η−1 is independant of ϕ, when we replace η by the composition η ◦ ϕ, for any
fixed map ϕ ∈ Ds(M, μ). In [4] Arnold showed that a perfect incompressible fluid is a
minimal geodesic curve ηt with respect to the right-invariant L2 metric on SDiff(M, μ)

(resp. Ds(M, μ)), starting from identity element e in the direction u0 if, and only if,
the time dependent vector field u = η̇t ◦ η−1t on M solves the Cauchy problem for the
incompressible Euler equations,

∂tu + ∇u u + grad p = 0, on M, t ∈] − T, T [, (2)

div u = 0, on M, t ∈] − T, T [, (3)

u|t=0 =u0, on M, (4)

(u, ν)g = 0, on ∂M, t ∈] − T, T [, (5)

with p the pressure function. In other words the Lagrangian flow ηt is an optimal
(minimal) path in SDiff(M, μ) (resp.Ds(M, μ)), i.e., a one-parameter family of smooth
material deformation maps on M , which extremizes (minimizes) the time-integral of
kinetic energy (i.e., the Maupertuis action). The geodesic curve ηt = η(t, a), defined on
] − T, T [×M , is also called the Lagrangian map and satisfies obviously the following
ODE,

∂tη(t, a) = u(t, η(t, a)), and η(0, a) = a ∈ M. (6)



Regularity of the Geodesic Flow of the Incompressible Euler Equations on a Manifold 2157

Soon after, Ebin andMarsden [19] observed that there is a technical advantage in rewrit-
ting the Euler equations in Lagrangian variables as a geodesic flow in Ds(M, μ). They
showed that the Cauchy problem for the corresponding geodesic equation on the group
Ds(M, μ) can be solved uniquely on short time intervals as an abstract ODE in Banach
spaces by using Picard iteration and Banach fixed-point arguments, like in the proof
of the Cauchy–Lipschitz–Picard theorem for ODE, but without using usual PDE-type
estimates. From the key result of Ebin andMarsden [19], we only give the statement that
is interesting for our purpose. We refer to Theorem 15.2 of [19] for complete statements.

Theorem 1 (Ebin and Marsden [19]). Let M be a compact C∞ d-dimensional Rieman-
nian ∂-manifolds with C∞ boundary ∂M. Let s > d/2 + 1. If u0 is an Hs vector field
on M, such that div u0 = 0, and u0 parallel to ∂M (i.e., (u0, ν)g = 0, with ν be the
outward pointing unit normal to the boundary ∂M), then there exists a unique vector
field u, defined for −T < t < T for some T > 0, which is solution of the incompress-
ible Euler equations (2)–(5); u is an Hs vector field and is C 1 as a function of (t, x)
for −T < t < T and x ∈ M. The geodesic flow ηt is an Hs (in particular a C 1)
volume-preserving diffeomorphism.

Remark 1. We recall that since the seminal work of Lichtenstein [39,40] and Gyunter
[29,30] the Cauchy problem for the incompressible Euler equations in the whole space
R
3 is known to be well posed in time (at least for short time) when the initial velocity

is in Hölder or Sobolev spaces with suitable indexes of regularity. In order to get rid of
techniques of Riemannian geometry on infinite-dimensional manifolds and make results
of Ebin and Mardsen [19] more accessible, the authors of [11] give a proof for bounded
domains of Rd (flat Euclidean space) by reducing also the Euler equations to an ODE
on a closed set of a Banach space.

In order to present the main result, we must first define some functional spaces that
we use to describe time regularity and manifold smoothness. Let U be a domain in R

d

and let B be a Banach space endowed with the norm ‖ · ‖B. Let M := {Mσ }σ≥0 be
a sequence of positive numbers. The ultradifferentiable class C{M}(U ;B) is defined
as the set of functions f : U −→ B such that for any compact set K ⊂ U there exist
constants (depending on f ) R f , C f such that for all σ ∈ N,

sup
x∈K

�Dσ f (x)� ≤ C f R
−σ
f Mσ . (7)

The map x �→ Dσ f (x) is a function defined on U with values in the set of symmetric
σ -linear operators, which is endowed with the standard induced operator-norm � · �.
The class C{M} is invariant under multiplication by a constant, i.e., C{λM}(U ;B) =
C{M}(U ;B) for λ > 0. As in [8], we choose the “log-superlinear Faà-di-Bruno”
(LSL–FdB in short) class. For such class the sequence of weights {Mσ /σ !}σ≥0 (and
M0 =M0) satisfies

Definition 1. The log-superlinear Faà-di-Bruno class is the set of functions satisfying
(7), where the weights Mσ =Mσ /σ ! verify the following properties,

(i) differentiation stability:

∃ CD > 0: Mσ+1 ≤ Cσ
DMσ , ∀σ ∈ N. (8)

(ii) log-superlinearity:

Mσ M� ≤ M0Mσ+�, ∀σ, � ∈ N. (9)



2158 N. Besse

(iii) (FdB)-stability:

∀αi ∈ N
∗, such that α1 + · · · + α� = σ, we have M�Mα1 . . . Mα�

≤ Mσ .

(10)

Remark 2. Using the Leibniz differentiation rules, log-superlinearity implies that the
class C{M}(U ;B) is an algebra with respect to pointwise multiplication. Using the
Faà di Bruno formula [17,20,31], (FdB)-stability implies stability under composition in
the class C{M}(U ;B) (see the proof of Proposition 3.1 in [48], or Proposition 1.4.2 in
[37]). Finally, the differentiability stability property implies closure under differentiation
in C{M}(U ;B) [36,41,49].

Remark 3. Somewell-known classes of functions belong to the LSL–FdB class. The first
one is the real analytic functions class, which corresponds to Mσ = 1 (e.g., [12,42]).
The second one is the log-convex class, which corresponds to M2

σ ≤ Mσ−1Mσ+1, with
M0 = M1 = 1 (see Lemma 2.9 of [38]). A particular case of the latter is the Gevrey
class (see, e.g., [41,42]), which corresponds to Mσ = (σ !)r , with r ≥ 0.

From now on and throughout this work we suppose that the Riemannian ∂-manifold
(M, g), where g denotes the Riemannian metric tensor, is ultradifferentiable in the LSL–
FdB class. Its definition follows the standard definition of differentiable or real analytic
manifolds (see, e.g., [10,50,54]) except that in our case charts and atlas belong to the
LSL–FdB ultradifferentiable class. As a consequence, the components of the 2-covariant
metric tensor g are LSL–FdB ultradifferentiable functions.

The main result of this paper is

Theorem 2. Assume that the hypotheses of Theorem 1 hold, and in addition that the
manifold M and its boundary ∂M belong to C{M}, where M := {σ !Mσ }σ≥0, with the
sequence {Mσ }σ≥0 satisfying Definition 1 (log-superlinear Faà-di-Bruno class). Then
there exists a time T = C(M, ‖u0‖Hs (M)) such that the geodesic flow η satisfies

η ∈ C{M}(] − T, T [; Hs(M)
)
.

Theorem 2 is an extension, to d-dimensional manifolds, of the previous Theorem 2
of Besse and Frisch [8], which deals with bounded domain of R3. The proof makes
use of a new Lagrangian formulation of Euler equations on d-dimensional manifolds
[7], which is a generalization of the Cauchy invariants equation in R

3 used in [8]. As
in [8], the proof is based on this Lagrangian formulation, together with the Lagrangian
incompressibility condition and the invariance of the boundary under the Lagrangian
flow. Nevertheless the present proof differs from that of [8] in several points listed below
and it is not a straightforward translate of [8] to the context of manifolds.

1. By constrast to [8], the fondamental object is not the Lagrangian map ηt , but a 1-form
γ

�
t constructed from it. We then obtained new recursion relations among time-Taylor

coefficients of the time-series expansion of this 1-form.
2. Boundary conditions are handled in a different way. Indeed, in [8] the authors use

the surface equation, S(a) = 0, ∀a ∈ ∂M , as a functional representation of the
two-dimensional boundary to derive boundary recursion relations, which involve
successive derivatives of the function a �→ S(a). Here, we proceed differently by
rewriting theboundary condition (5) inLagrangianvariables andbyusing theproperty
that a particle being initially on the boundary remains on it forever. All the geometry
of the boundary is then encoded in the metric tensor g and the normal vector ν.
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3. There are some new technical estimates, which are crucially used throughout the
proof. The authors of [8] obtained estimates in C 1,α-norm, which are then controlled
by C 2-norm. These estimates can not be extended to the general cases of Hölder
spaces C s,α or Sobolev spaces Hs , for the following reason. In [8], by using a con-
trol in C 2-norm, the authors obtained a second-order-in-time differential inequality.
Because this inequality is only of second order, it can be easily integrated to obtain
useful algebraic estimates. In the case of spaces C s,α or Hs , this strategy leads to a
differential inequality of order s +1 in time, which becomes difficult to integrate and
thus to exploit for obtaining useful estimates. Here, this difficulty is solved by new
functional estimates, which are used throughout the proof and are given by Lemma 1.
We then obtain new algebraic estimates (see Proposition 1) without requiring to in-
tegrate an entangled differential inequality of high order.

4. Another important difference is the Hodge decomposition method, which is more
involved in the case of differential forms on manifolds than in the case of vectors in
Euclidean spaces. We must deal with supplementary differential forms, called har-
monic forms, which come from the non-emptyness of kernels of Laplace–De-Rham
operators. By contrast with the case of bounded domains in R

3, where the authors
of [8] have considered the construction of a Neumann boundary value problem for
the Hodge scalar potential and a Dirichlet boundary value problem for the Hodge
vector potential, here we construct two Neumann boundary value problems for the
two Hodge potentials. As a consequence, our Hodge decomposition is more general
than the one used in [8] (see Remark 5). This construction also needs to consider re-
fined decompositions in more involved functionnal spaces with some supplementary
commutation relations between trace operators and (co-)exterior derivatives. More-
over for solving these non-homogeneous boundary value problems, we must show
that right-hand sides satisfy suitable integrability conditions. This corresponds to the
fact that right-hand sides of Neumann boundary value problems must be orthogonal
to the kernel of the Neumann operator.

5. The paper [8] deals with the dimension three for bounded domains of the Euclidean
space, while here we deal with ∂-manifolds of any dimension. This implies new
recursion relations, especially those arising from the incompressibility constraint
and the boundary conditions.

Finally it is worthwhile to stress the robustness of the present method to pass from
the case of the Euclidean space to the case of manifolds. For other Lagrangian methods,
which use a reformulation of the problem in the Euclidean space as an abstract ODE in
some Banach spaces, it is not clear that an extension of such methods to manifolds is
easily tractable. Indeed these methods require to work with intricate Green functions,
which may be difficult to deal with.

The outline of the paper is as follows. In Sect. 2, we present the proof of Theorem 2
in three steps. First, in Sect. 2.1 we construct the time-Taylor coefficients of the dual
1-form γ

�
t associated with the geodesic flow, by restricting our attention to the spe-

cial case d = 3. This construction consists in solving a sequence of non-homogeneous
Neumann boundary value problems for potential differential forms stemming from the
Hodge decomposition of the 1-form γ

�
t . Source terms and boundary conditions of these

non-homogeneous boundary value problems are given by new recursion relations, which
involve in a crucial way the regularity of the manifold (metric tensor). Then, in Sect. 2.2,
we deal with convergence issues and we obtain a priori estimates in Sobolev spaces
for time-Taylor coefficients of the 1-form γ

�
t . In Sect. 2.3, we extend the constructive

scheme and its convergence analysis to the general case of a d-dimensional manifold



2160 N. Besse

with boundary. In conclusion, we discuss the applicability of such constructive proof to
design new high-order semi-Lagrangian schemes for solving the incompressible Euler
equations on a manifold. Finally there are three appendices. “Appendix A” recalls stan-
dard differential geometry notation that we use here. “Appendix B” states main results
about the Hodge decomposition of differential forms on compact Riemannian mani-
folds with boundary [50]. “Appendix C” recalls and slightly corrects a derivation of the
generalized Cauchy invariants equation [7].

2. Proof of Theorem 2

Here, we give a proof of Theorem 2, which is divided into three steps. In Sect. 2.1, the
1-form γ

�
t , associated with the geodesic flow, is constructed recursively as a formal time-

Taylor expansion. In this first section we restrict our attention mainly to the special case
d = 3. Sect. 2.2 is devoted to the convergence analysis of such formal time-expansions.
The last step (Sect. 2.3) extends the previous constructive scheme and its convergence
analysis to the general case of a d-dimensional manifold with boundary.

2.1. Construction of the 1-form γ
�
t . The starting point of the construction is aLagrangian

formulation, the origin of which traces back to Cauchy [13]. Indeed, in his pioneering
paper [13], Cauchy used a Lagrangian formulation, called nowadays the Cauchy in-
variants equation, to integrate the Euler equations in the 3D Euclidean (flat) space by
establishing the so-called Cauchy formula. In [7] the Cauchy invariants equation has
been generalized to Riemaniann manifolds of any dimension and also to other hydrody-
namic and magnetohydrodynamic models. In “Appendix C”, we recall two derivations
of the Cauchy invariants equation. The Lagrangian formulation of the incompressible
Euler equation (2)–(5) that we consider is

dvi ∧ dxi = ω0 := dv
�
0, on M, (11)√

|g|(x)
|g|(a)

det

(
∂x

∂a

)
= 1, on M, (12)

iν(x)u
�(x) = 0, on ∂M. (13)

Here, the Lagrangian variable x = x(t, a) (resp. a = x(0, a)) stands for the current
(resp. initial) Lagrangian position of fluid particles. In a similar way, the Lagrangian
variable v = v(t, a) (resp. v0 = v(0, a)) stands for the current (resp. initial) Lagrangian
velocity of fluid particles. We then have x := ηt , and v := η̇t = u ◦ ηt (v0 = u0).
In (11), xi denotes the contravariant components of the Lagrangian position, while vi

denotes the covariant components of the Lagrangian velocity, i.e., vi = gi j (ηt )η̇
j
t . More-

over, we use the standard convention that an index variable appearing twice in a single
term, implies the summation of that term over all the values of the index. The 2-form
ω0 := dv

�
0 = du�

0 is the initial vorticity 2-form. The exterior derivative d corresponds to
a differential operator in the Lagrangian variables, i.e., a differentiation with respect to
the variable a.We also recall (see “Appendix A”) the definition |g| := det(gi j ). Equation
(13) means that the interior product of the 1-form u� with the vector field ν is zero on
the boundary ∂M (for the definition of the interior product i, see, e.g., “Appendix A”
and references therein). Equation (11) is the Cauchy invariants equation while the La-
grangian incompressibility condition is (12). Equation (13) reflects the flow-invariance
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of the impermeable boundary ∂M , i.e., the preservation by the Lagrangian flow of the
prescribed rigid and impermeable boundary ∂M . We emphasize that Lagrangian formu-
lation (11)–(13) is equivalent to Eulerian formulations (2)–(5) at least when everything
is smooth (see [7]).

To construct a 1-form γ
�
t , associated with the geodesic flow ηt , we are going to derive

from (11)–(13) recursion relations, which always involve a finite number of terms. To
achieve this, we use formal time-Taylor series, whose convergence and time-regularity
issues are postponed to Sect. 2.2. To keep the proof simple and to obtain explicit formula,
we first consider the case d = 3, andwe postpone to Sect. 2.3 the treatment of the general
d-dimensional case. Anticipating a little bit, we will see that recursion relations coming
from Cauchy invariants equation (11) and boundary condition (13) are the same for any
dimension d, since the dimension only plays the role of a parameter. Recursion relations
coming from incompressibility condition (12) will require to expand the determinant of
the Jacobian matrix in terms of the trace of positive integer power of another matrix.
For d = 3 the explicit formula is simple and well-known. For the general dimension d,
we will use the Plemelj–Smithies formula (see, e.g., [27]), which leads to more intricate
expressions.

From [19], we know that solutions of (2)–(5) depend continuously on the initial
conditions, and the group Ds(M, μ) has, at least for small time, a smooth exponential
map in the usual sense of Lie group:

expe : g −→ Ds(M, μ)

u0 �−→ ηt = expe(tu0).
(14)

Here, ηt is the unique geodesic of (1), starting from the identity e with initial velocity
u0 ∈ g. By the inverse function theorem, the exponential map is a local diffeomorphism
from an open set around zero in g onto a neighborhood of the identity in Ds(M, μ). In
the particular case d = 2, from the classical result of Wolibner [55] (see also [34] for a
more recent result), the exponential map can be extended to the whole tangent space g.
On one hand, time expansion of exponential map (14) gives

exp(tu0)a =
(
Id + tv0 +

t2

2!w1 + · · · + tσ

σ !wσ + · · · )a
= a + tu0 +

t2

2!u1 + · · · +
tσ

σ !uσ + · · · , (15)

where v0 = ui0∂/∂ai ∈ T Ma , and wσ = uiσ ∂/∂ai ∈ T Ma , for σ > 0; the scalar
coordinates {uiσ }{σ∈N, i=1,...,d} are real numbers. On the other hand, time expansion of
the geodesic flow ηt gives

η(t, a) = ηt a = ηt ◦ a = η(0, a) + t η̇(0, a)+
t2

2! η̈(0, a) + · · · + tσ

σ ! (∂
(σ)
t η)(0, a) + · · · ,

(16)

Comparing (15) and (16), we obtain

η(0, a) = a,

η̇(0, a) = v0a = ui0
∂

∂ai
a = u0,

(∂
(σ)
t η)(0, a) = wσa = uiσ

∂

∂ai
a = uσ , σ > 0.
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We then observe that (16) or (15) are simply relations between real scalar coordinates.
Therefore, for k ∈ {1, . . . , d}, we can consider a sequence of scalar functions {γ k

(σ )}σ∈N,
with γ k

(σ ) ∈ Hs0(M), such that we can set the formal time series,

ηk(t, a) :=
∑
σ≥0

γ k
(σ )(a)

tσ

σ ! = ak +
∑
σ>0

γ k
(σ )(a)

tσ

σ ! . (17)

In fact, the right object to consider is not the geodesic flow (17), but the 1-form γ
�
t

defined by

γ �(t, a) :=
∑
σ≥0

γi(σ )(a)dai
tσ

σ ! , (18)

with γi(σ ) = gi jγ
j

(σ ).
We recall that convergence issues of such time series is not the point here and is

postponed to Sect. 2.2.

2.1.1. Recursion relations stemming from the Cauchy invariants equation. Here, we
obtain recursion relations from the Cauchy invariants equation (11). Substituting formal
time series (17)–(18) into the Cauchy invariants equation (11), and collecting terms of
the same power σ > 0, we obtain, after some algebra,

dγ
�

(σ) = δ1σdv
�
0 −

∑
0<m<σ

(
σ − 1

m − 1

)
d
(
γ

j
(m)Gi j (σ−m)da

i + gi jγ
j

(m)dγ i
(σ−m)

)

−
∑

m+n+l=σ
m,n,l>0

(
σ − 1

m − 1

)(
σ − m

n

)
d
(
Gi j (n)γ

j
(m)dγ i

(l)

)
, (19)

where δi j is the Kronecker symbol and gi j = gi j (a). In (19), the 1-form γ
�

(σ) is given
by

γ
�

(σ) = γi(σ )da
i , with γi(σ ) = gi jγ

j
(σ ), (20)

while terms Gi j (σ ) are defined by

Gi j (σ ) = σ !
∑

1≤|β|≤σ

∂βgi j (a)

σ∑
q=1

∑
Pq (σ,β)

q∏
r=1

(γ 1
(�r )

)k
1
r

k1r !(�r !)k1r
· · · (γ d

(�r )
)k

d
r

kdr !(�r !)kdr
, (21)

for σ > 0, and Gi j (0) = gi j (a). In (21), the set Pq(σ, β) is given by

Pq(σ, β) =
{
(�1, . . . , �q), (k1, . . . , kq); 0 < �1 < · · · < �q;

|k j | > 0, j ∈ [1, q];
q∑
j=1

k j = β,

q∑
j=1
|k j |� j = σ

}
. (22)
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In (19), we have used the Faà di Bruno formula [17,20,31] to obtain the time series
expansion of the composed function gi j (x) = gi j ◦ η(t), namely,

gi j (η(t, a)) =
∑
σ≥0

Gi j (σ )(a)
tσ

σ ! . (23)

We note that recursion relation (19) involves a finite number of terms and holds for any
finite dimension d.

2.1.2. Recursion relations stemming from the incompressibility condition. Here, we
derive recursion relations from incompressibility condition (12), by restricting our at-
tention to the special case d = 3. Analysis of the general d-dimensional case, which
uses Plemelj–Smithies formula (see, e.g., [27]), is postponed to Sect. 2.3. Since the 2-
convariant metric tensor g can be identified to a symmetric definite positive matrix g j

i ,

there exists a matrix J j
i such that g j

i = J ki J
T j
k . Hence |g| = det(g j

i ) = det(J j
i )2 = J2

or J = √|g|. Using the well-known formula det(I + A) = 1 + Tr (A) + 1
2 [Tr (A)2 −

Tr (A2)] + det(A), the incompressibility condition can be rewritten as

J(a) = J(x) det

(
∂xi

∂a j

)

= J(ηt ) det

(
I +

∂γ̂ i

∂a j

)

= J(ηt )

(
1 + Tr

(
∂γ̂ i

∂a j

)
+
1

2

[
Tr

(
∂γ̂ i

∂a j

)2

− Tr

((
∂γ̂ i

∂a j

)2 )]
+ det

(
∂γ̂ i

∂a j

))
,

(24)

where we set

γ̂ i :=
∑
σ>0

γ i
(σ )(a)

tσ

σ ! . (25)

We also need a time series expansion of the Jacobian J(ηt ). This is achevied by using
the Faà di Bruno formula. We then obtain

J(ηt ) =
∑
σ≥0

J(σ )(a)
tσ

σ ! = J(a) +
∑
σ>0

J(σ )(a)
tσ

σ ! , (26)

where

J(σ ) = σ !
∑

1≤|β|≤σ

∂βJ(a)

σ∑
q=1

∑
Pq (σ,β)

q∏
r=1

(γ 1
(�r )

)k
1
r

k1r !(�r !)k1r
· · · (γ d

(�r )
)k

d
r

kdr !(�r !)kdr

= DaJ · γ(σ) + σ !
∑

1<|β|≤σ

∂βJ(a)

σ∑
q=1

∑
Pq (σ,β)

q∏
r=1

(γ 1
(�r )

)k
1
r

k1r !(�r !)k1r
· · · (γ d

(�r )
)k

d
r

kdr !(�r !)kdr
= DaJ · γ(σ) + J(σ ) = γ i

(σ )∂i J + J(σ ), (27)
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for σ > 0 and J(0) = J(a). In (27) and below we use the following notation J =
J(0) = J(a). Moreover the operator · (resp. Da) denotes the usual scalar-product (resp.
derivative) in R

d . Substituting formal time series (25) and (26) into (24), and using
decomposition (27) and the following relations,

− d∗X � = ∇i X
i = 1√|g|∂i (

√|g|Xi ) = ∂i X
i +

1

J
Xi∂i J, ∀X ∈ X(M), (28)

we obtain

−
∑
σ>0

d∗γ �

(σ)

tσ

σ ! + J−1
∑
σ>0

J(σ )

tσ

σ !

+ J−1
(∑

σ>0

J(σ )

tσ

σ !
)(∑

σ>0

∂iγ
i
(σ )

tσ

σ !
)
+R +RJ−1

∑
σ>0

J(σ )

tσ

σ ! = 0, (29)

where

R = 1

2

[
Tr

(
∂γ̂ i

∂a j

)2

− Tr

((
∂γ̂ i

∂a j

)2 )]
+ det

(
∂γ̂ i

∂a j

)

= 1

2

∑
σ1,σ2>0

(
∂iγ

i
(σ1)

∂ jγ
j

(σ2)
− ∂ jγ

i
(σ1)

∂iγ
j

(σ2)

) tσ1+σ2

σ1!σ2!

+
1

6
εi1i2i3ε j1 j2 j3

∑
σ1,σ2,σ3>0

∂i1γ
j1

(σ1)
∂i2γ

j2
(σ2)

∂i3γ
j3

(σ3)

tσ1+σ2+σ3

σ1!σ2!σ3! .

Collecting terms of the same power σ > 0, after some algebra, we obtain from (29),

d∗γ �

(σ) = J−1J(σ ) + J−1
∑

0<m<σ

(
σ

m

)
J(σ )∂iγ

i
(σ−m)

+
1

2

∑
0<m<σ

(
σ

m

)(
∂iγ

i
(m)∂ jγ

j
(σ−m) − ∂ jγ

i
(m)∂iγ

j
(σ−m)

)

+
1

6
εi1i2i3ε j1 j2 j3

∑
m+n+l=σ
m,n,l>0

(
σ

m

)(
σ − m

n

)
∂i1γ

j1
(m)∂i2γ

j2
(n)∂i3γ

j3
(l)

+
1

2
J−1

∑
m+n+l=σ
m,n,l>0

(
σ

m

)(
σ − m

n

)(
∂iγ

i
(m)∂ jγ

j
(n) − ∂ jγ

i
(m)∂iγ

j
(n)

)
J(l)

+
1

6
J−1εi1i2i3ε j1 j2 j3

∑
m+n+l+p=σ
m,n,l,p>0

(
σ

m

)(
σ − m

n

)(
σ − m − n

l

)

∂i1γ
j1

(m)∂i2γ
j2

(n)∂i3γ
j3

(l)J(p). (30)

2.1.3. Recursion relations stemming from boundary conditions. Here, we derive recur-
sion relations from the impermeability condition (12) on the boundary ∂M , which is
smooth. To write the boundary condition
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iν(x)u
�(x) = gi j (ηt )η̇

i
tν

j (ηt ) = 0, (31)

as a time series, we need to expand in time the term ν j (ηt ), where ν is the outward
pointing unit normal to the boundary ∂M . Using the Faà di Bruno formula, we obtain

ν j (η(t, a)) =
∑
σ≥0

ν
j
(σ )(a)

tσ

σ ! , (32)

where

ν
j
(σ ) = σ !

∑
1≤|β|≤σ

∂βν j (a)

σ∑
q=1

∑
Pq (σ,β)

q∏
r=1

(γ 1
(�r )

)k
1
r

k1r !(�r !)k1r
· · · (γ d

(�r )
)k

d
r

kdr !(�r !)kdr
, (33)

for σ > 0, and ν
j
(0) = ν j (a). Substituting formal time series (17), (23) and (32) into

(31), and collecting terms of the same power σ > 0, we obtain, after some algebra,

iνγ
�

(σ ) = −
∑

0<m<σ

(
σ − 1

m − 1

)
γ i
(m)

(
Gi j (σ−m)ν

j + gi jν
j
(σ−m)

)

−
∑

m+n+l=σ
m,n,l>0

(
σ − 1

m − 1

)(
σ − m

n

)
γ i
(m)Gi j (n)ν

j
(l). (34)

We observe that recursion relation (34) involves a finite number of terms, and holds for
any finite dimension d.

2.1.4. Normalized recursion relations. To perform, in Sect. 2.2, the convergence anal-
ysis of the scheme described below (Sect. 2.1.5), it is more convenient to work with
normalized recursion relations. To achieve this, we apply the following rescaling

γ i
(σ )

σ ! −→ γ i
(σ ),

Gi j (σ )

σ ! −→ Gi j (σ ),
J(σ )

σ ! −→ J(σ ),
νi(σ )

σ ! −→ νi(σ ). (35)

Using rescaling (35), recursion relations of Sects. 2.1.1–2.1.3 become

dγ
�

(σ) = δ1σdv
�
0 −

∑
0<m<σ

m

σ
d
(
γ

j
(m)Gi j (σ−m)da

i + gi jγ
j

(m)dγ i
(σ−m)

)

−
∑

m+n+l=σ
m,n,l>0

m

σ
d
(
Gi j (n)γ

j
(m)dγ i

(l)

)
, (36)

d∗γ �

(σ) = J−1J(σ ) + J−1
∑

0<m<σ

J(σ )∂iγ
i
(σ−m)

+
1

2

∑
0<m<σ

(
∂iγ

i
(m)∂ jγ

j
(σ−m) − ∂ jγ

i
(m)∂iγ

j
(σ−m)

)

+
1

6
εi1i2i3ε j1 j2 j3

∑
m+n+l=σ
m,n,l>0

∂i1γ
j1

(m)∂i2γ
j2

(n)∂i3γ
j3

(l)
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+
1

2
J−1

∑
m+n+l=σ
m,n,l>0

(
∂iγ

i
(m)∂ jγ

j
(n) − ∂ jγ

i
(m)∂iγ

j
(n)

)
J(l)

+
1

6
J−1εi1i2i3ε j1 j2 j3

∑
m+n+l+p=σ
m,n,l>0

∂i1γ
j1

(m)∂i2γ
j2

(n)∂i3γ
j3

(l)J(p), (37)

and

iνγ
�

(σ ) = −
∑

0<m<σ

m

σ
γ i
(m)

(
Gi j (σ−m)ν

j + gi jν
j
(σ−m)

)
−

∑
m+n+l=σ
m,n,l>0

m

σ
γ i
(m)Gi j (n)ν

j
(l),

(38)

where

Gi j (σ ) =
∑

1≤|β|≤σ

∂βgi j (a)

σ∑
q=1

∑
Pq (σ,β)

q∏
r=1

(γ 1
(�r )

)k
1
r

k1r !
· · · (γ

d
(�r )

)k
d
r

kdr !
. (39)

The term J(σ ) (resp. ν
j
(σ )) is defined accordingly, i.e., by substituting J(σ ) (resp. ν

j
(σ )) to

Gi j (σ ) in (39) and by substituting J (resp. ν j ) to gi j in (39).

2.1.5. Normal Hodge decomposition and Neumann boundary value problems. Here,
from the normalized recursion relations (36)–(39), we design a scheme to compute the
time-Taylor coefficients γ

�

(σ). The heart of the method consists in using a normal Hodge
decomposition (see “Appendix B”) for the time-Taylor coefficients. Indeed, data (36)–
(38), which give the exterior derivative, the coderivative and the normal trace of γ

�

(σ),

allow us to consider the normal Hodge decomposition problem for 1-forms γ
�

(σ) [50].
The normal Hodge decomposition leads to the resolution of two Neumann boundary
value problems for differential forms in which the boundary conditions (38) must be
incorporated. Assuming γ

�

(σ) ∈ Hs1(M) and using Theorem 3 (See “Appendix B”),
we have, for all σ > 0, the decomposition

γ
�

(σ) = dφ̃(σ ) + dφ̂(σ ) + d∗�(σ) + h(σ ), (40)

where dφ̃(σ ) ∈ HsE1(M), dφ̂(σ ) ∈ HsH1
ex(M), d∗�(σ) ∈ HsC1(M), and h(σ ) ∈

H1
N (M). Setting φ(σ) = φ̃(σ ) + φ̂(σ ), decomposition (40) becomes

γ
�

(σ) = dφ(σ) + d∗�(σ) + h(σ ). (41)

The aim is now to determine the potential forms φ(σ) (0-form) and �(σ) (2-form), and
the harmonic 1-form h(σ ). Let us start with the 0-form φ(σ). Applying the exterior
coderivative operator to (41) and using the property d∗φ(σ) = 0, we obtain �φ(σ) =
d∗γ �

(σ) on M . Applying the trace operator n to (41) and using the commutation property
nd∗ = d∗n (see Proposition 1.2.6 of [50]) we obtain nd∗�(σ) = d∗n�(σ) = 0 on ∂M ,
because �(σ) ∈ Hs+12

N (M). Moreover nh(σ ) = 0 on ∂M (since h(σ ) ∈ H1
N (M)),

hence ndφ(σ) = nγ
�

(σ) on ∂M , where the right-hand side of this equality is given by
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the right-hand side of (38). Therefore, the potential 0-form φ(σ) satisfies the following
non-homogeneous Neumann boundary value problem,

�φ(σ) = d∗γ �

(σ) on M, ndφ(σ) = nγ
�

(σ) = iνγ
�

(σ ) and nφ(σ) = 0 on ∂M,

(42)

where it is understood that the right-hand sides of (42) are taken from (37) and (38), and
thus involve only coefficients of order less or equal to σ − 1. From Corollary 3.4.8 of
[50], the problem (42) is solvable if, and only if, the data obey the following integrability
condition,

〈〈d∗γ �

(σ), f 〉〉L2(M) = −
∫

∂M
t f ∧ �nγ

�

(σ), ∀ f ∈ H0
N (M).

This condition is satisfied since using the Green formula of Proposition 2.1.2 of [50],
we obtain

〈〈d∗γ �

(σ), f 〉〉L2(M) = 〈〈γ �

(σ), d f 〉〉L2(M) −
∫

∂M
t f ∧ �nγ

�

(σ) = −
∫

∂M
t f ∧ �nγ

�

(σ),

∀ f ∈ H0
N (M).

Then, the resolution of (42) gives a unique solution φ(σ) up to a Neumann field κ(σ) ∈
H0

N (M) (see Corollary 3.4.8 of [50]).
We now deal with the potential 2-form �(σ). From Lemma 2.4.7 of [50], we observe

that it is possible to modify �(σ) by adding to it a gauge G(σ ) ∈ G2
C(M) := {λ ∈

Hs+12
N (M) | d∗λ = 0}. In particular we can choose G(σ ) such that �(σ) is minimal

in the sense that 〈〈�(σ), λ〉〉L2 = 0, ∀λ ∈ G2
C(M). This implies that d�(σ) = 0 on

M . Then, we naturally impose nd�(σ) = 0 on ∂M . Applying the exterior derivative

operator to (41) and using the property d�(σ) = 0, we obtain ��(σ) = dγ
�

(σ) on M .

Since d∗�(σ) ∈ HsC1(M), we obtain n�(σ) = 0 on ∂M , which implies nd∗�(σ) = 0
on ∂M , by using the commutation property nd∗ = d∗n. Therefore, the potential 2-form
�(σ) satisfies the following non-homogeneous Neumann boundary value problem,

��(σ) = dγ
�

(σ) on M, nd�(σ) = 0 and n�(σ) = 0 on ∂M, (43)

where the right-hand side of (43) is given by (36). From Corollary 3.4.8 of [50], the
problem (43) is solvable if, and only if, the data obey the following integrability condi-
tion,

〈〈dγ
�

(σ), λ〉〉L2(M) = 0, ∀λ ∈ H2
N (M).

This condition is satisfied since using the Green formula of Proposition 2.1.2 of [50],
we obtain

〈〈dγ
�

(σ), λ〉〉L2(M) = 〈〈γ �

(σ), d
∗λ〉〉L2(M) +

∫
∂M

tγ �

(σ) ∧ �nλ = 0, ∀λ ∈ H2
N (M).

Therefore, the resolution of (43) gives a unique solution �(σ) up to a Neumann field
K(σ ) ∈ H2

N (M) (see Corollary 3.4.8 of [50]).
Before dealing with the harmonic 1-form h(σ ), we make some remarks about bound-

ary value problems (42) and (43).
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Remark 4 (Non-uniqueness). We have seen that solutions to (42) and (43) are unique
up to some Neumann fields. As far as it concerns the proof of the regularity property
of Theorem 2, this non-uniqueness default has no consequence since a priori estimates
of Sect. 2.2 only involve dφ(σ) and d∗�(σ). Moreover, from Theorem 2.6.1 of [50], we
have the Hodge isomorphism

Hk
N (M) = Hk(M, d) := Ker d|

k (M)
/Im d|

k−1(M)
,

where Hk(M, d) is the k-th De Rham cohomology. Then elements ofHk
N (M) are purely

of geometrical nature and depends only on the topological properties of M . Moreover,
from Theorem 22 of [18], the space Hk

N (M) is finite dimensional, with a dimension
given by the Betti number bk(M) := dimHk(M, d). From Theorem 26 of [18], ele-
ments of Hk

N (M) are analytic (resp. ultradifferentiable) in space if M is analytic (resp.
ultradifferentiable). Therefore, the Neumann fields κ(σ) ∈ H0

N (M) and K(σ ) ∈ H2
N (M)

belong to the LSL–FdB ultradifferentiable class. Hereafter, we give some basic examples
of determination ofH0

N (M) andH2
N (M); more examples can be found in [1,22,50]. If

M is compact and (path-)connected (i.e., any two points of M can be connected by a
piecewise smooth curve), then H0(M, d) = R and b0(M) = 1. If M is compact but not
connected, i.e., it consists of k connected pieces, then H0(M, d) = R

k and b0(M) = k.
From the Poincaré lemma (see, e.g., Lemma 6.4.18 of [1]), if M is a compact con-
tractible1 manifold, then all the Betti numbers bk(M) with k ≥ 1 vanish (in particular
b2(M) = 0) and b0(M) = 1.

Remark 5 (Other boundary conditions). In the setting of boundary value problem (43),
we observe the following. Using the commutation property td = dt (see Proposition
1.2.6 of [50]) and d�(σ) = 0, it is also consistent to impose t�(σ) = 0 on ∂M . This con-
dition is a particular solution of themore general solution to d(t�(σ)) = 0 on ∂M , which
is given by t�(σ) = tG 2

(σ ) on ∂M , with G 2
(σ ) ∈ G2(M) := {λ ∈ Hs+12(M) | dλ = 0}.

In particular, we can take G 2
(σ ) = dG 1

(σ ), with G 1
(σ ) an arbitrary 1-form in Hs+21(M).

The condition t�(σ) = 0 and d∗�(σ) ∈ HsC1(M), lead to �(σ) = 0 on ∂M , which
is the boundary condition used in [8] to solve the Dirichlet boundary value problem
satisfied by the Helmholtz–Hodge vector potential. Therefore, this Dirichlet problem
and its associated Helmholtz–Hodge decomposition are less general than the normal
Hodge decomposition we present here. Since the Helmholtz–Hodge decomposition of
[8] is more restrictive, it can not cover all physical cases.

Remark 6 (Case of a bounded and simply-connected domain D ofR3). Here, we rewrite
boundary value problems (42) and (43) for a bounded and simply-connected domain D
ofR3. The problem (42) reduces exactly to the same Neumann boundary value problem
than the one established in [8] (see equation (30) of [8]). The corresponding Neumann
field κ(σ) is an arbitrary constant.

We next deal with the problem (43). For this, we use standard notation for vectors of
R
3, i.e., e.g., ��(σ). The vector ��(σ) is associated to the 2-form �(σ), while the vector

�γ(σ) is associated to the 1-form γ
�

(σ) and corresponds to the Taylor coefficients of time

1 A manifold M is contractible if there exists a vector field X on M which generates a flow ηt : M → M ,
with t ∈ [0, 1], that gradually and smoothly shrinks the whole manifold M to the point a, i.e., η0 = IdM and
η1(x) = a, ∀x ∈ M , where the point a is fixed and independent of x . For more details see, e.g., Section 1.6
of [1].
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series expansion (17). Equation ��(σ) = dγ
�

(σ) on D, rewrites as

� ��(σ) = −∇ × �γ(σ), on D. (44)

This equation was established in [8] (see equation (23) of [8]). The gauge (resp. bound-
ary) condition d�(σ) = 0 on D (resp. nd�(σ) = 0 on ∂D), rewrites as ∇ · ��(σ) = 0 on
D (resp. ∇ · ��(σ) = 0 on ∂D), which implies

∇ · ��(σ) = 0, on D̄. (45)

The boundary condition n�(σ) = 0 on ∂D, rewrites as

��(σ) × �ν = 0. (46)

Indeed, using the definition of the normal trace operator n (see “Appendix A”), we obtain
for all X,Y ∈ �(T D|∂D ) = R

3,

0 = n�(σ)(X,Y )

= �(σ)(X,Y )− t�(σ)(X,Y )

= �(σ)(X,Y )−�(σ)(X
‖,Y ‖)

= �(σ)(X
⊥,Y ‖) + �(σ)(X

‖,Y⊥) + �(σ)(X
⊥,Y⊥). (47)

In terms of vectors ofR3, the term�(σ)(X,Y ) rewrites as the triple-product �X · ��(σ)× �Y .
Without loss of generality we can choose X⊥ = Y⊥ = ν, and then (47) rewrites as

�ν × ��(σ) (Y ‖ − X‖) = 0, ∀X‖,Y ‖ ∈ R,

which is equivalent to ��(σ) × �ν = 0. Moreover the following implications,

n�(σ) = 0 �⇒ d∗n�(σ) = 0 �⇒ nd∗�(σ) = 0,

rewrite as

��(σ) × �ν = 0 �⇒ ∇ · ( ��(σ) × �ν) = 0 �⇒ �ν · ∇ × ��(σ) = 0,

since ∇ × �ν = 0. Using the Stokes’ theorem,∫
D
dλ =

∫
∂D

j∗λ, ∀λ ∈ H12(D),

the gauge condition, d�(σ) = 0 on D, implies∫
∂D

j∗�(σ) = 0,

which rewrites as ∫
∂D

��(σ) · �νds = 0.

Here, ds is the elementary measure of a two-dimensional surface. Finally, since the
simply-connected domain D is contractible, the Poincaré lemma shows that the 2-form
K(σ ) vanishes. Therefore, the boundary value problem (44)–(46) has a unique solution
(see, e.g., [3,26]). We note that this boundary value problem differs from the one used
in [8].
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Finally we deal with the harmonic 1-form h(σ ). On one hand, setting

γ �(t, a) :=
∑
σ≥0

(
γi(σ )(a)dai

)
tσ , (48)

and using Theorem 3, we obtain the Hodge decomposition

γ �(t, a) = dφγ (t, a) + d∗�γ (t, a) + hγ (t, a), (49)

with φγ = φ̃γ + φ̂γ , and where dφ̃γ ∈ HsE1(M), dφ̂γ ∈ HsH1
ex(M), d∗�γ ∈

HsC1(M), and hγ ∈ H1
N (M). From Theorem 2.6.1 of [50], we have the Hodge isomor-

phism H1
N (M) = H1(M, d) := Ker d|

1(M)
/ Im d|

0(M)
, where H1(M, d) is the 1-th De

Rham cohomology. Then elements ofH1
N (M) are independent of time, but depend only

on the topology of M . Moreover, using Theorem 22 and Theorem 26 of [18], the space
H1

N (M) is finite dimensional and its elements are analytic (resp. ultradifferentiable) in
space if M is analytic (resp. ultradifferentiable). Therefore, hγ = hγ (a) is independent
of time and belongs to the LSL–FdB ultradifferentiable class. On the other hand from
uniqueness and linearity of Hodge decompositions (41) and (49), and using (48), we
obtain

φγ =
∑
σ≥0

φ(σ)t
σ , �γ =

∑
σ≥0

�(σ)t
σ , hγ = h(0), and h(σ ) = 0, ∀σ > 0.

Then, Hodge decomposition (41) becomes

γ
�

(σ) = dφ(σ) + d∗�(σ) + h0δσ0, (50)

where we set h0 := h(0). It is straightforward to solve the Hodge decomposition (50)
at the order σ = 0. Since φ(0) satisfies �φ(0) = 0 on M , with the boundary conditions
ndφ(0) = nφ(0) = 0 on ∂M , we obtain φ(0) = 0 (up to smooth Neumann fields
κ(0) ∈ H0

N (M)). Since �(0) satisfies ��(0) = 0 on M , with the boundary conditions
n�(0) = nd�(0) = 0 on ∂M , we obtain �(0) = 0 (up to smooth Neumann fields
K(0) ∈ H2

N (M)). Therefore, we obtain

γ
�

(0) = h0. (51)

Since h0 ∈ H1
N (M), the harmonic field h0 belongs to the (finite dimensional) kernel

of the Laplace–De-Rham operator with homogeneous normal boundary conditions, i.e.,
�h0 = 0 on M , and nh0 = 0 on ∂M . It is also straightforward to solve the Hodge
decomposition (50) at the order σ = 1. Indeed, from (36) we obtain d(γ

�

(1) − v
�
0) = 0,

which together with decomposition (50), imply that there exists a 0-form f such that
d f = γ

�

(1) − v
�
0. Then, from (37) we obtain d∗γ �

(1) = 0, which together with the initial

incompressibility condition d∗v�
0 = 0, imply � f = d∗(γ �

(1) − v
�
0) = 0. Adding the

consistent homogeneous Neumann boundary conditions nd f = iνγ
�

(1) − iνv
�
0 = 0, and

n f = 0 on ∂M , to the homogeneous Laplace–De-Rham (also called Laplace–Beltrami
for 0-form) equation � f = 0 on M , we obtain f = 0 in M (up to smooth Neumann
fields κ ∈ H0

N (M)) i.e.,

γ
�

(1) = v
�
0. (52)

Differential forms (51)–(52) initiate the recursive algorithm for computing the time-
Taylor coefficients {γ �

(σ)}σ>0 of the 1-form γ
�
t .
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Remark 7. In the case of a compact Riemannian ∂-manifold, particular topologies of M
lead to H1

N = {∅}. Some examples are given in Theorem 2.6.4 of [50]. In particular,
if M is compact and simply-connected (i.e., path-connected and every path between
two points can be continuously transformed, staying on M , into any other such path
while preserving the two endpoints in question; in other words M is connected and
every loop in M is contractible to a point), then H1(M, d) = {∅} (hence H1

N = {∅})
and b1(M) = 0. In the case of a compact Riemannian without boundary, the celebrated
result of Bochner [9] says that the first cohomology H1(M, d) (and thusH1

N ) is empty if
the Ricci tensor of (M, g) is positive definite. More details can be found in Section 2.6
of [50] and references therein.

2.2. Convergence analysis. Here, we prove that the time-series expansion of the 1-form
γ

�
t , which is defined by

γ �(t, a) :=
∑
σ≥0

(
γi(σ )(a)dai

)
tσ , (53)

are time-ultradifferentiable in the log-superlinear Faà di Bruno class C(M)(] − T,

T [; Hs(M)) (seeDefinition1).As aby-product,weobtain the convergenceof time-series
expansions (17) and (53), which were explicitly constructed in Sect. 2.1. To simplify
the notation, the norm ‖ · ‖Hsk (M) will be denoted by ‖ · ‖Hs (M) and sometimes even

shorter by ‖ · ‖Hs . The 1-form γ
�
t belongs to the space C(M)(]− T, T [; Hs(M)) if, and

only if, there exists a real positive number ρ such that the set

{‖∂σ
t γ

�
t ‖Hs

ρσ σ !Mσ

, σ ∈ N, t ∈] − T, T [
}
, (54)

is bounded. This will be the case if the generatrice function t �→ ζ(t), defined by

ζ(t) =
∑
σ>0

‖γ �

(σ)‖Hsρ−σ M−1
σ tσ , (55)

is uniformly bounded on ] − T, T [. In the sum (55) we have excluded the term of
order σ = 0, i.e., γ

�

(0) = h0, because the harmonic field h0 belongs the LSL–FdB
ultradifferentiable class (see Sect. 2.1.5); hence bounded in any Sobolev norm. To derive
a priori estimates we will often use

Lemma 1. Let f be a LSL–FdB ultradifferentiable 0-form on M. Then, there exist pos-
itive constants C and R, which depend on f , (M, g), s, M0, and CD, such that

‖∂α f ‖Hs ≤ CR−|α||α|!M|α|, |α| ≥ 0. (56)

Proof. Since f is a LSL–FdB ultradifferentiable function on M , for all compact set K
in M , there exist constants C f,K ,g and R f,K ,g such that for all a ∈ K , we have

|∂α f (a)| ≤ C f,K ,g R
−|α|
f,K ,gM|α|, |α| ≥ 0. (57)

Using Stirling formula, we can show that there exists a constant Cs (∼ √
1 + s exp

(2s(1 + s))) such that (|α|+ |β|)! ≤ Cs |α|!2|α|, for |β| ≤ s. Moreover using the property
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i) of Definition 1, we obtain the bound M|β| ≤ Ms ≤ CCD,s,M0 := Cs(s−1)/2
D M0.

Therefore, using the log-superlinearity property i i) of Definition 1 and (57), we obtain

‖∂α f ‖Hs ≤
∑

0≤|β|≤s
‖∂α+β f ‖L2 ≤

∑
0≤|β|≤s

C f,M,g R
−|α+β|
f,M,g |α + β|!M|α+β|

≤
∑

0≤|β|≤s
C f,M,g R

−|α|−|β|
f,M,g (|α| + |β|)!M0M|α|M|β|

≤
∑

0≤|β|≤s
CsC f,M,gCCD,s,M0M0 max(R−sf,M,g, 1)

(
R f,M,g

2

)−|α|
|α|!M|α|

≤ C f,M,g,s,CD,M0R−|α|f,M,g|α|!M|α|.
��

We will also use frequently some basic estimates summarized in the following

Lemma 2. Let s > d/2 + 1. The mappings (·)� : 1(M) → X(M) and (·)� : X(M) →
1(M) are continuous mappings in Hs−1(M) and we have

‖γ �

(σ)‖Hs−1 ≤ C�‖γ(σ)‖Hs−1 , and ‖γ(σ)‖Hs−1 ≤ C�‖γ �

(σ)‖Hs−1 , (58)

where C� = ‖g‖Hs−1 and C� = ‖g−1‖Hs−1 .

Proof. The proof is obvious since Hs−1(M) is an algebra for s > d/2 + 1. ��
We now derive the a priori estimates. For this, we will use elliptic regularity estimates

in Sobolev spaces for the non-homogeneous Neumann boundary value problem. Indeed,
following the proof of Lemma 3.4.7 of [50] and using Lemma 3.3.2 of [50] (see also
Corollary 3.4.8 of [50]), we have the elliptic estimates

‖�(σ)‖Hs+2(M) ≤ C1
N‖dγ

�

(σ)‖Hs (M), (59)

for the non-homogeneous Neumann problem (43), and,

‖φ(σ)‖Hs+2(M) ≤ C2
N

(
‖d∗γ �

(σ)‖Hs (M) + ‖nγ
�

(σ)‖Hs+1/2(∂M)

)
, (60)

for the non-homogeneous Neumann problem (42). Using Hodge decomposition (50),
continuous mappings (91) of “Appendix A”, and elliptic estimates (59)–(60), we obtain,
for σ > 0,

‖γ �

(σ)‖Hs (M) ≤ ‖dφ(σ)‖Hs (M) + ‖d∗�(σ)‖Hs (M)

≤ Ccm
(‖φ(σ)‖Hs+1(M) + ‖�(σ)‖Hs+1(M)

)
≤ CN

(
‖dγ

�

(σ)‖Hs−1(M) + ‖d∗γ �

(σ)‖Hs−1(M) + ‖nγ
�

(σ)‖Hs−1/2(∂M)

)
,

(61)

where CN := Ccm max{C1
N,C2

N} and Ccm is the constant of the continuous mappings
(91). Multiplying (61) by ρ−σ M−1

σ tσ and summing over index σ , we obtain

ζ(t) ≤ CN

(∑
σ>0

‖dγ
�

(σ)‖Hs−1(M)ρ
−σ M−1

σ tσ
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+
∑
σ>0

‖d∗γ �

(σ)‖Hs−1(M)ρ
−σ M−1

σ tσ +
∑
σ>0

‖nγ
�

(σ)‖Hs−1/2(∂M)ρ
−σ M−1

σ tσ
)

.

(62)

We then must estimate the right-hand side of (62). Before this, we must write precisely
the regularity assumptions for the manifold M and its boundary ∂M . Since (M, g) and
its boundary ∂M are LSL–FdB ultradifferentiable manifolds then, using Lemma 1, there
exist positive real constants Cg , CJ, Cν , Rg , RJ, and Rν such that, for 0 ≤ s < ∞, and
|α| ≥ 0,

‖∂αg‖Hs (M) ≤ CgR
−|α|
g |α|!M|α|, ‖∂αJ‖Hs (M) ≤ CJR

−|α|
J |α|!M|α|,

‖∂αν‖Hs (∂M) ≤ CνR
−|α|
ν |α|!M|α|, (63)

where the sequence {Mσ }σ≥0 satisfies Definition 1. An estimate of the right-hand side
of (62) is given by

Proposition 1. Let s > d/2+1. Then there exist positive real constantsCd = Cd(Ca,Cg,

C�, M0, d),Cd∗ = Cd∗(Ca,CJ,C�, M0, d, KJ−1)andCn = Cn(Ca,Cν,C�,Cg,C∂ , M0,

d, KJ−1) such that

∑
σ>0

‖dγ
�

(σ)‖Hs−1(M)ρ
−σ M−1

σ tσ

≤ ‖v�
0‖Hsρ−1M−1

1 t + Cd

{
ζ 2(t) + ζ(t)(1 + ζ(t))

(
1− K−1g ζ(t)

)−1}
, (64)

∑
σ>0

‖d∗γ �

(σ)‖Hs−1(M)ρ
−σ M−1

σ tσ

≤ Cd∗
{(
1− K−1J ζ(t)

)−1 [1 + ζ(t) + ζ 2(t) + ζ 3(t)
]
+ ζ 2(t) + ζ 3(t)

}
, (65)

and

∑
σ>0

‖nγ
�

(σ)‖Hs−1/2(∂M)ρ
−σ M−1

σ tσ

≤ Cnζ(t)
(
1−K−1g ζ(t)

)−1(1−K−1ν ζ(t)
)−1 {1+(1−K−1g ζ(t)

)
+
(
1− K−1ν ζ(t)

)}
,

(66)

where

K−1g :=CaC�/Rg, K−1J :=CaC�/RJ, K−1ν :=CaC�C∂/Rν, and KJ−1 :=‖J−1‖Hs .

(67)

Proof. We start with the proof of (64). Using estimate (90) of “Appendix A”, Lemma 2,
and the superlinearity property (9), we obtain from (36),
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‖dγ
�

(σ)‖Hs−1ρ−σ M−1
σ ≤ ‖v�

0‖Hsρ−1M−1
1

+CaC�

∑
0<m<σ

(‖γ �

(m)‖Hs

ρmMm

∑
i, j

‖G�

i j (σ−m)‖Hs

ρσ−mMσ−m
+
‖γ �

(m)‖Hs

ρmMm

‖γ �

(σ−m)‖Hs

ρσ−mMσ−m

)

+C2
aC

2
�

∑
m+n+l=σ
m,n,l>0

∑
i, j

‖γ �

(m)‖Hs

ρmMm

‖γ �

(l)‖Hs

ρl Ml

‖G�

i j (n)‖Hs

ρnMn
. (68)

We have to control ‖G�

i j (σ )‖Hs . Using (90), Lemma 1 and 2, and (63), we obtain from
(39),

‖Gi j (σ )‖Hs ≤ Ca

∑
1≤|β|≤σ

‖∂βgi j‖HsC |β|a

σ∑
q=1

∑
Pq (σ,β)

q∏
j=1

‖γ 1
(�r )
‖k1rHs

k1r !
. . .
‖γ d

(�r )
‖kdrHs

kdr !

≤ CaCgρ
σ

∑
1≤|β|≤σ

(
CaC�

Rg

)|β|
|β|!

σ∑
q=1

∑
Pq (σ,β)

M|β|M |k1|
�1

. . .

M
|kq |
�q

q∏
r=1

(‖γ �

(�r )
‖Hs

ρlr M�r

)|kr |
1

kr !

≤ CaCg
ρσ

σ ! Mσ σ !
∑

1≤|β|≤σ

(
CaC�

Rg

)|β|
|β|!

σ∑
q=1

∑
Pq (σ,β)

M|β|M |k1|
�1

. . . M
|kq |
�q

Mσ

q∏
r=1

(
∂�r ζ(0)

)|kr |
kr !(�r !)|kr | . (69)

It is now convenient to introduce the following notation,

α1 := �1, . . . , α|k1| := �1, α|k1|+1 := �2, . . . , α|k1|+|k2| := �2, . . . ,

α|k1|+···+|kq | := �q ,

in terms of which we have

M |k1|
�1

. . . M
|kq |
�q

= Mα1 . . . Mα|k1|Mα|k1|+1 . . . Mα|k1|+|k2 | . . . Mα|k1|+···+|kq |
= Mα1 . . . Mα|β| .

Using the FdB-stability property (9), we obtain

M|β|Mα1 . . . Mα|β|
Mσ

≤ Mα1+···+α|β|
Mσ

≤ 1,
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and (69) becomes

‖Gi j (σ )‖Hs ≤ CaCg
ρσ

σ ! Mσ σ !
∑

1≤|β|≤σ

(
∂ |β|K)

(0, . . . , 0)
σ∑

q=1

∑
Pq (σ,β)

M|β|M |k1|
�1

. . . M
|kq |
�q

Mσ

q∏
r=1

(
∂�r ζ(0)

)|kr |
kr !(�r !)|kr | ,

=: CaCg
ρσ

σ ! Mσ f (σ )(0), (70)

where the map K : Rd → R is defined by

K(x1, . . . , xd) =
d∏

i=1

(
1− K−1g xi

)−1/d
, K−1g := CaC�/Rg, with

(∂βK)(0, . . . , 0) = |β|!K−|β|g .

Using the Faà di Bruno formula, and (70), we obtain

∑
σ>0

‖Gi j (σ )‖Hsρ−σ M−1
σ tσ

≤ CaCg

∑
σ>0

f (σ )(0)
tσ

σ ! ≤ CaCgK (ζ(t), . . . , ζ(t)) ≤ CaCg

(
1− K−1g ζ(t)

)−1
.

(71)

Using (68) and (71) we obtain (64) with Cd := d2C2
aCgC�M0 max{1, CaC�M0}. We

now deal with (65). Using (90), Lemma 2, and the superlinearity property (9), we obtain
from (37),

‖d∗γ �

(σ)‖Hs−1ρ−σ M−1
σ

≤ Ca‖J−1‖Hs−1
‖J(σ )‖Hs−1

ρσ Mσ

+C2
aC�‖J−1‖Hs−1

∑
0<m<σ

‖J(m)‖Hs−1
ρmMm

‖γ �

(σ−m)‖Hs

ρσ−mMσ−m

+CaC
2
�

∑
0<m<σ

‖γ �

(m)‖Hs

ρmMm

‖γ �

(σ−m)‖Hs

ρσ−mMσ−m

+C2
aC

3
�

∑
m+n+l=σ
m,n,l>0

‖γ �

(m)‖Hs

ρmMm

‖γ �

(n)‖Hs

ρnMn

‖γ �

(l)‖Hs

ρl Ml

+C3
aC

2
� ‖J−1‖Hs−1

∑
m+n+l=σ
m,n,l>0

‖γ �

(m)‖Hs

ρmMm

‖γ �

(n)‖Hs

ρnMn

‖J(l)‖Hs−1
ρl Ml
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+C4
aC

3
� ‖J−1‖Hs−1

∑
m+n+l+p=σ
m,n,l,p>0

‖γ �

(m)‖Hs

ρmMm

‖γ �

(n)‖Hs

ρnMn

‖γ �

(l)‖Hs

ρl Ml

‖J(p)‖Hs−1

ρ pMp
. (72)

In the similar way we have obtained bound (71) for {Gi j (σ )}σ>0, we also obtain for
{J(σ )}σ>0 and {J(σ )}σ>0 the following bounds,

∑
σ>0

‖J(σ )‖Hs−1ρ−σ M−1
σ tσ ,

∑
σ>0

‖J(σ )‖Hs−1ρ−σ M−1
σ tσ

≤ CaCJ

(
1− K−1J ζ(t)

)−1
, (73)

with K−1J := CaC�/RJ. Using (72) and (73), we obtain (65) with

Cd∗ := max{CJKJ−1C
2
a , CJKJ−1C

3
aC�M0, CaC

2
� M0,C

2
aC

3
� M

2
0 , CJKJ−1C

4
aC

2
� M

2
0 ,

CJKJ−1C
5
aC

3
� M

3
0 }.

It remains to show bound (66). Using (90), Lemma 2, the superlinearity property
(9), and the continuous surjection of the normal trace operator n from Hsk(M) to
Hs−1/2k(∂M) with continuity constant C∂ , (see, e.g., Theorem 1.3.7 of [50]), we
obtain from (38),

‖nγ
�

(σ)‖Hs−1/2(∂M)ρ
−σ M−1

σ

≤ C2
∂C

2
aCνC�

∑
0<m<σ

∑
i, j

‖γ �

(m)‖Hs

ρmMm

‖Gi j (σ−m)‖Hs

ρσ−mMσ−m

+C2
∂C

2
aCgC�

∑
0<m<σ

∑
k

‖γ �

(m)‖Hs

ρmMm

‖νk(σ−m)‖Hs−1/2(∂M)

ρσ−mMσ−m

+C2
∂C

2
aC�

∑
m+n+l=σ
m,n,l>0

∑
i, j,k

‖γ �

(m)‖Hs

ρmMm

‖Gi j (n)‖Hs

ρnMn

‖νk(l)‖Hs−1/2(∂M)

ρl Ml
. (74)

Following the proof of bound (71), and using the continuous surjection of the normal
trace operator n from Hsk(M) to Hs−1/2k(∂M), we obtain

∑
σ>0

‖ν(σ)‖Hs−1/2(∂M)ρ
−σ M−1

σ tσ ≤ CaCν

(
1− K−1ν ζ(t)

)−1
, (75)

with K−1ν := CaC�C∂/Rν . Finally from (74) and (75), we obtain (66) with

Cn := dCgCνC�C
2
∂C

3
aM0 max{d, 1, CaM0d

2},

which completes the proof. ��
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Combining (62) and estimates of Proposition 1, we obtain the following algebraic in-
equality,

(
1− K−1∗ ζ(t)

)2 (
C0t − C−1N ζ(t) + C∗

(
ζ 2(t) + ζ 3(t)

))

+C∗
(
1− K−1∗ ζ(t)

) (
1 + ζ(t) + ζ 2(t) + ζ 3(t)

)
+ C∗ζ(t) ≥ 0, (76)

where

C0 := ‖v�
0‖Hs (M)ρ

−1M−1
1 , C∗ := 4max {Cd , Cd∗ , Cn} , and

K∗ := min
{
Kg, Kν, KJ

}
.

A sufficient condition for inequality (76) to hold is to have both

K∗ ≥ ζ(t), and Q(ζ ) := λ(t)− P(ζ )

:= λ(t)− C−1N ζ(t) + C∗ζ 2(t) + C∗ζ 3(t) ≥ 0, (77)

where we have set λ(t) := (‖v�
0‖Hs/(ρM1)) t . Let λc be the value of λ for which the

discriminant of the cubic polynomial Q(ζ ) vanishes. Following [8], there exist two times
tc := λcρM1/‖v�

0‖Hs and t∗ := P(K∗)ρM1/‖v�
0‖Hs , such that an upper bound for the

radius of convergence T of the generating function ζ is given by the smaller of t∗ and
tc. Then, there exists a bounded positive constant CK∗,λc , depending on K∗ and λc,
such that, ζ(t) ≤ CK∗,λc ≤ K∗, for t ∈] − T, T [, with T = min{t∗, tc}. The sufficient
condition (77) is then satisfied, which ends the proof.

2.3. Extension to arbitrary dimension. Here, we extend the analysis of Sects. 2.1 and
2.2 to the general d-dimensional case. We observe that recursion relations (36) and (38)
hold for any finite dimension d. Then, estimates (64) and (66) of Proposition 1 are still
valid in the d-dimensional case. The only recursion relation to generalize is (37), which
will lead to a new estimate for (65). For this, we use the Plemelj-Smithies recursion
formula (see, e.g., § 7 of Chapter 1 in [27]) to expand the determinant

det

(
I +

∂γ̂ i

∂a j

)
,

as follows,

det

(
I +

∂γ̂ i

∂a j

)
=

d∑
k=0

1

k!�k

(
∂γ̂ i

∂a j

)
. (78)

Coefficients �k are polynomials of {∂γ̂ i/∂a j }i, j∈{1,...,d} and are given by the following
recursion formula

�k

(
∂γ̂ i

∂a j

)
=

k∑
l=1

(−1)l+1 (k − 1)!
(k − l)! Tr

[(
∂γ̂ i

∂a j

)l ]
�k−l

(
∂γ̂ i

∂a j

)
, (79)

with the starting coefficient �0 = 1. In particular we have

�1

(
∂γ̂ i

∂a j

)
= Tr

(
∂γ̂ i

∂a j

)
, and �d

(
∂γ̂ i

∂a j

)
= det

(
∂γ̂ i

∂a j

)
.
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We observe that the coefficient �k is a polynomial of degree k with respect to matrix
coefficients {∂γ̂ i/∂a j }i, j∈{1,...,d}. Then, expansion (78) can be rewritten as

det

(
I +

∂γ̂ i

∂a j

)
= 1 + Tr

(
∂γ̂ i

∂a j

)
+Pd

({
∂γ̂ i

∂a j

}
i, j

)
, (80)

wherePd denotes a polynomial of degree less than or equal to d, and of degree greater
than or equal to 2. Coefficients of polynomial Pd , which are purely numerical, can be
found explicitly because Pd is obviously given by

Pd

({
∂γ̂ i

∂a j

}
i, j

)
=

d∑
k=2

1

k!�k

(
∂γ̂ i

∂a j

)
.

Using rescaling (35) and relation (28), we obtain from (24) and (80),
∑
σ>0

d∗γ �

(σ)t
σ = J−1

∑
σ>0

J(σ )t
σ + J−1

∑
σ1, σ2>0

J(σ1)∂iγ
i
(σ2)

tσ1+σ2

+ Pd

({
∂ jγ

i
(σ )t

σ
}
i, j, σ>0

)
+ J−1Pd

({
∂ jγ

i
(σ )t

σ
}
i, j, σ>0

)∑
σ>0

J(σ )t
σ .

(81)

Equation (81) leads to the normalized recursion relations

d∗γ �

(σ) = J−1J(σ ) + J−1
∑

0<m<σ

J(σ )∂iγ
i
(σ−m)

+
d∑

k=2

∑
σ1+...+σk=σ
σ1,...,σk>0

Pk

({
∂ jγ

i
(σ1)

, . . . , ∂ jγ
i
(σk)

}
i, j

)

+ J−1
d∑

k=2

∑
σ1+···+σk+1=σ
σ1,...,σk+1>0

J(σk+1)Pk

({
∂ jγ

i
(σ1)

, · · · , ∂ jγ
i
(σk )

}
i, j

)
, (82)

where polynomials Pk , homogeneous of degree k, have purely numerical coefficients,
which can be determined from the Plemelj-Smithies formulas (79) or (86), and also from
formula (89). In the same way as the one yielding estimate (65), we obtain from (82),

∑
σ>0

‖d∗γ �

(σ)‖Hs−1(M)ρ
−σ M−1

σ tσ ≤ Cd∗
{(

1− K−1J ζ(t)
)−1 d∑

k=0
ζ k(t) +

d∑
k=2

ζ k(t)

}
.

(83)

Putting together estimates (62), (64), (66) and (83), we obtain the following inequality,

(
1− K−1∗ ζ(t)

)2 (
λ(t)− C−1N ζ(t) + C∗

d∑
k=2

ζ k(t)

)
+ C∗

(
1− K−1∗ ζ(t)

)

d∑
k=0

ζ k(t) + C∗ζ(t) ≥ 0. (84)
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Once again, a sufficient condition for inequality (84) to hold is to have both

K∗ ≥ ζ(t), and Q(ζ ) := λ(t)− C−1N ζ(t) + C∗
d∑

k=2
ζ k(t) ≥ 0. (85)

Finally, there still exists a time T > 0 such that constraints (85) are satisfied simultane-
ously. This completes the proof.

Remark 8. Coefficients �k can be written with two (at least) differents explicit formulas.
The first one is the Plemelj-Smithies formula (see, e.g., Theorem 7.2 of Chapter I in
[27]) which is given by

�k

(
∂γ̂ i

∂a j

)
= det

⎛
⎜⎜⎜⎜⎝

τ1 k − 1 0 0 . . . 0 0
τ2 τ1 k − 2 0 . . . 0 0
...

...
...

...
...

...
...

τk−1 τk−2 τk−3 τk−4 . . . τ1 1
τk τk−1 τk−2 τk−3 . . . τ2 τ1

⎞
⎟⎟⎟⎟⎠ ,

where τ� = Tr

[(
∂γ̂ i

∂a j

)� ]
. (86)

The second explicit formula uses the Faà di Bruno formula and a well-known expression
for the determinant. This expression involves only the trace of positive integer power of
the Jacobianmatrix (∂ j γ̂

i )i, j . Indeed, using Lidskii’s theorem and the product expansion
for the determinant, we can show, for ε small enough, the following formula (see, e.g.,
Theorem 3.3 of Chapter I in [27]),

det

(
I + ε

∂γ̂ i

∂a j

)
= exp

( ∞∑
n=1

(−1)n+1
n

Tr

[(
∂γ̂ i

∂a j

)n ]
εn

)
=: exp( f (ε)). (87)

We next use the Faà di Bruno formula to obtain a series expansion in power of ε for the
composition of functions (exp ◦ f )(ε) in (87). We then obtain

det

(
I + ε

∂γ̂ i

∂a j

)
=

∑
k≥0

�k
εk

k! , (88)

where,

�k = k!
k∑

n=1

(
dn

dxn
exp

)
(0)

∑
p(k,n)

k∏
�=1

1

λ�!(�!)λ�

(
d�

dε�
f

)λ�

(0)

= k!
k∑

n=1
(−1)n+k

∑
p(k,n)

k∏
�=1

1

�λ�λ�!Tr
[(

∂γ̂ i

∂a j

)� ]λ�

. (89)

In (89), the set p(k, n) is defined by

p(k, n) =
{
(λ1, . . . , λk) | λ� ∈ N

∗,
k∑

�=1
λ� = n,

k∑
�=1

�λ� = k

}
.
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Since det(I + ε∂ j γ̂
i ) is a polynomial of degree at most d with respect to the variable ε,

formulas (87) and (88) hold for all ε ∈ C. Truncating expansion (88) at the order d, and
then taking ε = 1, we obtain the desired result. Of course formulas (89) and (86) give
the same value for �k .

3. Conclusion

In this paper we have obtained a relatively simple and constructive proof for time ultra-
differentiability of the incompressible Euler geodesic flow on a compact d-dimensional
Riemaniann manifold with boundary. This proof makes use of a new Lagrangian formu-
lation of the incompressible Euler equations on d-dimensional manifold [7], which is a
generalization of the Cauchy invariants equation in R

3 [8,13]. This Lagrangian formu-
lation, together with the incompressibility condition for the Jacobian of the Lagrangian
map, and the invariance of the boundary under the Lagrangian flow allow us to derive
new recursion relations among time-Taylor coefficients of the time-series expansion of
a dual 1-form γ

�
t associated with the geodesic flow.

Such proof could be also usefull to construct high-order semi-Lagrangianmethods for
integrating numerically the incompressible Euler equations on amanifold with very high
accuracy, in the spirit of [47]. Indeed, a crucial point in semi-Lagrangian schemes is the
construction of a Lagrangian-map with high accuracy. Recursion relations obtained here
offer this possiblity, and not only give some estimates for successive time derivatives of
the Lagrangian flow. Of course nonlocality of the problem (due to the pressure function)
reappears in the resolution of some elliptic problems, which here come from the Hodge
decomposition of time-Taylor coefficients of the 1-form γ

�
t . Nevertheless there exist

several numerical methods (finite element methods, discontinuous Galerkin methods,
pseudo-spectral methods, domain decomposition methods,...) to solve efficiently these
elliptic problems formulated in terms of PDEs rather than in terms of singular integral
operators.

For instance, such ideas could be used to solve numerically a challenging problem in
2D turbulence, which is the following: what is the features at large scales of the energy
inverse cascade in the infinite 2D Euclidean space or in presence of a very large scale
friction? Let us remind that in a bounded 2D domain the energy is transferred towards
large scales. If there is no friction mechanism removing energy at large scales, then,
upon reaching the largest but finite scale of the bounded domain, the inverse cascade
will develop large-scale coherent structures and, eventually, a stationary state with no
cascades. To mimic an infinite 2D Euclidean space, which could be tractable from a
numerical point of view, Falkovich and Gawedzki [21] use an hyperbolic plane which is
an infinite surface of constant negative curvature. Such numerical studies could complete
the analytical investigations performed in [21].
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A. Differential Geometry Notation

In this appendix, we recall differential geometry notation, which follow mainly the stan-
dard notation of classical monographs. To keep this presentation as short as possible we
will not always give the definition of these differential geometry tools. For a precise def-
inition of tools left undefined, we refer the reader to the following classical monographs
of differential geometry on manifolds [1,15,18,22,50,54]. We also refer the reader to
Appendix “Differential geometry in a nutshell” of [7]. Indeed this very short overview
of differential geometry tools, used here, can serve as a reminder for the reader.

Consider a LSL–FdB ultradifferentiable compact Riemannian ∂-manifold of dimen-
sion d with boundary ∂M . The set of tangent vectors to M at a ∈ M forms a vector
space T Ma , which is called the tangent space to M at a. The union of the tangent spaces
to M at the various points of M , i.e., T M := ∪a∈MT Ma , is called the tangent bundle of
M . A vector field on M is a (cross-)section of T M . Let us recall that a (cross-)section
of a vector bundle assigns to each base point a ∈ M a vector in the fiber π−1(a) over
a and the addition and scalar multiplication of sections take place within each fiber.
Here, the mapping π : T M → M , which takes a tangent vector X to the point a ∈ M
at which the vector is tangent to M (i.e., X ∈ T Ma), is called the natural projection.
The inverse image of a point a ∈ M under the natural projection, i.e., π−1(a), is the
tangent space T Ma . This space is called the fiber of the tangent bundle over the point
a. The space �(T M) of all smooth sections of T M is noted X(M) := �(T M) and
describes all smooth vector fields on M . The dual of the tangent bundle, noted T ∗M ,
can be constructed through linear forms, called 1-forms or cotangent vectors, acting on
vectors of the tangent bundle T M . The cotangent space toM at a is noted T ∗Ma , and the
cotangent bundle is the union of the cotangent spaces to the manifold M at all its points,
that is T ∗M := ∪a∈MT ∗Ma . The space of all smooth sections 1(M) := �(T ∗M)

is called the space of differential 1-forms on M . The space of 0-forms is the space of
smooth functions on M and is noted 0(M).

TheRiemannianmetric is given by the infinitesimal line element ds2,which is defined
by the metric tensor g: ds2 = g = gi j dai da j = gi j (a)dai ⊗ da j . The tensor g endows
each tangent vector space T Ma with an inner or scalar product, (·, ·)g called alsoRieman-
nian metric and defined as: ∀a ∈ M , ∀X, Y ∈ T Ma , (X,Y )g = gi j (a)Xi (a)Y j (a). The
components of g are LSL–FdB ultradifferentiable functions. Therefore, using the inner
product (·, ·)g , we get an isomorphism between the tangent bundle T M and the cotan-
gent bundle T ∗M . In particular, it induces an isomorphism of spaces of sections, which
is called the raising operator (·)� : 1(M) → X(M). It is defined by: ∀ω ∈ 1(M),
ω� = (ωi dai )� = (ω�)i∂/∂ai = ωi∂/∂ai , where contravariant components are given
by (ω�)i = ωi = gi jω j . The inverse of the raising operator, named the lowering operator
(·)� : X(M) → 1(M), is defined by: ∀X ∈ X(M), X � = (Xi∂/∂ai )� = (X �)i dai =
Xidai , where covariant components are given by (X �)i = Xi = gi j X j . Of course we

have gikgk j = δ
j
i where δ

j
i is the constant diagonal metric with unity on the diagonal.

The space of all anti-symmetric k-linear maps ω|a : T Ma × · · · × T Ma → R at
the point a ∈ M is noted �k(TaM). Then the exterior k-form bundle is defined as
�k(T M) = ∪a∈M�k(TaM). The space all smooth sections k(M) := �(�k(T M)) is
called the space of differential k-forms on M . The Riemannian ∂-manifold is endowed
with a metric volume d-form μ = √|g|da1 ∧ . . . ∧ dad ≡ √|g|da, where √|g| =√
det(gi j ).We continue by fixing the notation of standard operators acting on differential

forms, the properties of which can be found in [1,15,18,50,54]. The operator iX :
k(M)→ k−1(M) denotes the interior product of a k-form with the vector field X ∈
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X(M). The Riemann-Levi-Civita connection or the covariant derivative on M is noted∇
and is an operator fromk(M) tok+1(M). The exterior derivative (resp. coderivative),
denoted d (resp. d∗), is an operator from k(M) to k+1(M) (resp. k−1(M)). In some
textbooks the coderivative d∗ is denoted by δ, but we prefer to avoid this notation for not
be confusedwithKronecker symbol or diagonalmetric. The Laplace–De-Rham operator
� is defined by � := dd∗ + d∗d. The Hodge dual operator is defined as the unique
isomorphism � : k(M)→ d−k(M), which satisfies ω∧ �γ = ((ω, γ ))g μ, ∀ω, γ ∈
k(M), with ((ω, γ ))g = ωi1...ikγ

i1...ik/k! = ωi1...ikγ j1... jk g
i1 j1 . . . gik jk/k!, and where

the wedge symbol ∧ denotes the exterior product. Using the metric ((·, ·))g for k-form
on M , we can equipped the space of k-form field k(M) with the L2 scalar product
〈〈·, ·〉〉L2(M) =

∫
M ((·, ·))g μ and the induced norm ‖ · ‖L2k (M) :=

√〈〈·, ·〉〉L2(M). Let
ϕ : M → M be a diffeomorphism between compact ∂-manifolds. Then, the operator
ϕ∗ : k(M)→ k(M) denotes the pullback transformation associated with ϕ.

To study differential forms on the boundary of M , we consider the inclusion j :
∂M → M and its pullback j∗ : k(M)→ k(∂M). The boundarymanifold ∂M carries
a metric j∗g, which is canonically induced from the metric g on M . The corresponding
Riemannian volume formμ∂ is computed asμ∂ = iνμ|∂M , where the vector field ν is the
outward pointing unit normal to the boundary ∂M . The restriction ω|∂M ∈ k(M)|∂M :=
�(�k(T M)|∂M ) is called the boundary value of ω ∈ k(M), and in particular one has
(ω ∧ γ )|∂M = ω|∂M ∧ γ|∂M and �(ω|∂M ) = (�ω)|∂M . Every vector field X ∈ �(T M|∂M )

can be decomposed into its tangential and normal parts as X = X‖ + X⊥, where X⊥ =
(X, ν)g ν and (X‖, ν)g = 0. The tangent bundle T ∂M should not be confused with the
bundle T M|∂M . The latter is the restriction of the full tangent bundle T M to ∂M , and
contains T ∂M as a sub-bundle of co-dimension 1. Nevertheless there exists a smooth
map, the tangent map T j : T ∂M → T M|∂M , which induces a natural inclusion from
�(T ∂M) of the vector field on the boundary manifold into the space �(T M|∂M ) of
vectors field on M sitting over the boundary. By means of the decomposition of a vector
field X ∈ �(T M|∂M ) into its tangential and normal parts X = X‖ + X⊥, we denote
the tangential and normal trace operators respectively by t and n, which are defined as
follows: for k ≥ 1,

∀ X1, . . . , Xk ∈ �(T M|∂M ), ω ∈ k(M),

tω(X1, . . . , Xk) = ω(X‖1, . . . , X
‖
k ) and nω = ω|∂M − tω.

For k = 0, tω = ω and nω = 0. The component tω (resp. nω) is called the tangential
(resp. normal) component of ω ∈ k(M). The tangential component tω is uniquely
determinded by j∗ω, i.e., one has tω = j∗tω = j∗ω.We have the commutation relations
�(nω) = t(�ω), �(tω) = n(�ω), t(dω) = d(tω) and n(d∗ω) = d∗(nω). For more
details on how to handle differential forms on the boundary of M , we refer the reader to
Section 1 of Chapter 1 of [50].

The regularity in space of initial data, i.e., the regularity with respect to the La-
grangian spatial variables, is for convenience measured in Sobolev spaces. Of course
the proof can be extended, for instance, in Hölder spaces or ultradifferentiable spaces
(e.g., analytic functions). We refer the reader to [6,32,50] for an introduction to Sobolev
spacesWs,p�(F) of sections of a general Riemannian vector bundle F over a ∂-manifold
M , and especially for the particular case Ws,pk(M) of differential forms. We use the
notation Hsk(M) := Ws,2k(M). The classical Sobolev spaces theory in domains
of Rd (see, e.g., [2]) is covered by the general definition of spaces Ws,p�(F). To make
the bridge between the theory on section spaces and the classical one in R

d the main
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ingredient is the invariance of Ws,p-Sobolev topology under diffeomorphism between
compact manifolds. Therefore, a number of central results (continuous and compact
Sobolev embeddings, Sobolev inequalities,...) from theory in R

d can be generalized
to section spaces �(F). In particular ω ∈ Ws,pk(M) implies that coefficients of the
k-form ω are in Ws,p0(M). Since Hs0(M) is an algebra with respect to the point-
wise multiplication provided that s > d/2, there exists a constant Ca := Ca(s), which
depends on s such that, for s > d/2, and k, l ≥ 0,

‖ω ∧ γ ‖Hsk+l (M) ≤ Ca‖ω‖Hsk(M)‖γ ‖Hsl (M), ω ∈ Hsk(M), γ ∈ Hsl(M).

(90)

Let s, p, k be integers such that s ∈ N, 1 < p < ∞ and k ≥ 1. Since the differential
operators considered below can be described in terms of the induced covariant derivative
∇ on k(M), we then have the following continuous mappings,

d : Ws+1,pk(M) −→ Ws,pk+1(M),

d∗ : Ws+1,pk(M) −→ Ws,pk−1(M),

� : Ws+2,pk(M) −→ Ws,pk(M),

� : Ws,pk(M) −→ Ws,pd−k(M),

ϕ∗ : Ws,pk(M) −→ Ws,pk(M),

(91)

where ϕ : M → M is a diffeomorphism between compact ∂-manifolds and X is a
smooth vector field on M (e.g., X ∈ X(M) and is bounded or X is an element ofWs+1,p

sections of T M with s > d/p). More details can be found in the monograph [50].

B. Hodge Decomposition of Differential Forms on a Manifold

In this appendix, we present the Hodge decomposition theorem for k-forms on compact
∂-manifolds. We refer the reader to the monograph [50] for a proof of the following
Theorem 3, and especially to Sect. 2.4 of [50]. For a compact ∂-manifolds, Hodge
decomposition of differential forms in the spaces L2 and H1,was first given byFriedrichs
[23] and Morrey [45,46]. Its generalisation to differential forms of Sobolev class Ws,p,
with s ∈ N and 1 < p < ∞ was proven by Schwarz [50]. Before stating the Hodge
decomposition theorem, we need to introduce some spaces described by

Definition 2. Let M be a compact ∂-manifold. Let s, p, k be integers such that s ∈ N,
1 < p <∞, and k ≥ 1. We set the following spaces,

H1k
D(M) =

{
ω ∈ H1k(M) | tω = 0

}
,

H1k
N (M) =

{
ω ∈ H1k(M) | nω = 0

}
,

Hk(M) =
{
ω ∈ H1k(M) | dω = 0 and d∗ω = 0

}
, (space of harmonic fields),

Hk
N (M) = H1k

N (M) ∩Hk(M), (space of Neumann fields),

Hk
D(M) = H1k

D(M) ∩Hk(M), (space of Dirichlet fields),

Hk
ex(M) =

{
ω ∈ Hk(M) | ω = dγ

}
,

Ek(M) =
{
dω | ω ∈ H1k−1

D (M)
}
⊂ L2k(M),
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Ck(M) =
{
d∗γ | γ ∈ H1k+1

N (M)
}
⊂ L2k(M),

Ws,pEk(M) = Ws,pk(M) ∩ Ek(M),

Ws,pCk(M) = Ws,pk(M) ∩ Ck(M).

Using Definition 2 we have

Theorem 3 (Hodge decomposition, Schwarz [50]). On a compact ∂-manifold M, the
space Ws,pk(M), with k ≥ 0, s ∈ N, and 1 < p < ∞, can be orthogonally decom-
posed into

Ws,pk(M) = Ws,pEk(M)⊕Ws,pCk(M)⊕Hk
ex(M)⊕Hk

N (M). (92)

Proof. See Corollary 2.4.9 of [50]. ��
Remark 9. The space Ws,pk(M) admits other Hodge decompositions, which depend
on boundary conditions, among other criteria (see Section 2.4 of [50]). The orthogonal
decomposition (92) is the so-called normal Hodge decomposition. There exist other or-
thogonal decompositions such as the tangential or themixedHodge decompositions (see,
e.g., [3,26,50]). In Theorem 3, we choose the normal Hodge decomposition, because it
is well suited for the boundary data available in our problem.

C. Derivation of the Cauchy Invariants Equation from the Relabelling Symmetry
and a Variational Principle

In this appendix, from the relabelling symmetry, i.e., the invariance of the action under re-
labelling transformations, we obtain the Cauchy invariants equation on a d-dimensional
Riemannian manifold. This derivation was originally performed in [7], but with an im-
proper treatment of boundary terms.We give here the corrected version of this derivation,
which does not directly make use of Noether’s theorem, but is reminiscent of its proof.
Before stating the result, we give the formal definition of a relabelling transformation and
we establish a Green formula. Another proof of existence of Cauchy invariants equation,
rooted in differential geometry, is given by the particular application of Theorem 1 of
[7] to the Lie-advected vorticity 2-form ω := du�.

Definition 3 (Relabelling transformation) .
Let (M, g,∇, μ) be a Riemannian ∂-manifold. A relabelling transformation is a map

M $ a → γ (a) ∈ M such that

γ (a) = a + δa(a), δa ∈ g,

i.e., with,

∇iδa
i = 0 and (δa, ν)g = 0.

In other words the vector field δa is the infinitesimal generator of a group of volume-
preserving diffeomorphisms of M that leave the boundary ∂M invariant.

Lemma 3 (Green formula). Letμ∂ be the metric volume form on the boundary manifold
∂M. Let ν be the outward pointing unit normal to the boundary ∂M. Then we have, for
all f ∈ 0(M) and X ∈ X(M),∫

M
μ f∇i X

i = −
∫
M

μ iXd f +
∫

∂M
μ∂ f iνX

�. (93)
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Proof. Equation (93) is the same as the following Green formula,

〈〈d f, X �〉〉L2(M) = 〈〈 f, d∗X �〉〉L2(M) +
∫

∂M
t f ∧ �nX �. (94)

The proof of (94), which is based on Stokes’ theorem and the commutation relation
t(�ω) = �(nω), is given in Proposition 2.1.2 of [50]. Let us now retrieve (93) from (94).
Using the definition of the scalar product, 〈〈ω, γ 〉〉L2(M) :=

∫
M ω∧�γ, ∀ω, γ ∈ k(M),

and using the relations �X � = iXμ and d f ∧ iXμ = iXd f ∧ μ, we obtain

〈〈d f, X �〉〉L2(M) =
∫
M
d f ∧ iXμ =

∫
M

μ iXd f.

Using the relations �d∗X � = (d∗X �) � 1 = μd∗X � = −μ∇i X i , we obtain

〈〈 f, d∗X �〉〉L2(M) = −
∫
M

μ f∇i X
i .

The proof of (93) ends by using the relation t f ∧ �nX � = μ∂ f iνX �, which is proved
in Proposition 1.2.6 of [50]. ��
Theorem 4. (Cauchy invariants equation from the relabelling symmetry and variational
principle) Let ηt ∈ SDiff(M, μ) be the geodesic flow solving the incompressible Euler
equations. We set x := ηt , and v := η̇t := ∂tηt = u ◦ ηt , with v0 = η̇0 = u0. Then the
invariance of the action

A := 1

2

∫ T

0
dt 〈u(t), u(t)〉L2(M) =

1

2

∫ T

0
dt

∫
M

μ (u(t), u(t))g, (95)

under relabelling transformations ofDefinition3 implies the followingCauchy invariants
conservation law,

dvk ∧ dxk = ω0 := dv
�
0. (96)

Proof. The idea is first to compute the first-order variation of the action integral

A(η, M) = 1

2

∫ T

0
dt

∫
M

μ(a)gi j (ηt (a))∂tη
i
t (a)∂tη

j
t (a),

induced by the relabelling transformations of Definition 3. The variation of A(η, M) is
given by

δA(η, M)[δη] = 1

2
δ

∫ T

0
dt

∫
M

μ(a) gi j (ηt (a))∂tη
i
t (a)∂tη

j
t (a)

= 1

2

∫ T

0
dt

∫
M

μ(a) ∂l gi j (ηt (a))δηlt (a)∂tη
i
t (a)∂tη

j
t (a)

+
∫ T

0
dt

∫
M

μ(a) gi j (ηt (a))∂tδη
i
t (a)∂tη

j
t (a). (97)

The relabelling transformation of Definition 3 induces a change in the Lagrangian flow
ηt at time t , given by

δηt = ∂ηt

∂ai
δγ i = ∂ηt

∂ai
δai . (98)
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Substituting (98) in (97), and using the product rule, we obtain

δA(η, M)[δa]
=

∫ T

0

∫
M

μ(a)

{
1

2
∂l gi j (ηt (a))

∂ηlt (a)

∂am
∂tη

i
t (a)∂tη

j
t (a)δam

+ gi j (ηt (a))∂t

(
∂ηit (a)

∂an

)
∂tη

j
t (a)δan

}

=
∫ T

0

∫
M

μ(a)

{
1

2
∂l gi j (ηt (a))

∂ηlt (a)

∂am
∂tη

i
t (a)∂tη

j
t (a)δam

+ ∂t

(
gi j (ηt (a))

∂ηit (a)

∂an
∂tη

j
t (a)

)
δan − ∂t

(
gi j (ηt (a))∂tη

j
t (a)

) ∂ηit (a)

∂an
δan

}

=
∫ T

0

∫
M

μ(a)

{
1

2
∂l gi j (ηt (a))

∂ηlt (a)

∂am
∂tη

i
t (a)∂tη

j
t (a)δam

−∂kgi j (ηt (a))∂tη
k
t (a)∂tη

j
t (a)

∂ηit (a)

∂am
δam − gi j (ηt (a))∂2t η

j
t (a)

∂ηit (a)

∂am
δam

}

+
∫ T

0

∫
M

μ(a) ∂t

(
gi j (ηt (a))

∂ηit (a)

∂an
∂tη

j
t (a)

)
δan

= I1 + I2. (99)

First, we show that I1 = 0. From (99) and using the definition of the covariant derivative,
we obtain

I1 =
∫ T

0
dt

∫
M

μ(a)
∂η

j
t

∂am
δam

{
−gi j (ηt )

[
∂tu

i (t, ηt ) + uk(t, ηt )∂ku
i (t, ηt )

]

+
1

2
∂ j gik(ηt )u

i (t, ηt )u
k(t, ηt )− ∂kgi j (ηt )u

i (t, ηt )u
k(t, ηt )

}

= −
∫ T

0
dt

∫
M

μ(a)
∂η

j
t

∂am
δamgi j (ηt )

{
∂tu

i (t, ηt ) + uk(t, ηt )∂ku
i (t, ηt )

+
1

2
gim(t, ηt )(∂kglm(t, ηt ) + ∂l gkm(t, ηt )− ∂mglk(t, ηt ))u

k(t, ηt )u
l(t, ηt )

}

= −
∫ T

0
dt

∫
M

μ(a)
∂η

j
t

∂am
δamgi j (ηt )

{
∂tu

i (t, ηt ) + uk(t, ηt )∇ku
i (t, ηt )

}
.

Using the Euler equations, ∂tui + uk∇ku
i = −gik∂k p, the term I1 becomes

I1 =
∫ T

0
dt

∫
M

μ(a) δam
∂η

j
t

∂am
gi j (ηt )g

ik(ηt )∂k p(t, ηt )

=
∫ T

0
dt

∫
M

μ(a) δam
∂η

j
t

∂am
δkj ∂k p(t, ηt )

=
∫ T

0
dt

∫
M

μ(a) δam
∂ηkt

∂am
∂k p(t, ηt ) =

∫ T

0
dt

∫
M

μ(a) δam
∂p

∂am
.
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Now, we recall that ∇iδai = |g|−1/2∂i (√|g|δai ) = 0, and (δa, ν)g = 0. Therefore,
using Green formula (93), the term I1 becomes

I1 =
∫ T

0
dt

∫
M

μ(a) δai
∂p

∂ai
= −

∫ T

0
dt

∫
M

μ(a)∇iδa
i p

+
∫ T

0
dt

∫
∂M

μ∂ p (δa, ν)g = 0.

Finally, we deal with the term I2 defined in (99). For this, we use the property that
δa ∈ g, i.e., ∇iδai = 0, and (δa, ν)g = 0. Such a vector δa can be constructed from a
skew-symmetric 2-contravariant tensor π satisfying the following constraints,

π i j + π j i = 0 on M, gi jπ
ikν j = 0 ∀k on ∂M, and gi jπ

ik∇kν
j = 0 on ∂M.

(100)

Indeed, if we set

δai := ∇ jπ
i j = 1√|g|∂ j (

√|g|π i j ), (101)

then, using (100), we find that ∇iδai = 0, and (δa, ν)g = 0 on ∂M . We observe that
a smooth skew-symmetric 2-contravariant tensor π with compact support in M and
vanishing smoothly at the boundary ∂M satisfies (100). Using (100)–(101) and Green
formula (93), the term I2 becomes

I2 =
∫ T

0

∫
M

μ(a) ∂t

(
gi j (ηt (a))

∂ηit (a)

∂an
∂tη

j
t (a)

)
δan

= −
∫ T

0

∫
M

μ(a) ∂k∂t

(
gi j (ηt (a))

∂ηit (a)

∂an
∂tη

j
t (a)

)
πnk

+
∫ T

0
dt

∫
∂M

μ∂(a) ∂t

(
gi j (ηt (a))

∂ηit (a)

∂an
∂tη

j
t (a)

)
πnkνmgkm

= −
∫ T

0

∫
M

μ(a) ∂t∂k

(
gi j (ηt (a))

∂ηit (a)

∂an
∂tη

j
t (a)

)
πnk .

The action A(η, M) should be invariant under relabelling transformations. Thus the
variation of the action integral, i.e., δA, must vanish. Therefore we have I2 = 0, i.e.,

−
∫ T

0

∫
M

μ(a) ∂t∂k

(
gi j (ηt (a))

∂ηit (a)

∂an
∂tη

j
t (a)

)
πnk = 0.

Since the πnk’s are arbitrary, we obtain

d

dt
∂k

(
gi j (ηt (a))

∂ηit (a)

∂an
∂tη

j
t (a)

)
= 0, ∀k, n = 1, . . . , d.

Integration in time of these equations leads to

∂k

(
ui (t, ηt (a))

∂ηit (a)

∂an

)
= ∂kv0n, ∀k, n = 1, . . . , d. (102)
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Using the identity vi (t, a) = ui (t, ηt (a)) and multiplying (102) by dak ∧ dan , followed
by a summation over the indices k and n, we obtain

d(vi dx
i ) = dv

�
0 i.e., dvi ∧ dxi = ω0 := dv

�
0,

which ends the proof. ��
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