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Abstract

We study the semi-classical limit of an infinite dimensional system of coupled non-

linear Schrödinger equations towards exact weak solutions of the Vlasov-Dirac-Benney

equation, for initial data with analytical regularity in space. After specifying the right

analytic extension of the problem and solutions, the proof relies on a suitable version of

the Cauchy-Kowalewski Theorem and energy estimates in Hardy type spaces with conve-

nient analytic norms. This contribution presents a detailed and probably optimal (with

complete proofs) version of results announced in the more general setting in [1] and [2].

1. Introduction and Formal Derivations

The connection of the Schrödinger equation with a self-consistent po-

tential to the Vlasov equation, via the Wigner or semi-classical limit, is at

present very well documented. For instance for the Schrödinger−Poisson

Received May 6, 2015 and in revised form June 29, 2015.

AMS Subject Classification: Primary: 3Q83, 75X05; Secondary: 82D10.

Key words and phrases: Vlasov equation with Dirac potential, Vlasov-Dirac-Benney equation,
nonlinear Schrödinger equations, semi-classical limits.
† The second author acknowledges the support of the VLASIX and EUROFUSION projects respec-
tively under the grants No ANR-13-MONU-0003-01 and EURATOM-CfP-WP14-ER-01/IPP-03.

43

mailto:claude.bardos@gmail.com
mailto:nicolas.besse@univ-lorraine.fr


44 CLAUDE BARDOS AND NICOLAS BESSE [March

equation, i.e. with a self-consistent defocusing Coulomb type potential of

the form,

V~(t, x) =

∫

Rd

1

|x− y|(d−2)
|ψ~(t, y)|

2dy,

where the wave-function ψ~ is solution of the Schrödinger−Poisson equation,

not only (with well adapted initial data) the problem is uniformly well posed

but the convergence of the Wigner transform, on an arbitrary large time is

also proven (cf. for instance [18] or [12]).

For the present contribution we consider a probability space (M, dσ)

and start with a family {ψ~(t, x, σ)}σ∈M, solution of the following cubic

nonlinear Schrödinger equations

i~∂tψ~(t, x, σ) = −
~
2

2
∆xψ~(t, x, σ) +

(∫

M
|ψ~(t, x, σ)|

2dσ

)

ψ~(t, x, σ), (1)

with t ∈ R
+, x ∈ R

d, σ ∈ M and some initial data {ψ~0(x, σ)}σ∈M which

do not need to be specified right now. Given the potential

V~(t, x) =

∫

M
|ψ~(t, x, σ)|

2dσ, (2)

the time-dependent equation

i~∂tθ~(t, x, σ) = −
~
2

2
∆xθ~(t, x, σ) + V~(t)θ~(t, x, σ),

defines by the formula

{θ~(t, x, σ)}σ∈M = U~(t){θ0(x, σ)}σ∈M,

a family of unitary operators U~(t) acting in the space L∞
(

M ;L2(0, T ;

L2(Rd
x))
)

. Then we introduce the operator

K~(t, x, y) =

∫

M
ψ~(t, x, σ) ⊗ ψ~(t, y, σ)dσ.

This operator is a solution of the Heisenberg-Von Neumann equation,

d

dt
K~ = −

1

i~
[H~,K~] = −

1

i~

[

δE~
δK~

,K~

]

, (3)
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with the Hamiltonian

H~(t, x) = −
~
2

2
∆x + V~(t, x),

and the total energy

E~[K~](t) = Trace

(

−
~
2

2
∆xK~ + V~K~

)

=

∫

Rd

dx

∫

M
dσ

(

~
2

2
|∇xψ~(t, x, σ)|

2 + V~(t, x)|ψ~(t, x, σ)|
2

)

<∞,

where the self-consistent potential V~ is defined by equation (2) and [·, ·]

denotes the commutator of operators. Formal solutions of the Schrödinger

equations (1) and Heisenberg-Von Neumann equation (3) are respectively

given by the implicit formulas (since unitary operators U~(t) depend on

{ψ~(t)}σ∈M through the potential V~(t))

ψ~(t, x, σ) = U~(t)ψ~0(x, σ) and K~(t, x, y) = U~(t)K~0(x, y)U~(t)
∗ .

Eventually for the Wigner transform of the Heisenberg-Von Neumann equa-

tion, which involves the Weyl symbol W~(t, x, v) with x, v ∈ R
d, defined by

the Wigner transform of K~,

W~(t, x, v) =
1

(2π)d

∫

Rd

e−iy·vK~

(

t, x+
~

2
y, x−

~

2
y
)

dy,

one has from a formal viewpoint (i.e. assuming all sufficient conditions to

pass to the limit) the following convergences as ~ → 0 (Wigner or semi-

classical limit):

W~(t, x, v) −→W (t, x, v),

E~[K~] −→
1

2

∫

Rd

(

∫

Rd

|v|2W (t, x, v)dv +

(∫

Rd

W (t, x, v)dv

)2
)

dx,

∂tW + v · ∇xW −∇x

(∫

Rd

W (t, x, w)dw

)

· ∇vW = 0. (4)

The last equation (4) dubbed as the “Vlasov−Dirac−Benney” equation

(shortly V−D−B equation) is an avatar of the Vlasov−Poisson equation

where the Coulomb potential is replaced by the Dirac mass. We refer the
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reader to [1, 2, 3, 5, 6, 16] for linear and nonlinear stability analysis, ill versus

well posedness, and Hamiltonian structure of the V−D−B equation.

As observed by several authors [24, 13] it is always possible to write the

solutions of the Vlasov equation - and especially for the V−D−B equation

(4) - on the form

W (t, x, v) =

∫

M
ρ(t, x, σ)δ(v − u(t, x, σ))dσ. (5)

These notations are consistent with the macroscopic definitions of density

and momentum, according to the formulas,

ρ(t, x) =

∫

Rd

W (t, x, v)dv =

∫

M
ρ(t, x, σ)dσ,

ρ(t, x)u(t, x) =

∫

Rd

vW (t, x, v)dv =

∫

M
u(t, x, σ)ρ(t, x, σ)dσ.

Such decomposition is not unique and depends in particular on the form of

this decomposition at time t = 0. Moreover a distribution functionW (t, x, v)

given by (5) is a distributional solution of the V−D−B equation if and only

if the functions ρ(t, x, σ) and u(t, x, σ) are solutions of the system



















∂tρ(t, x, σ) +∇x · (ρ(t, x, σ)u(t, x, σ)) = 0,

∂t (ρ(t, x, σ)u(t, x, σ)) +∇x · (ρ(t, x, σ)u(t, x, σ) ⊗ u(t, x, σ))

+ ρ(t, x, σ)∇x

∫

M
ρ(t, x, σ)dσ = 0.

(6)

In one space dimension with (M, dσ) being respectively the interval (0, 1)

and the Lebesgue measure, the system (6) turns out to be the Benney-

Zakharov system

∂tρ(t, x, σ) + ∂x(ρ(t, x, σ)u(t, x, σ)) = 0,

∂tu(t, x, σ) + u(t, x, σ)∂xu(t, x, σ) + ∂x

∫ 1

0
ρ(t, x, σ)dσ = 0,

which has been derived by Zakharov from the original Benney equations

[4] by using a Lagrangian parametrization (cf. [24]) as a model of water-

waves for long waves. Hence the term “Benney” in the name of this Vlasov

equation.
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In order to consider mixed states as in [18], connect with the fluid rep-

resentation formula (5) and in the mean time generalize to infinite dimen-

sional system of coupled nonlinear Schrödinger equations the work of Grenier

[14, 15] and Gerard [11] we assume that the functions ψ~(t, x, σ), solutions

to the Schrödinger equations (1), can be written as

ψ~(t, x, σ) = a~(t, x, σ)e
i
S~(t,x,σ)

~ , (7)

with a~ and S~ “uniformly regular” with respect to ~. Therefore for the

Wigner transform one has

lim
~→0

W~[K~](t, x, v)

= lim
~→0

∫

M
dσ

1

(2π)d

×

∫

Rd

eiv·ya~(t, x+
~

2
y, σ)ei

S~(t,x+
~
2 y,σ)

~ a~(t, x−
~

2
y, σ)e−i

S~(t,x−
~
2 y,σ)

~ dy,

=

∫

M
|a(t, x, σ)|2δ(v −∇xS(t, x, σ))dσ =

∫

M
ρ(t, x, σ)δ(v − u(t, x, σ))dσ.

where we have formally defined the limits ρ = |a|2 = lim~→0 a~a~ and

u = ∇xS = lim~→0∇xS~. We observe that this formal limit satisfies the

system











∂tρ(t, x, σ) +∇x · (ρ(t, x, σ)u(t, x, σ)) = 0,

∂tu(t, x, σ) + u(t, x, σ) · ∇xu(t, x, σ) +∇x

∫

M
ρ(t, x, σ)dσ = 0,

(8)

which is the Benney system (6) or equivalently the V−D−B equation (4)

with weak solutions of type (5). Moreover, on the other hand, with

ψ~(t, x, σ) = a~(t, x, σ)e
i
S~(t,x,σ)

~ , and w~(t, x, σ) = ∇xS~(t, x, σ),
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the Schrödinger system (1) is equivalent to the system











































∂ta~(t, x, σ) +w~(t, x, σ) · ∇xa~(t, x, σ) +
1

2
a~(t, x, σ)∇x · w~(t, x, σ)

=
i~

2
∆xa~(t, x, σ),

∂tw~(t, x, σ) + w~(t, x, σ) · ∇xw~(t, x, σ) +∇x

∫

M
a~(t, x, σ)a~(t, x, σ)dσ

= 0.

(9)

Remark 1.1. The above representation is a variant both of the Madelung

transform (where the amplitude a~ is taken real) and of the WKB method

which is a Taylor expansion. As a consequence a~(t, x, σ) does not remain

real for t 6= 0, while w~(t, x, σ) = ∇xS~(t, x, σ) remains.

To the best of our knowledge the above representation was first intro-

duced by Chazarain [8, 9]. Later it was used by Grenier [14, 15] for the val-

idation of the semi-classical limit for a genuine scalar nonlinear Schrödinger

equation obtaining the following

Theorem 1.1 (Grenier [15]). Let s > d/2 + 2, let S0(x) ∈ Hs(Rd) and

a0(x, ~) be a sequence of functions uniformly bounded in Hs(Rd). Then

there exist T > 0, and solutions

ψ~(t, x) = a~(t, x)e
i
S~(t,x)

~ ,

to the Cauchy problem

i~∂tψ~ = −
~
2

2
∆xψ~ + |ψ~|

2ψ~, ψ~(0, x) = a0(x, ~)ei
S0
~
(x)

~ .

Moreover, a~(t, x) and S~(t, x) are bounded in L∞
(

0, T ;Hs(Rd)
)

uniformly

in ~.

From the Theorem 1.1 one deduces also the convergence (for 0 < t < T )

of the quantities a~a~ and w~ = ∇xS~ respectively to ρ(t, x) and u(t, x)

solutions of the system

{

∂tρ(t, x) +∇x · (ρ(t, x)u(t, x)) = 0,

∂tu(t, x) + u(t, x) · ∇xu(t, x) +∇xρ(t, x) = 0.
(10)
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To prove the Theorem 1.1, Grenier starts from the following system























∂tw~(t, x) + w~(t, x)∇xw~(t, x) +∇x(α
2
~(t, x) + β2~(t, x)) = 0,

∂tα~(t, x) + w~(t, x) · ∇xα~(t, x) +
1

2
α~(t, x)∇x · w~(t, x) = −

~

2
∆xβ~(t, x),

∂tβ~(t, x) + w~(t, x) · ∇xβ~(t, x) +
1

2
β~(t, x)∇x · w~(t, x) =

~

2
∆xα~(t, x),

(11)

where α~(t, x) and β~(t, x) denote respectively the real and imaginary part

of a~(t, x). He observes that this system can be symmetrized by a strictly

positive matrix S and this will lead to the standard a priori estimates of

hyperbolic systems of conservation laws [10, 19]. In fact the existence of

such strictly positive symmetrizer is a consequence of the fact that the mass

(i.e. with ρ~(t, x) = α~(t, x)
2 + β~(t, x)

2) and the energy of the system,

1

2

∫

Rd

(

|w~(t, x)|
2 + ρ~(t, x)

)

ρ~(t, x)dx,

are a strictly convex invariants.

On the other hand, as observed in [1, 2, 3] for more general systems of

the type (6), i.e. formal limit of mixed states solution of the the Heisenberg-

Von Neumann equation, there may be no convex invariant. Therefore may

exist (even in one space variable) initial data for which the Cauchy problem

has no solution. This is due to the instantaneous appearance of exponential

frequencies instabilities. Hence as this was done in the forerunner paper of

[16] some type of control of analyticity is compulsory for a general theorem.

This is the object of the present contribution which mostly relies on two

points. First the use of a refined version of the Cauchy-Kowalewski Theorem

due to Safonov [22] and second the construction of well adapted spaces of

analytical functions.

2. The Safonov Version of the Cauchy-Kowalewski Theorem

We recall that the Safonov Theorem concerns the equation

u(t) = Tu(t) =

∫ t

0
F (τ, u(τ))dτ, (12)
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where the mapping F is defined in a scale of Banach spaces Bη with

for 0 < η′ ≤ η < η0 , Bη ⊂ Bη′ , ‖.‖η′ ≤ ‖.‖η ,

the following conditions, which in [22] are called “Assumptions 1.1.”

(a) For some constants η0 > 0, r > 0, λ > 0 and every pair of numbers

η, η′ such that 0 < η′ < η < η0, 0 ≤ t < η0/λ , the correspondence (t, u) 7→

F (t, u) is a continuous mapping of

[0, η0/λ)× {u ∈ Bη : ‖u‖η < r} into Bη′ .

(b) For any 0 < η′ < η < η0, 0 ≤ t < η0/λ, and for u, v ∈ Bη with

‖u‖η < r , ‖v‖η < r, we have

‖F (t, u) − F (t, v)‖η′ ≤
C

η − η′
‖u− v‖η ,

where C is a constant independent of η, η′, t, u, v .

(c) F (t, 0) is a continuous function of t ∈ [0, s0/λ) with values in Bη, 0 <

η < η0, satisfying, with a fixed constant K

‖F (t, 0)‖η ≤
K

η0 − η
, 0 < η < η0 .

Then arises the

Theorem 2.1. For any positive η0, r, C and K, there is a positive con-

stant λ0 such that under the above assumptions with λ > λ0 , there exists a

unique continuously differentiable function u(t) with values in Bη, 0 < η <

η0, ‖u(t)‖η < r which is defined for 0 ≤ t < (η0 − η)/λ and satisfies the

problem (12).

3. Notations and Definitions of Some Functional Spaces

In the d-dimensional complex euclidean space Cd, we denote by B2d(z, δ)

(resp. S2d−1(z, δ)) the ball (resp. sphere) of Cd of center z and radius δ and

by Πd(z, δ) the cartesian product of circles S1(zi, δ) for i = 1, . . . , d. With η
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being a given positive real number we define the tube Tη as the set of points

of Cd such that

Tη =
{

(x+ iy) ∈ C
d, |yj| ≤ η, for 1 ≤ j ≤ d

}

.

Then we denote by A(Tη) the set of analytic functions on the tube Tη, and

define the Hardy spaces Hp(Tη), 1 ≤ p ≤ ∞ by the formulas

Hp(Tη) =

{

f ∈A(Tη); ‖f‖
p
Hp(Tη)

= sup
|yj |≤η
1≤j≤d

∫

Rd

|f(x+iy)|pdx<∞

}

, 1≤p<∞,

H∞(Tη) =

{

f ∈A(Tη); ‖f‖H∞(Tη) = sup
z∈Tη

|f(z)| <∞

}

.

With Λx = (1 −∆x)
1/2 we define, for any non negative real number s and

p ∈ (1,∞) the Hardy type spaces Hs,p
η by the formula

Hs,p
η =

{

f(·, σ) ∈ Hp(Tη) for a.e σ ∈ M;

‖f‖η,s,p = ‖f‖Hs,p
η

= sup
σ∈M

‖Λs
xf(·, σ)‖Hp(Tη) <∞

}

.

A ball of radius r in Hs,p
η is denoted by

Bs,p
η (r) =

{

f ∈ Hs,p
η ; ‖f‖η,s,p < r

}

.

Observe that, whenever s is an integer the expression

‖f‖p
Hs,p

η
= sup

σ∈M

∑

|β|≤s

‖∂βxf‖
p
Hp(Tη)

,

provides an equivalent norm on Hs,p
η , p ∈ (1,∞) . Eventually for some fixed

real numbers η0 > 0, γ ≥ 0 and λ > 0, we define the Banach spaces Hs,p
η0,γ,λ

by

Hs,p
η0,γ,λ

=

{

f(t) ∈ Hs,p
η ; ‖f‖(γ, λ)η0,s,p = sup

0<η+λt<η0

(η0−η−λt)
γ‖f(t)‖η,s,p <∞

}

,

with sup0<η+λt<η0 meaning sup0<η<η0

(

sup0≤t<(η0−η)/λ(·)
)

or equivalently
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sup0≤t<η0/λ

(

sup0<η<η0−λt(·)
)

.

4. Main Theorem

With the above notations we state below the main contribution of this

article as the following

Theorem 4.1. Let s > d/2, η0 > 0, r > 0 and γ ∈ [0, 1) some positive real

numbers independent of ~. Let us assume that initial data are such that

(

a~(0, x, σ), w~(0, x, σ) = ∇xS~(0, x, σ)
)

∈ Hs,2
η0 ∩ Bs,2

η0 (r). (13)

Then there exists a positive real number λ > 0 (depending on s > d/2,

η0 > 0, r > 0 and γ ∈ (0, 1) but independent of ~) such that on the time

interval (0, η0/λ) there exists a unique solution

(

a~(t, x, σ), w~(t, x, σ) = ∇xS~(t, x, σ)
)

∈ Hs,2
η0,γ,λ

∩ Bs,2
η0−λt(r), γ ∈ [0, 1),

of the problem































∂ta~(t, x, σ)+w~(t, x, σ)·∇xa~(t, x, σ) +
1

2
a~(t, x, σ)∇x · w~(t, x, σ)

=
i~

2
∆xa~(t, x, σ),

∂tw~(t, x, σ)+w~(t, x, σ)·∇xw~(t, x, σ)+∇x

∫

M
a~(t, x, σ)a~(t, x, σ)dσ=0,

with initial data (13). Moreover these solutions are uniformly bounded (with

respect to ~) in Hs,2
η0,γ,λ

∩ Bs,2
η0−λt(r).

Remark 4.1. The estimates being uniform with respect to ~ the Theorem

4.1 includes the case ~ = 0 and therefore it implies that the limit system (8)

is well posed in Hs,2
η0,γ,λ

with solution

U(t, x, σ) =
(

ρ(t, x, σ), u(t, x, σ)
)

∈ Bs,2
η0−λt(r),

for t ∈ (0, η0/λ) and initial data U(0, x, σ) =
(

ρ(0, x, σ), u(0, x, σ)
)

∈ Bs,2
η0 (r).

A direct proof of this fact can be done. It follows the same line with minor

simplifications.
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On the other hand from the uniform estimates of the Theorem 4.1 one

deduces that the solution

U~(t, x, σ) =
(

|a~(t, x, σ)|
2, w~(t, x, σ) = ∇xS~(t, x, σ)

)

,

arising from the system (9) converges as ~ → 0, to the solution U(t, x, σ) =
(

ρ(t, x, σ), u(t, x, σ)
)

of the limit system (8) in Hs,2
η0,γ,λ

.

Hence the Theorem 4.1 gives at the same time the fact that the problem

(8) is well posed in the class of well adapted Hardy spaces and that it is the

semi-classical limit (in the same topology) of solutions of (9) or equivalently

of (1).

Remark 4.2. In agreement with the representation formula (5), the Theo-

rem 4.1 for the limit system (8) concerns (at variance with the Jabin-Nouri

Theorem [16]) solutions which are analytic with respect to x and t but which

can exhibit singularities in the v variable (sum of Dirac masses, etc ...).

5. Proof of the Theorem 4.1

We start with two following lemmas:

Lemma 5.1. The operators exp(±it~∆z) : H
s,2
η −→ Hs,2

η are unitary in Hs,2
η

for all ~ ∈ R and t ∈ R, and we get with s ≥ 0,

‖ exp(±it~∆z)ψ‖η,s,2 = ‖ψ‖η,s,2 , ~ ∈ R, t ∈ R, and ψ ∈ Hs,2
η .

Proof. Using the holomorphic Fourier transform (cf. [21]) we observe that

the Green function (i.e. the convolution kernel) associated to the operators

exp(±it~∆z) is the same as for the real case in R
d. Therefore the proof is

the same than the real case in R
d; for example we refer the reader to the

Proposition 2.2.3 of Chapter 2 of [7]. ���

Lemma 5.2. Let f ∈ Hp(Tη) with 1 ≤ p ≤ ∞, then for all η′ < η we have,

‖∂zjf‖Hp(Tη′ )
≤

1

|η − η′|
‖f‖Hp(Tη) , 1 ≤ j ≤ d.
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Proof. Let Tη and Tη′ two tubes of C
d such that η′ < η. Let z = x+iy ∈ Tη′

and B2d(z, ǫ) a ball of Cd such that ǫ ≤ |η − η′|. Since f ∈ Hp(Tη) with the

Cauchy formula we have:

∂zjf=
1

(2πi)d

∫

Πd(z,ǫ)

f(ξ)dξ1· · ·dξd
(ξ1−z1)· · ·(ξj−1−zj−1)(ξj−zj)2(ξj+1−zj+1)· · ·(ξd−zd)

,

=
1

(2πi)d

∫

Πd(z,ǫ)

f(ξ)dξ

(ξj−zj)2
∏

l 6=j(ξl−zl)
.

For 1 ≤ p <∞, using Hölder inequality with 1/p+1/q = 1 and the previous

equality we obtain

∫

Rd

|∂zjf |
pdx ≤

1

(2π)dp

∫

Rd

dx

(

∫

Πd(z,ǫ)
|f(ξ)|pdξ

)

×

(

∫

Πd(z,ǫ)

dξ

|ξj − zj |2q
∏

l 6=j |ξl − zl|q

)p/q

,

≤
1

(2π)dp

(

ǫd

ǫ2qǫ(d−1)q

)p/q ∫

Rd

dx

∫

Πd(z,ǫ)
dξ |f(ξ)|p,

≤
1

(2π)dp
1

ǫp

∫

Rd

dx
1

ǫd

∫

Πd(z,ǫ)
dξ |f(ξ)|p.

Using successively the mean value Theorem for analytic functions (cf. [21])

we get from the previous inequality the estimate

∫

Rd

|∂zjf |
pdx ≤

1

(2π)dp
1

ǫp

∫

Rd

|f(x+ iy)|pdx, ∀ǫ ≤ |η − η′|,

≤
1

(2π)dp
1

|η − η′|p

∫

Rd

|f(x+ iy)|pdx .

This leads to the estimate of Lemma (5.2) for 1 ≤ p < ∞ after taking the

supremun with respect to the variables yj for 1 ≤ j ≤ d.

In the case where p = ∞ the Cauchy formula gives

|∂zjf | ≤
1

(2π)d
‖f(·+ iy)‖L∞(Rd

x)

∫

Πd(z,ǫ)

dξ

|ξj − zj |2
∏

l 6=j |ξl − zl|
,

≤
1

(2π)d
ǫd

ǫ2ǫd−1
‖f(·+ iy)‖L∞(Rd

x)
, ∀ǫ ≤ |η − η′|,
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≤
1

(2π)d
1

|η − η′|
‖f(·+ iy)‖L∞(Rd

x)
.

Taking the supremun with respect to the variables yj for 1 ≤ j ≤ d, this

gives estimate of Lemma (5.2) for p = ∞. ���

Now we observe that any function x 7→ f(x) defined for x ∈ R
d, and

which is the restriction of an analytic function f(x + iy) defined on a tube

Tη, can be represented (with the Paley-Wiener Theorem I of Chapter I in

[20]) by the formula

f(x) =

∫

Rd

eix·ξ f̂(ξ)dξ,

with the Fourier transform f̂(ξ) decaying exponentially for |ξ| → ∞. Hence

the complex conjugate

f(x) =

∫

Rd

e−ix·ξf̂(ξ)dξ,

is also the Fourier transform of a function with the same exponential decay

and therefore can be extended as analytic function in the complex domain

according to the formula

f∗(x+ iy) =

∫

Rd

e−i(x+iy)·ξ f̂(ξ)dξ.

Of course such extension does not coincide with the complex conjugate of

f(x+ iy) for y 6= 0, but it belongs to the same class (in term of regularity) of

analytical functions. With this remark in mind, one introduces the analytic

extensions a~(t, x + iy, σ), a∗
~
(t, x+ iy, σ), and w~(t, x + iy, σ) of a~(t, x, σ),

a~(t, x, σ), and w~(t, x, σ) respectively and write (with z = x+ iy ∈ C
d) the

system (9) in the following equivalent form:
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∂tw~(t, z, σ)+w~(t, z, σ) · ∇zw~(t, z, σ) +∇z

∫

M
a~(t, z, σ)a

∗
~(t, z, σ)dσ=0,

∂ta~(t, z, σ)+w~(t, z, σ) · ∇za~(t, z, σ) +
1

2
a~(t, z, σ)∇z · w~(t, z, σ)

=
i~

2
∆za~(t, z, σ),

∂ta
∗
~(t, z, σ)+w~(t, z, σ) · ∇za

∗
~(t, z, σ) +

1

2
a∗~(t, z, σ)∇z · w~(t, z, σ)

=
−i~

2
∆za

∗
~(t, z, σ).

(14)

With the notations

U~ =







w~(t, z, σ)

a~(t, z, σ)

a∗
~
(t, z, σ)






, L~ =







0
i~
2 ∆z

− i~
2 ∆z






,

and

F (U~) = −







w~(t, z, σ) · ∇zw~(t, z, σ) +∇z

∫

M a~(t, z, σ)a
∗
~
(t, z, σ)dσ

w~(t, z, σ) · ∇za~(t, z, σ) +
1
2a~(t, z, σ)∇z · w~(t, z, σ)

w~(t, z, σ) · ∇za
∗
~
(t, z, σ) + 1

2a
∗
~
(t, z, σ)∇z · w~(t, z, σ)






,

the system becomes

∂tU~ = F (U~) + L~(U~),

which, using a Duhamel’s formula, implies

U~(t) = etL~U~0 +

∫ t

0
e(t−τ)L~F (U~(τ))dτ. (15)

Now using the following change of unknowns

U ~(t) = e−tL~U~(t)− U~0, (16)

the Duhamel formula (15) becomes

U ~(t) = T~U ~(t) =

∫ t

0
F~

(

τ,U ~(τ)
)

dτ =

∫ t

0
e−τL~F

(

eτL~(U ~(τ) + U~0)
)

dτ.

(17)

The formulation (17) of the problem (14) is now well suited to apply the

Cauchy-Kowalewski Theorem 2.1 (cf. Section 2) whose proof consists in our
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functional framework to apply a Banach fixed-point Theorem to the nonlin-

ear mapping T~ in a certain subspace of Hs,2
η0,γ,λ

with γ ∈ (0, 1). Therefore

it remains to verify assumptions (a) to (c) of the Section 2.

Let us start with assumption (a) of the Section 2. Let us fix η0 > 0,

r > 0 and the initial data U~0 such that ‖U~0‖η0,s,2 < r. Moreover let us

assume 0 < η′ < η < η0 and λ > 0. From the definition of the function

U 7→ F (U), we observe that each component is a linear combination of

two types of quadratic nonlinear terms, which are of the form f · ∇zg or
∫

M dσf · ∇zg . It is sufficient to study the first one since the second one

deduces from the first one and the fact that we take the supremun norm in

the variable σ over the set M. Therefore we have to estimate terms of type

∂βx (f · ∇zg) with a spatial multi-index β such that |β| ≤ s where s > d/2 in

the space Hs,2
η′ . Using Leibniz formula we get

∂βx (f · ∇zg) =
∑

α≤β

(

β

α

)

∂αx f · ∂β−α
x (∇zg).

Using the previous equality and the following classical bilinear estimate (e.g.

cf. Proposition 3.6 of [23]): for f, g ∈ Hs(Rd
x) ∩ L

∞(Rd
x), if |α| + |β| = s we

have

‖(∂αx f)(∂
β
xg)‖L2(Rd

x)
≤ C(s)

(

‖f‖L∞(Rd
x)
‖g‖Hs(Rd

x)
+ ‖f‖Hs(Rd

x)
‖g‖L∞(Rd

x)

)

,

we then obtain

‖∂βx (f · ∇zg)‖L2(Rd
x)

≤ C(|β|)
(

‖f‖H|β|(Rd
x)
‖∇zg‖L∞(Rd

x)
+ ‖f‖L∞(Rd

x)
‖∇zg‖H|β|(Rd

x)

)

.

Using the last estimate, the continuous Sobolev embedding Hs(Rd) →֒ L∞

(Rd) if s > d/2 and the Lemma 5.2 with p = 2, ∞, we get

sup
σ∈M

‖∂βx (f · ∇zg)‖H2(Tη′ )

≤ C(|β|)

(

‖f‖η′,|β|,2 sup
σ∈M

‖∇zg‖H∞(Tη′ )
+ ‖f‖η′,s,2‖∇zg‖η′ ,|β|,2

)

,

≤
C(|β|)

|η − η′|

(

‖f‖η,|β|,2‖g‖η,s,2 + ‖f‖η,s,2‖g‖η,|β|,2
)

,
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≤
2C(|β|)

|η − η′|
‖f‖η,s,2‖g‖η,s,2,

which leads to ‖f · ∇zg‖η′,s,2 ≤ C⋆(s)|η − η′|−1‖f‖η,s,2‖g‖η,s,2 and

‖F (U~)‖η′,s,2 ≤
C⋆(s)

|η − η′|
‖U~‖

2
η,s,2, s > d/2, (18)

where C⋆(s) denotes a set of constants which depend on s (but do not depend

on ~) and are equivalent up to a multiplication by a pure numerical constant.

Then the Lemma 5.1 implies that the operators exp(±tL~) are also unitary

in Hs,2
η . Therefore using estimate (18), the relation (16) and the isometry

property of the operators exp(±tL~) we obtain

sup
τ∈(0,η0/λ)

∥

∥F~

(

τ,U ~
)∥

∥

η′,s,2

≤ sup
τ∈(0,η0/λ)

sup
U~∈B

s,2
η (r)

2C⋆(s)

|η − η′|
(‖U ~‖

2
η,s,2 + ‖U~0‖

2
η,s,2)

≤
4r2C⋆(s)

|η − η′|
≤
C⋆(s, r)

|η − η′|
,

which means that (t,U ~) 7→ F~

(

τ,U ~
)

is a continuous mapping of [0, η0/λ)×

Bs,2
η (r) into Hs,2

η′ uniformly in ~, and concludes the point (a).

Let us check assumption (b) of the Section 2. Let us assume 0 < η′ <

η < η0 and 0 ≤ t < η0/λ. We consider U ~, V~ ∈ Bs,2
η (r). In the same way

that we have obtained (18), since the mapping U 7→ F (U) is quadratic (and

linear with respect to the first-order derivative) we obtain

‖F (U) − F (V )‖η′,s,2 ≤
C⋆(s)

|η − η′|
‖U − V ‖η,s,2(‖U‖η,s,2 + ‖V ‖η,s,2), s > d/2.

(19)

Then using the isometry property of the operators exp(±tL~) and estimate

(19) we have

∥

∥F~

(

t,U ~
)

− F~

(

t, V~
)∥

∥

η′,s,2

≤
∥

∥F
(

etL~(U ~(τ) + U~0)
)

− F
(

etL~(V~(τ) + U~0)
)∥

∥

η′,s,2
,

≤
C⋆(s)

|η − η′|
‖U ~ − V~‖η,s,2 (2‖U~0‖η,s,2 + ‖U ~‖η,s,2 + ‖V~‖η,s,2),
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≤
C⋆(s, r, η0)

|η − η′|
‖U ~ − V~‖η,s,2 ,

which shows the uniform (both in time and ~ parameters) Lipschitz property

of the application U ~ 7→ F~

(

t,U ~
)

and concludes the point (b).

Let us check assumption (c) of the Section 2. Let us assume η0 > 0 and

λ > 0. Since [0, η0/λ) ∋ t 7→ exp(±tL~) is a strongly continuous group of

unitary operators in Hs,2
η and U 7→ F (U) is a continuous mapping from Hs,2

η0

into Hs,2
η with 0 < η < η0, then t 7→ F~(t, 0) is a continuous function of

t ∈ [0, η0/λ) with value in Hs,2
η uniformly in ~. Moreover using the isometry

property of the operators exp(±tL~) and estimate (18) we get

‖F~(t, 0)‖η,s,2 ≤
∥

∥F
(

etL~U~0

)∥

∥

η,s,2
≤

C⋆(s)

|η0 − η|
‖U~0‖

2
η0,s,2 ≤

C⋆(s, r, η0)

|η0 − η|
,

which concludes the point (c).

All assumptions of the Theorem 2.1 being satisfied it can be used to

obtain the existence of the constant λ > 0 depending on s > d/2, η0 > 0,

r > 0 and γ ∈ (0, 1) but independent of ~ such that the conclusions of the

Theorem 4.1 hold, which ends the proof.

Remark 5.1. The above proof is simpler than the forerunner result of

Gérard [11], and it also provides an extension to mixed states as consid-

ered by Lions and Paul [18]. This is essentially due to the fact that the

Theorem 2.1 (Safonov version of the Cauchy-Kowalewski theorem recalled

above) is very well suited to the problem in the representation proposed by

Chazarain [8, 9] and Grenier [14, 15].

6. Conclusion

As recalled above, in some situations (cf. Lions and Paul [18] for self-

consistent Schrodinger equation with Coulomb Potential, Grenier [14, 15],

or in the spirit of scattering theory by Jin, Levermore and McLaughlin [17]

for the genuine nonlinear Schrodinger equation) the stability of the Wigner

transform can be proven in Sobolev spaces of finite order. This is in full

agreement with the fact that the limit Vlasov-type equation is a well-posed

problem in the same type of spaces.
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However, to justify the pertinence of the present contribution we observe

that the V−D−B may lead to ill-posed problem in any spaces except in some

analytical settings as in the Theorem 4.1. Similar pathology appears in the

behavior of the Wigner (or semi classical) limit. Hence the introduction of

theorem in the analytical setting is fully justified.

Moreover, the Theorem 4.1 can be applied to problems considered by

Zakharov [24] in one space variable but involving also a (finite or infinite)

system of coupled equations. As proven in [24] such system are integrable

and this confers to the V−D−B equation a status of quasi-integrable equa-

tion with an infinity set of invariant quantities, limit of the corresponding

invariants at the level of the Schrödinger equations. The above properties

being in some sense algebraic, the proof of convergence with analyticity hy-

pothesis seems perfectly well adapted to such considerations.
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