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ABSTRACT

Context. The Nice model predicts that the trans-planetary planetesimal disk made a large or even dominant contribution to the
cratering in the inner solar system during the late heavy bombardment (LHB). In the presence of evidence that lunar craters and mare
basins may be mainly of asteroidal origin, there is a dilemma of the missing comets that is not yet resolved.
Aims. We aim to revisit the problem of cometary impact rates on the Moon and the terrestrial planets during the LHB with a flexible
model, allowing us to study the influences of physical destruction of comets, the mass of the primordial disk, and the distribution of
this mass over the entire size range.
Methods. We performed a Monte Carlo study of the dynamics of the cometary LHB projectiles and derive the impact rates by
calculating individual collision probabilities for a huge sample of projectile orbits. We used Minimum Orbit Intersection Distances
(MOIDs) according to a new scheme introduced here. Different calculations were performed using different models for the physical
evolution of comet nuclei and for the properties of the primordial, trans-planetary disk.
Results. Based on the capture probability of Jupiter Trojans, we find a best fit radius of the largest LHB comet impacting the Moon
for a low-mass primordial disk. For this disk mass, the LHB cratering of the Moon, Mercury and Mars were dominated by asteroids.
However, some smaller lunar maria were likely preceded by comet impacts. The volatile delivery to the Earth and Mars by LHB
comets was much less than their water inventories.
Conclusions. There is no excessive cometary cratering, if the LHB was caused by a late planetary instability in the Nice Model. The
Earth and Mars obtained their water very early in their histories. The Noachian water flows on Mars cannot be attributed to the arrival
of LHB-related H2O or CO2.

Key words. comets: general – Earth – Moon – planets and satellites: surfaces

1. Introduction

When the Nice model for the long-term dynamical evolution of
the planetary system was first proposed (Tsiganis et al. 2005), an
important virtue was found to be the possibility to explain a late
lunar impact cataclysm, commonly referred to as the late heavy
bombardment (LHB; Gomes et al. 2005). Since then, the dynam-
ics that constitutes the core of the model has undergone sev-
eral changes (Morbidelli et al. 2010; Levison et al. 2011), and
the nature and timing of the LHB has also been further discussed
(Morbidelli et al. 2012; Bottke et al. 2012).

Even so, some fundamental features have survived. The gi-
ant planets started out in a much tighter configuration than they
exhibit at present. Beyond their orbits there was a planetesimal
disk with a total mass of order 20−50 Earth masses. As the in-
stability of the planetary orbits set in, this disk was dispersed
across the whole solar system following the outward migration
of Uranus and Neptune. An inevitable consequence is the crater-
ing of planetary surfaces in the inner solar system (including that
of the Moon).

However, the dynamical instability and rapid migration of
the giant planets would also have affected other small body

reservoirs closer to these target objects. One is the asteroid
main belt (Gomes et al. 2005; Morbidelli et al. 2010), and an-
other is the so-called E-belt (Bottke et al. 2012) related to the
present Hungaria asteroid population. The question hence arises,
whether the lunar and planetary cratering was dominated by
trans-planetary (in fact, cometary) or asteroidal projectiles.

Gråe Jørgensen et al. (2009) argued for cometary bombard-
ment based on Ir abundances in the Isua Greenstone belt (Green-
land) rocks and lunar Apollo samples, while Strom et al. (2005)
found the size distribution of lunar craters to be consistent with
asteroidal projectiles and different from the likely cometary
crater size distributions on the giant planet satellites. More-
over, Bottke et al. (2012) estimated that practically all the mare
basins could have an E-belt origin, leaving nearly nothing for the
comets.

This issue is not yet resolved. In addition, there is an open
question about the amount of volatile delivery to Mars during
the LHB (see Lammer et al. 2013). In the current paper we aim
to address these issues by a quantitative estimate of the time-
integrated lunar and planetary impact rates for a projectile pop-
ulation of the cometary type. The thrust of this paper is our new
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method to derive the impact probabilities by Monte Carlo simu-
lation from a massive set of long-term orbit integrations for the
projectiles in question.

In an accompanying paper (Rickman et al. 2016, hereinafter
“Paper I”) we describe in detail how we construct our basic sam-
ple of orbital evolutions for the cometary projectiles in terms of
initial orbits, dynamical model and integrations. A brief sum-
mary is provided in Sect. 2, and Sect. 3 describes the princi-
ples of using the MOID (minimum orbit intersection distance)
to identify cases of potential collisions in the orbital evolution
sample. In Sect. 4 we introduce the concept of physical evolution
and lifetimes for the cometary projectiles and describe how we
model this. In Sect. 5 we discuss the modelling of a secondary
projectile population that arises from the deflections of projec-
tile orbits at close encounters with the terrestrial planets. Sec-
tion 6 provides the details of how the lunar and planetary impact
probabilities are found using MOID methods (Rickman et al.
2014). In particular, a special technique for the lunar case is in-
troduced here. In Sect. 7 we derive the actual impact rates for
the Moon and planets, and we investigate the effect of differ-
ent assumptions for the total mass and size distribution of the
trans-planetary disk as well as different physical evolution mod-
els. Finally, a discussion of our results and a summary of our
conclusions are provided in Sect. 8.

2. Orbital evolutions

We used initial orbits emanating from the calculations by
Brož et al. (2013). These represent objects reaching for the first
time into the inner solar system with perihelion distances less
than 3.9 au. After down-selection and cloning, our sample con-
sisted of 100 000 initial orbits. This down-selection means that
we disregard a small part of the initial projectile population,
mainly with P > 20 yr. We will derive impact rates per mil-
lion objects, hence referring specifically to initial orbits with
P < 20 yr. When these are combined with absolute numbers of
objects transferred from the external disk, the disregarded ob-
jects are assumed to contribute the same specific impact rate as
the retained objects. Our results are not severely biassed by this
approximation.

The integrations were performed with the classic Radau in-
tegrator RA15 (Everhart 1985), using as dynamical model the
gravitational six-body problem of the Sun, the four giant planets
and the massless projectile. We use the current orbits of the gi-
ant planets, meaning that we do not attempt to treat the planetary
instability or migration, which in the Nice Model is the reason
for the delivery of the cometary objects into the orbits that we
integrate. All these events occurred on a very short time scale
(Morbidelli et al. 2010), and we assume that the LHB cometary
bombardment took place soon afterwards, when the planets had
settled into their new orbits.

In order to get good estimates of the impact probabilities
associated with all orbits of the test objects, we had to use the
best suited heliocentric osculating elements for these orbits. We
deemed the best osculation epoch to be the time of perihelion
and thus went into some effort to find this with a good accu-
racy. Our chosen epochs are typically within one week of the
actual perihelion times, and these deviations do not matter for
our purposes.

Each test object performed a pre-defined maximum of
100 000 revolutions around the Sun, but the integrations were
ended prematurely in case the test object reached a semi-
major axis exceeding 1000 au, reached an eccentricity exceed-
ing 0.9999, or collided with the Sun or a planet. As shown in

Table 1. Numbers N(qmin) of test objects with minimum perihelion dis-
tances qmin smaller than the listed, current aphelion distances Qpl of the
terrestrial planets.

Planet Qpl (au) N(qmin)
Mercury 0.467 7957
Venus 0.728 15 932
Earth 1.017 27 453
Mars 1.666 57 008

Paper I, this resulted in a median lifetime of ∼6400 orbits, and
the end state of ejection or orbital diffusion was the dominant
one, comprising 93% of the cases. About 2.6% underwent colli-
sions, and 4.4% survived after 100 000 orbits.

3. Identifying potentially collisional orbits

In Fig. 5 of Paper I we presented a graphical illustration of the
minimum perihelion distances reached by the 100 000 test ob-
jects, and from the same data we have extracted the numbers of
objects that reached perihelion distances smaller than the aphe-
lion distances of the terrestrial planets. We present these numbers
in Table 1. They provide a first indication of how the relative im-
pact probabilities for the different planets are conditioned by the
general nature of the dynamical evolutions that we have found.

We now aim to use the orbital integrations to estimate the
number of collisions of the simulated cometary objects with the
Moon and the terrestrial planets. The basic tool of our method is
the calculation of MOIDs (see Wiśniowski & Rickman 2013). In
particular, we associate each orbital revolution in our integration
output with a set of target orbits to be described in Sect. 3.1, and
we calculate the MOID for each target. If this is small enough,
we deem that there is a chance for a collision during the orbital
revolution in question. Our way to quantitatively determine this
probability is described in Sect. 6.

3.1. Lunar and planetary orbits

Since we are dealing with a time period about 4 Gyr ago, we
should assume a geocentric orbit for the Moon that is consistent
with the current understanding of the long-term evolution of the
lunar orbit. Of course, the tidal interactions in the Earth−Moon
system have caused a gradual expansion of this orbit, but there
is a large uncertainty over the integrated amount of this acceler-
ation over the previous 4 Gyr. We base our estimate on results
by Bills & Ray (1999) and use a semi-major axis for the Moon
that is one half of the present value, that is, about 182 000 km.
For simplicity, we take this orbit to be circular and situated in
the ecliptic plane. Further, we treat the Earth−Moon system with
the approximation that the Moon is effectively massless, and the
system’s centre of mass resides in the Earth’s centre, moving on
its elliptical orbit around the Sun.

We use a statistical approach to represent the orbits of the ter-
restrial planets. The semi-major axis is assumed to be the aver-
age one characterizing the present motion. The eccentricity and
inclination are taken to be constant during the whole time in-
terval covered by our integrations. This is often long enough to
cover the secular periods of the planets, and therefore we use
rough estimates of the averages plotted by Laskar (1994) for
epochs about 4 Gyr ago. We list the values of the heliocentric a,
e and i for all four terrestrial planets, and the geocentric values
for the Moon, in Table 2.
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Table 2. Heliocentric orbital elements of planets and geocentric ele-
ments of the Moon at the time of the LHB, used for MOID calculations.

Target a (au) e i (deg)
Mercury 0.387 0.25 12
Venus 0.723 0.07 5
Earth 1.000 0.07 5
Mars 1.524 0.14 8
Moon 0.0012 0.00 0

Table 3. Geometric radii (R) and surface escape speeds (Vesc) for colli-
sion targets, used to calculate their collisional radii.

Planet R (km) Vesc (km s−1)
Mercury 2440 4.25
Venus 6052 10.36
Earth 6371 11.19
Mars 3396 5.03
Moon 1737 2.38

It is true that the real motions of the terrestrial planets are
characterized by quasi-periodic oscillations of e and i coupled to
the circulations of ω and Ω, respectively. But since we neglect
these oscillations, we are free to model the evolution of the an-
gles at will. We have chosen to treat them as stochastic variables
with values picked at random on the interval [0, 2π] for each pro-
jectile orbital revolution under consideration.

3.2. MOID-based screening

Using all the elements described, we compute the MOID (M) of
the projectile and each planetary target for each orbit of the for-
mer, using the method of Wiśniowski & Rickman (2013). While
the angular elements of the planets are taken at random, those
of the projectiles are given by our integrations. Thus, the calcu-
lated MOID values reflect the varying collisional probabilities
imposed by the real trends in the cometary orbital evolutions
as governed by the perturbing, giant planets. This is impor-
tant, because it is well known (e.g. Di Sisto et al. 2009) that
the ω distribution of Jupiter family comets in particular is far
from uniform, and it would hence be inaccurate to use the aver-
age impact probabilities for uniform angular elements presented
by Rickman et al. (2014) or computed by the Öpik (1951) or
Wetherill (1967) formulae.

We compare eachM with the collisional radius (Rcoll) of the
planet. This is done using a specific value of Rcoll, calculated
from the standard gravitational focussing formula with the actual
approach speed of the projectile under the relevant geometric
circumstances. If M < Rcoll, the collision probability is non-
zero. We list the physical radii and escape speeds that we use for
the calculation of Rcoll in Table 3.

In Table 4 we list the numbers ofM < Rcoll orbits – called
collisional orbits – found for all the projectile orbital evolutions.
The trend among the different planets is partly due to their dif-
ferent sizes, and partly due to the fact that planet-crossing or-
bits result from temporary visits into small perihelion distances.
As shown in Table 1, the number of such visits is significantly
smaller for Mercury-crossing than for Mars-crossing conditions.

The case of lunar impacts is special. Here we introduce a
special limit M0 = 184 000 km for the terrestrial MOID, be-
cause when ME > M0, the lunar impact probability is always
nil, while forME <M0 it is often non-zero. We hence select the

Table 4. Numbers of collisional orbits for the terrestrial planets and the
Moon, assuming infinite physical lifetimes.

Planet N(M < Rcoll)
Mercury 1914
Venus 11 855
Earth 18 855
Mars 14 930
Moon 234 734

orbits withME <M0 for calculating the respective lunar impact
probabilities.

4. Physical evolution

We now consider the effects of physical evolution affecting the
sizes of the projectiles and causing their eventual destruction.
For this purpose, and for lack of a priori information about the
LHB projectiles, we shall assume that they behaved like the cur-
rent Jupiter family comets (JFCs). We consider three different
options. In our reference scenario, there is no physical evolution
at all, so all effects are simply ignored. In the other two scenar-
ios, we assume a size distribution for the initial nuclei, and we let
the radii of the individual nuclei decrease, orbit by orbit, due to
the mass loss that the comets suffer. In one case, we consider the
erosion caused by near-surface ice sublimation and associated
dust outflow. In the other case, we investigate the consequences
of the evolutionary scenario presented by Di Sisto et al. (2009),
using the case that they found to yield the best fit to the orbital
distribution of JFCs.

Specifically, in the two scenarios of physically evolving nu-
clei, we initiate a sample of 100 000 comets with given sizes,
and we ascribe different orbital evolutions to all of them. For
each subsequent orbit, we calculate the total amount of previous
erosion in terms of the decrease of the radius, and we hence keep
track of the current radius. When this is smaller than 0.1 km, we
consider the comet to be destroyed. The initial size distribution
is accounted for by weighting the objects according to their ini-
tial radii. Thus, our test objects may be considered to represent
a real population with some given total number and the chosen
distribution of initial radii.

4.1. Erosion model

In Paper I we present our model of surface erosion, which is
based on calculations of the H2O free sublimation flux as a func-
tion of heliocentric distance using a simple thermal model. This
flux is scaled by a factor 0.05 to account for a reduced activity
of JFCs, estimated by Di Sisto et al. (2009) to be 15% on the av-
erage, and the apparent existence of twice as many dormant as
active JFCs (Paper I), indicating that JFCs experience no mass
loss for 2/3 of the time. These results are applied to all the or-
bits of our sample by integrating the flux with respect to true
anomaly. The integrated H2O mass loss per orbit is augmented
by an equal amount of mass assumed to represent the dust out-
flow. Finally, the depth of the eroded layer is found by using an
assumed JFC density to be discussed in Sect. 7.1.

In this model we do not account for mass loss by splitting or
fragmentation of the comet nuclei. We admit that this is a ques-
tionable assumption, but in our opinion the importance of split-
ting for the destruction of comet nuclei in general is not proven
beyond doubt. However, in the next considered model splitting
is the major contributor to the loss of comets.
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4.2. Di Sisto model

In this model, the comet nucleus loses mass due to surface subli-
mation of H2O ice, and thermal modelling of this process has
yielded a polynomial fit to the amount of mass loss per unit
area per orbital revolution as a function of the perihelion dis-
tance (Eq. (3) of Di Sisto et al. 2009). Dividing this by the bulk
density of the nucleus, one gets an erosion depth, which repre-
sents the idealized case of a freely sublimating surface. This is
multiplied by a factor less than unity, representing the “active
fraction” of the comet. Following Di Sisto et al. (2009), we have
used a constant active fraction of 0.15. Unfortunately, they did
not mention which bulk density they used, so we take 500 kg m−3

as a representative value from recent estimates of JFC
densities.

We note for completeness that we modified their equation
for the mass loss slightly. The formula is intended for use only
up to perihelion distance q = 2.5 au, and we naturally adhere
to this. However, close to the upper limit of the range of q, the
polynomial function has a minimum value close to zero, after
which the curve turns upward again. We have removed this in-
crease by putting the mass loss equal to zero beyond the mini-
mum. It is also worth emphasizing that our own erosion model
differs in several respects from the one of the Di Sisto model.
First, the sublimation flux that we use is generally larger than
that of Di Sisto et al. Second, our active fraction is smaller, as
explained above. Thirdly, in our model we consider sublimation
up to a maximum of 6 au heliocentric distance, and erosion is
hence modelled for all perihelion distances below this limit.

In Di Sisto et al. (2009), splitting events are modelled as
stochastic with a probability f of happening per orbital revo-
lution, given as a function of the perihelion distance by

f = f0(q/q0)−β. (1)

Each splitting event involves the loss of a fraction s of the current
mass of the nucleus, where s is given by

s =
s0

R/R0
(2)

as a function of the radius R of the nucleus. In summary, the
frequency of splitting events decreases with increasing perihe-
lion distance, and the relative mass loss per event decreases with
increasing size of the nucleus.

As parameters for this splitting model, we took those of
Di Sisto et al.’s best fit case (their Model 4):

– β = 0.5
– f0 = 1
– q0 = 0.5 au
– s0 = 0.001
– R0 = 10 km.

This means that comets are assumed to split about once per or-
bit, when the perihelion distance is less than 1 au, losing about
1% of the mass each time, when the radius is about 1 km. We
modified the Di Sisto et al. approach, as far as they described it,
in order to model correctly the situation when f > 1, since this
is of significant occurrence. Thus, we used a Poisson distribu-
tion with expectance f to draw a random integer, and we let the
nucleus split this number of times during the orbit in question.
After adding all the contributions to the mass loss for each or-
bit, we calculated the total erosion depth and applied this as a
decrease of the nucleus radius.

The Di Sisto et al. (2009) investigation differed some-
what from ours regarding the dynamical model. Their initial
conditions were different, the integrator was different, and they
included explicitly Venus, Earth and Mars in addition to the gi-
ant planets as perturbing bodies. In addition, in contrast to us,
they added a slight non-gravitational force to the equations of
motion. Nonetheless, we have applied their physical evolution
model without corrections to our sample of orbital evolutions.

However, the use of a physical model obviously requires the
assumption of a size distribution for the comet nuclei. For this,
Di Sisto et al. (2009) used a current JFC cumulative size distri-
bution (CSD) based on Tancredi et al. (2006) and Fernàndez &
Morbidelli (2006), assumed to be valid for q < 2.5 au:

N1(>R) = CR−s1 0.1 < R ≤ 1

N2(>R) = CR−s2 1 < R ≤ 10

 (3)

with s1 = 1.3, s2 = 2.7, and R is given in km. They arbitrarily
took a few values for the initial radius and applied these to equal
numbers of initial comets. These evolved independently using
the physico-dynamical model and as a result, a sample of comet
orbits with q < 2.5 au was obtained, where each orbit was as-
sociated with a specific, current value of the nucleus radius. If
the radius of a nucleus decreased below 0.1 km, the comet was
considered lost. Weights were applied to different radius inter-
vals in order to scale the relative numbers of orbits in the sim-
ulated sample into the observed size distribution as described
above. From the weighted numbers, distributions of orbital el-
ements could be constructed for comparison with observations.
The preferred model of physical evolution was chosen based on
this comparison.

Our problem is different. We do not need to test differ-
ent physical evolution models, since we can use the one that
Di Sisto et al. (2009) found to be the best. On the other hand,
while these authors did not opt to solve for the best initial size
distribution in order to get as close as possible to the observed
size distribution without weighting, we deem this to be an es-
sential check, and we will present our results in the following
section.

4.3. Influence on size distribution

In both our models for the physical evolution of comet nuclei,
we expect that this evolution may affect the slope of the comet
size distribution, so that the power law index of the current CSD
differs from that of the source population, from which the comets
are captured. We have thus performed special simulations to
measure the extent of this effect. The method is to launch a
set of 100 000 comets with randomly chosen initial radii, uni-
formly distributed between 1 and 10 km, associate them in a ran-
dom way to the 100 000 orbital evolutions, and run each phys-
ical evolution model on the whole set. We may simulate any
initial CSD by means of weight factors coupled to the comets.
In both models we consider comets to be alive only until the ra-
dius decreases below 1 km. From the entire pool of orbits of such
comets with perihelion distances less than 2.5 au including their
initial weights, we can assemble the current CSD and measure
its slope index.

We have thus simulated test samples with many different val-
ues of the initial CSD index for both physical evolution models,
and in Table 5 we present the comparison with the resulting cur-
rent indices. For the erosion model, we note that the current dis-
tribution is always slightly shallower than the initial one. In the
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Table 5. Initial and steady-state power law indices for the cumulative
size distribution of JFCs.

Initial index Current index
erosion Di Sisto

−1.0 −0.88 −1.44
−1.5 −1.31 −1.79
−2.0 −1.75 −2.08
−2.5 −2.19 −2.26
−3.0 −2.65 −2.33
−3.5 −3.11 −2.32
−4.0 −3.58 −2.28

Notes. The initial index (left column) holds at the moment the comets
reach q < 3.9 au. The steady-state indices refer to JFCs with q < 2.5 au
with physical evolution according to the erosion model (middle column)
or the Di Sisto model (right column).

range of slopes commonly found for observed JFCs, the differ-
ence amounts to about 0.2−0.3 in agreement with the results by
Weissman & Lowry (2003). This effect may have a rather triv-
ial explanation. In the erosion model, the depth typically eroded
away is independent of the size of the comet. Therefore, if the
ratio between two initial radii is xi > 1, the ratio between the
current radii of the same comets is xc > xi, but the ratio between
the numbers of comets remains the same.

The result for the Di Sisto model is more remarkable. While
an initially very shallow CSD steepens up, the effect is the op-
posite for an initially very steep CSD. In particular, the current
CSD of the Di Sisto model apparently cannot be steeper than a
value around −2.3 for the CSD index. Physically, this is reason-
able, since the smallest comets suffer an extremely high death
rate owing to their efficient mass loss by splitting. Hence, if we
feed a very large number of small comets into the JFC popula-
tion by means of a steep initial CSD, this has no effect on the
current CSD, since these comets die too fast.

A consequence of this is that the Di Sisto model is not able to
reproduce the steep CSD of observed JFCs, which was assumed
during the construction of the model (this index was −2.7, as
mentioned above). Due to this inconsistency, we prefer to use
the Di Sisto model only to illustrate the effects of assuming a
furious splitting rate. We do not consider it a realistic model for
the actual evolution of JFCs.

In view of the above, we have opted to use the same two
CSD indices (−1.5 and −2.5) as in Paper I. They yield current
CSD indices that are more or less consistent with observations of
JFCs (Morbidelli & Rickman 2015), independent of which phys-
ical evolution model we employ.

5. Decoupling from Jupiter

As regards dynamical evolution, the cometary LHB projectiles
have a present-day analogue in the Jupiter Family comets (JFCs).
Thus, the time-integrated impact rates per object that we calcu-
late should be similar to those characterizing the JFCs. How-
ever, one feature of the JFC dynamics is not properly included
into our six-body gravitational model. This is the evolution into
orbits decoupled from encounters with Jupiter due to small aphe-
lion distances. Such objects have very long dynamical lifetimes
and may be inner planet crossers for a long time, increasing their
chance to hit the targets.

Comet 2P/Encke is a case in point. Its current orbit has per-
ihelion and aphelion distances q = 0.33 au and Q = 4.11 au,

respectively. Its association with the Taurid meteoroid complex
and possibly, the Tunguska impactor (Kresák 1978) shows its
relevance for discussions of the current Earth impact risk.

Concerning mechanisms for the transfer of comets into
Encke-like orbits, Levison et al. (2006) gave strong preference to
the perturbations by terrestrial planets including orbital deflec-
tions experienced at close encounters. In Paper I we described
our investigation of such transfer, where we used an approxima-
tion that involved a strong focus on the closest possible encoun-
ters, and we found by comparison with Levison et al. (2006) that
this method is severely underefficient in producing Encke-like
comets. As a result, some insight into the dynamics of transfer
was gained. However, it follows that we are unable to use the
deflected comets of our investigation for realistically evaluating
their contribution to the impact rates.

Instead, we make a crude estimate based on the results of
Levison et al. (2006). They estimated three active, Encke-like
comets1. This was based on an estimated total of 540 usual JFCs
with the same sizes (nuclear diameter D > 1 km) and q < 2.5 au.
According to Table 3 of Paper I, more than 60 of these would
hence have q < 1 au, and about 14 would have q < 0.5 au.
Since Fig. 1b of Levison et al. (2006) shows that most Encke-
like comets would have perihelion distances between 0.5 and
1 au, we conclude that the steady state number of Encke-like
comets is ∼5% of the number of potential impactors in the usual
Jupiter Family.

The contribution of Encke-like comets to the impact rates is
larger, since their orbital periods are shorter and they cross the
planet orbits more frequently. However, the effect of this cannot
be much larger than a factor two, so we conservatively estimate
that the Encke-like comets may yield impact rates ∼5–10% of
those of usual JFCs. In the following, we will estimate the latter,
and there will be considerable error bars due to uncertainties over
the mass of the primordial disk and the transfer efficiency from
the disk into the inner solar system. Therefore, it seems relevant
to account for the Encke-like comets by simply adding 10% to
the estimated impact rates.

We note that the production of Encke-like comets according
to Levison et al. (2006) necessitates a rethinking about the phys-
ical evolution of comet nuclei. Since the time scales needed are
much longer than the estimated active lifetimes of JFCs, these
authors speculated that comets may spend most of their time in a
dormant state, being reactivated upon large reductions of the per-
ihelion distance (Rickman et al. 1991). Such a picture deviates
fundamentally from the ones we apply in this paper (Sect. 4).
So far, it remains speculative, but if it proves realistic, the confi-
dence in our reference model is considerably increased.

6. Impact probabilities

6.1. The planetary case

WheneverM < Rcoll so that the impact probability is non-zero,
we estimate this probability by the MOID method as described
by Rickman et al. (2014). In almost all cases, the variant called
MOID-chord is accurate enough (see Fig. 1). It means that we
consider the circular contour of the planet’s collisional cross-
section as imaged on the b-plane (Greenberg et al. 1988). The
locus of all crossing points of the projectile for the different tim-
ings of the encounter that yield a collision is a chord within this
circle, and the full timing range is found, dividing the length of

1 By Encke-like the authors mean a comet with aphelion distance Q <
4.2 au and semi-major axis a < 2.4 au.
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Fig. 1. Illustration of the MOID-chord method of calculating the ran-
dom probability of collision with a target planet, given a known value
of the minimum orbit intersection distance (MOID). The target’s colli-
sional radius defines a circle in the b-plane, and the time it takes for the
target’s projection to move the distance EE′ divided by its orbital period
gives the probability. From Rickman et al. (2014) with permission.

the chord by the projection of the planet’s orbital velocity onto
the b-plane. Dividing this timing range by the orbital period of
the planet yields the collision probability.

Only in special cases, when the projectile orbit has i < 0.1◦
or 0.999 < q/qpl < 1, do we resort to the accurate MOID-track
method (Rickman et al. 2014). These cases are of extremely rare
occurrence in our dynamical sample.

Our method does not involve any super-sizing of the plan-
ets. Collisional probabilities are only calculated using the actual
collisional radii. It is the use of a very rich sample of encoun-
ters, resulting from our cloning and integrations, that guarantees
a good statistical accuracy in our derivation of a global, time-
integrated impact rate for the population of projectiles. Another
virtue of our technique is that each non-zero probability refers
to an impact with a given velocity, and hence we can also find
the distribution of impact velocities for each planet as well as the
distribution of crater sizes – see Sect. 7.4.

Figure 2 illustrates some results for 4000 randomly chosen
collisional orbits (1000 per target planet) in the reference model
with infinite physical lifetimes. The encounters withM < Rcoll
are ordered chronologically for each planet, and the respective
collision probabilities are marked by symbols that identify the
planets. The scatter seen among the individual collision prob-
abilities for any planet is caused by two phenomena. On the
one hand, the actual MOID values differ, and on the other hand,
the encounter velocity vectors make different angles with the b-
plane. The trend between the different planets is explained by the
fact that, as seen from the discussion in Rickman et al. (2014),
the plotted probability is proportional to the ratio between the
planet’s radius and its orbital semi-major axis.

6.2. The lunar case

In order to compute the probability of an impact on the Moon
for a projectile with ME < M0, we have to deal with a double

Fig. 2. Individual collision probabilities for random samples of
1000 comet orbits per planet, all of which satisfy the condition M <
Rcoll for the planet in question. For each planet, the orbits are ordered
chronologically. The coloured symbols denote: Mercury (black circles),
Venus (red squares), Earth (green triangles), and Mars (blue diamonds).

timing problem. The first step is to consider the geocentric torus
spanned by the Moon during its orbital motion as the target, and
to find the range of the Earth’s mean anomaly at the epoch, which
allows the projectile to pass through this torus. If there is no such
range for the projectile in question, the lunar impact probability
is obviously zero. In the complementary case of a non-vanishing
range of relevant Earth timing, we have to identify the part of the
lunar torus that the projectile crosses as a result of the combined
heliocentric orbital motions of the Earth and the projectile. Then
we consider all values of the Moon’s geocentric mean anomaly
at the epoch and find the range, for which a lunar impact occurs.
Finally, the lunar impact probability is found, in principle, as a
double integral over the two mean anomalies.

We have developed a numerical code that performs these cal-
culations, and we show some test results in Fig. 3. Here we com-
pare the average impact probabilities of the Earth and Moon for
objects that penetrate within the distance M0 from the Earth’s
centre. These probabilities have been calculated for samples of
50 000 such objects with special combinations of q and i, always
using a = 3.5 au. For these checks we took the Earth’s orbit as
circular at 1 au in the ecliptic plane. We plot the ratio between
the impact probabilities of the Earth and the Moon as a func-
tion of the perihelion distance of the projectiles for a constant
inclination of 10◦.

The figure illustrates several results. First, we note that re-
placing the Earth by the Moon without gravitational focussing
would reduce the cross-section by a factor 13.45. The ratio S
plotted in the diagram for the case when gravitational focussing
is neglected (green dots) is always larger than 13.45, showing
that in this case the fact of the Moon’s geocentric orbital motion
has the effect of enhancing the Earth/Moon ratio. This is likely
a geometrical effect rather than a consequence of the Moon’s
velocity.

We also recognize that including the gravitational focussing
has a large influence on the S ratio, when the projectiles have
perihelion distances in the vicinity of 1 au, while the effect is
only moderate for smaller perihelion distances. Of course, grav-
itational focussing occurs mainly for the Earth because of its
much larger escape velocity. This is enhanced by the fact that the
unperturbed approach velocity to the Earth−Moon system de-
creases, as q approaches 1 au. The red dots show this trend for the
ancient lunar orbit. In fact, calculating S including gravitational
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Fig. 3. The ratio (S ) between the impact probabilities for the Earth and
the Moon as found in test calculations (see the main text) is plotted ver-
sus the perihelion distance of the projectile for a constant inclination of
10◦. Green dots: gravitational focussing neglected. Red and blue dots:
gravitational focussing included, using the Moon’s ancient and contem-
porary orbital semi-major axis, respectively.

focussing for the case where the Moon is at rest at the place of the
Earth yields a value of 20.59 for q = 0.9 au, indicating that the
Moon’s orbital motion has a similar effect with gravitational fo-
cussing as without it. We have also checked the influence of the
inclination of the projectile orbit and found it to be very small
for the typical values encountered. The explanation is that the
approach velocity is given by the projectile’s Tisserand parame-
ter relative to the Earth. This depends explicitly on cos i, which
varies little over the range in question.

We have repeated the calculation of S (q) with gravitational
focussing, using the contemporary semi-major axis of the lunar
orbit, and the results are shown by the blue dots. The good agree-
ment between S (q) for the two orbits shows that our choice of
radius for the ancient orbit is not critical for the derived impact
rates.

For completeness, we mention a peculiar behaviour that is
not shown in Fig. 3 but appears for q values extremely close
to unity. We then find that S (q) takes very large values (several
hundred) due to the fact that the Earth’s impact probability ex-
hibits a very high ridge at q = 1 au, when plotted versus q and i
(Rickman et al. 2014), while the geometric effect of the Moon’s
orbit is to wash out this ridge. However, the projectile orbits for
which this effect would be appreciable are extremely few in our
sample.

7. Impacts on the Moon and planets

7.1. Disk properties

The number of cometary impacts that we find will obviously
depend on how many comets we feed into the system. This in
turn comes from our assumptions about the primordial, trans-
planetary disk – in particular, its total mass and size distribution.
In addition, we need to specify the likelihood for disk objects

to be transferred into the inner solar system (q < 3.9 au) dur-
ing the dispersal caused by the outward migration of Uranus and
Neptune.

Following Rickman et al. (2015), we will assume a special
size distribution in the shape of a broken power law for di-
ameters less than 1000 km supplemented by 1000 Pluto-sized
objects. The latter play an important role in the Nice Model
(Levison et al. 2011) by stirring the planetesimal orbits to sig-
nificant eccentricities. The break in the power law occurs at a
radius of Ro = 50 km. For the larger objects with radii between
Ro and Rmax = 500 km, we use a CSD index of −4, based on
observational estimates for large TNOs. For the smaller objects
with radii from Rmin = 0.5 km to Ro, as mentioned above, we use
two values (−1.5 and −2.5) bracketing the range of most obser-
vational estimates for JFCs.

For the total disk mass Md, a likely range of 20−50 ME (Earth
masses) is often stated, and we will use two values probing the
lower and upper ends of this interval. Rickman et al. (2015) con-
sidered a minimal disk with 18 ME contained between Rmin and
Rmax, and 2 ME bound up in the 1000 Plutos, in order to mini-
mize the collisional destruction of the smaller objects. This will
be one of our two alternatives, and for the other one we double
the mass for radii below Rmax to 36 ME. The Pluto-sized objects
are irrelevant for our impact rates, since they are far too few to
hit any of our targets, and we shall neglect them in the following.

We model the differential size distribution of the disk objects
in terms of a power law frequency function ϕ(R′) given by

ϕ(R′) dR′ = CR′−s dR′, (4)

using the dimensionless variable R′ = R/Ro. In accordance with
the above values for the CSD index, we put s2 = 5 for R′ ≥ 1
and s1 = 2.5 or s1 = 3.5 for R′ < 1. By introducing

Φ1(R′) = C
s1−1 (R′1−s1 − 1)

Φ2(R′) = C
4 (R′−4 − R′−4

max)

 (5)

we can write the CSD in terms of the total number of objects as

N(>R′) =

 Φ1(R′) + Φ2(1); R′min ≤ R′ < 1

Φ2(R′); 1 ≤ R′ ≤ R′max.
(6)

We have: R′min = 0.01 and R′max = 10. With these values, the pa-
rameter C is very close to four times the number of disk objects
in the larger category (with R′ > 1).

There are four solutions for C, corresponding to the two val-
ues of s1 and the low and high masses of the disk. When solving
for C, we assume that all objects with R ≥ 50 km have a density
of 1000 kg/m3, and for all the smaller objects we use half of this
(500 kg/m3). We present the resulting numbers of disk objects
with R ≥ 50 km and with all sizes in Table 6.

Our assumed mass distribution for the projectile population
is top heavy: assuming the flatter of the two size distributions in
the lower range, the mass ratio between the larger and smaller
object populations is M2/M1 ≈ 2.7. For the steeper variant, we
have M2/M1 = 1.0. However, due to the steep size distribution
of the larger objects, relatively little mass is actually found in the
very largest ones.

In addition to the above properties, we also need to as-
sume an efficiency of transfer from the disk into orbits with
q < 3.9 au, from which we pick the initial conditions for our in-
tegrations. Here we will consider two values. Quoting previous
work by Levison & Duncan (1997) and Fernández et al. (2004),
Volk & Malhotra (2008) used an efficiency of 30% for scattered
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Table 6. Numbers of primordial disk objects with R > 50 km (upper
entries) and with all sizes (lower entries).

Mass\
Index s1 = 2.5 s1 = 3.5

18 ME 4.16 × 107 2.85 × 107

1.11 × 1011 4.56 × 1012

36 ME 8.32 × 107 5.70 × 107

2.22 × 1011 9.12 × 1012

Notes. Two values of the differential size distribution index s1 for
R < 50 km and two values for the total disk mass corresponding to
R < 500 km are used.

disk objects to reach the Jupiter Family after encountering Nep-
tune, and this can be translated into a crude value of f = 1/3 for
our efficiency. However, we may also base our estimate on the
results by Nesvorný et al. (2013), who simulated the capture of
Jupiter Trojans following the migration of the ice giants. They
found the likelihood for a primordial disk object to hit the Earth
to be (2−4) × 10−7 (Nesvorný, priv. comm.), while we will re-
port a probability of about 3 × 10−6 for objects of our initial
population to hit the Earth. Both results are found by assuming
infinite physical lifetimes. Hence, we may estimate an efficiency
of f = 1/10 by comparing the two collision probabilities.

Both values of f are crude estimates. Using more accurate
values is not warranted owing to the uncertainties over the actual
disk properties. We note that a value intermediate between the
two comes from comparing with the (Brož et al. 2013) results.
The above-mentioned Earth impact probability of 3×10−6 refers
to a sample of 5000 objects coming from a total of 27 000 disk
objects of Brož et al. (2013; see Paper I). This directly translates
into a probability of about 5× 10−7 for the entire disk. However,
about 1000 additional disk objects reached q < 3.9 au like our
initial population though with longer orbital periods. Assuming
these to have Earth impact probabilities similar to those we have
calculated, we can roughly increase the above estimate to 6 ×
10−7, indicating that the Nesvorný et al. disk is more excited that
the Brož et al. disk. Thus, the f value of the latter would be
1/4.5.

The cratering rates that we find depend on only one param-
eter, namely, the product f Md. To effectively bracket the whole
uncertainty range, we opt to combine on the one hand the larger
values, yielding a total mass of 12 ME for the objects populat-
ing our starting orbits, and on the other hand the smaller values,
from which the corresponding mass is 1.8 ME. For both of these
choices, we use the two values of the size distribution index s1.

7.2. Cumulative impact rates

As described above, we use three models for the physical evo-
lution of the cometary projectiles. In the reference model there
is no evolution at all, but in the other two models (the ero-
sional and Di Sisto models) the radii of the projectiles decrease
monotonously in manners that depend on the changing proper-
ties of the projectile orbits. However, we use the same procedure
to simulate the impact rates in all three cases.

In this procedure, we consider 100 000 sample comets. Each
one gets its own, individual orbital evolution picked at random
from our integrations. As initial nucleus radii (Rin) we consider
1000 discrete values, equally spaced in lg Rin. We divide the in-
terval from lg Rmin to lg Rmax into 1000 intervals of equal width
and place 100 comets at the middle of each interval. In the

Table 7. Expected number of impacts on the terrestrial planets and the
Moon per million cometary LHB projectiles, assuming infinite physical
lifetimes.

Target Ntot N50(2.5) N50(3.5)

Mercury 0.2394 0.898 × 10−4 1.496 × 10−6

Venus 2.212 8.299 × 10−4 1.382 × 10−5

Earth 2.830 1.062 × 10−3 1.768 × 10−5

Moon 0.1136 0.426 × 10−4 0.710 × 10−6

Mars 0.6799 2.551 × 10−4 4.249 × 10−6

Notes. Ntot is the total number and N50 is limited to projectiles with
R > 50 km. The latter is given for a differential size distribution index
of 2.5 or 3.5 for the smaller projectiles.

reference model each such set of 100 comets keep identical radii,
even though the orbits evolve differently. In the other two mod-
els, since the orbital evolutions differ, the 100 radii will soon
diverge.

Using the number of disk objects as a function of radius
and the transfer efficiency into our starting orbits as described
in Sect. 7.1, we associate each sample comet with its specific
number of projectiles. We use this throughout the simulation as
a weight factor. The weight factor only depends on the initial
radius and thus remains constant throughout the simulation.

Concentrating on one target at a time, we look for the col-
lisional orbits performed by the sample comets. Many comets
have no such orbits at all and will not contribute anything to
the impact rate, but others may have dozens. In the physically
evolving models, for each new orbit by a sample comet, its ra-
dius is updated by subtracting the proper amount of erosion. The
comet stays in existence until its current radius decreases below
0.1 km, when it falls victim to the erosional death and ceases
to exist. As long as this does not happen, each orbit is checked
for a potential impact. If the orbit is found to be collisional, the
necessary data about the impact is entered into an impact data
base, where we list the identity of the target, the probability of
the event, the weight factor, current radius and approach speed
of the projectile.

First, we derive a cumulative impact rate for each target by
simply adding the collision probabilities of all orbits for that tar-
get. This refers to 100 000 projectiles entering into the inner so-
lar system, and thus we derive the cumulative impact rate per
such initial projectile for each target. These rates are presented
in Table 7 for the reference model as expected numbers of im-
pacts for a total of one million initial projectiles of all sizes. We
also show the expectances for the numbers of impacts by the
subset of these with radii R > 50 km.

A few comments to this Table are in order. The impact rate
listed for the Earth is the one referred to above in Sect. 7.1, when
a value for the transfer efficiency from the primordial disk was
derived. Comparing this to the lunar impact rate, we find the
average Earth/Moon ratio to be 24.9. Such a comparison was
presented in more detail in Sect. 6.2 as a function of orbital el-
ements. In this sense the value just found is an average over the
elements of the Earth−Moon collisional orbits. We further note
that the Mercury/Mars ratio of impact rates is as large as 0.35.
Thus, even though many more comets cross the orbit of Mars
than that of Mercury, and Mars presents a considerably larger
collisional cross section in absolute units, the chances of im-
pact on Mercury are enhanced by the rapid orbital motion of the
innermost planet, leading to a comparable average impact rate.
This effect was illustrated in Fig. 2.
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Table 8. Expected number of impacts on the terrestrial planets and the
Moon per million cometary LHB projectiles, applying the erosional
model of physical evolution.

Target Ntot(2.5) N50(2.5) Ntot(3.5) N50(3.5)
10−4 10−6

Mercury 0.0283 0.659 0.0155 1.10
Venus 0.4194 5.81 0.3031 9.68
Earth 0.7616 7.27 0.5924 12.1
Moon 0.0289 0.292 0.0224 0.486
Mars 0.2015 1.83 0.1660 3.04

Notes. See the note to Table 7.

Since the lifetimes of the projectiles are size independent in
the reference model, the total impact rates integrated over all
sizes do not depend on the initial size distribution. However,
when we turn to the models of shrinking nuclei, this indepen-
dence no longer holds true. Thus, in Tables 8 and 9 we present
the same quantities as in Table 7, but there are now two columns
for the total impact rates corresponding to the two values of the
slope index of smaller projectiles.

Table 8 shows several interesting results, when compared to
Table 7. The total impact rate by projectiles of all sizes decreases
by about an order of magnitude for Mercury when we take the
erosion by H2O sublimation into account – a little less for the
shallower size distribution and a little more for the steeper one.
But the targets moving further away from the Sun are consider-
ably less affected. In the extreme case of Mars, the total impact
rate decreases by a factor 3.4−4.1 depending on the slope in-
dex. Hence, the Mercury/Mars ratio has dropped from 0.35 to
the range 0.09−0.14. While Mercury was hit more than twice as
frequently as the Moon in the reference model, the lunar impact
rate is equal to or larger than that of Mercury in the erosional
model.

The reason for the decrease of the total impact rate is that
many comets with small initial radii do not survive until they
would enter their collisional orbits, when erosion is allowed for.
We note that this effect is large, even though our erosional model
appears quite conservative in its prediction of cometary mass
loss. When it comes to impacts by large objects (R > 50 km), the
situation is different. Most of the comets that start in this range
do not have time to shrink below the 50 km limit prior to their
collisional orbits, so the decrease in this part of the impact rate is
much smaller than for the total impact rate. As a crude estimate,
the relative decrease amounts to about 30% as an average over
all the targets.

Interestingly, the trend among the different targets is not the
same as for the total impact rates. This time, Mercury has
the smallest decrease (26.5%), and the Earth and Moon have
the largest (31.5%). The effect is likely caused by a difference
in time scales. The small comets that erode away entirely do so
faster than the large comets pass the 50 km limit. For the latter, it
is conceivable that secular perturbations play an important role
in decreasing the perihelion distances (see Paper I), so that Mer-
cury and Venus are protected by the slowness of this dynamical
evolution.

We now see a slight change of the Earth/Moon ratio for
the total impact rate. This ratio is now 26.4 – a significant in-
crease from the reference model. The most likely explanation is
that the collisional orbits now correspond to a younger popula-
tion that is less dynamically excited. The approach velocities to

Table 9. Expected number of impacts on the terrestrial planets and
the Moon per million cometary LHB projectiles, applying the Di Sisto
model of physical evolution.

Target Ntot(2.5) N50(2.5) Ntot(3.5) N50(3.5)
10−4 10−6

Mercury 0.0008 0.123 0.0001 0.205
Venus 0.0186 1.42 0.0044 2.37
Earth 0.0474 2.27 0.0197 3.77
Moon 0.0017 0.096 0.0007 0.159
Mars 0.0180 0.602 0.0102 1.00

Notes. See the note to Table 7.

the Earth−Moon system are thus smaller, and hence the Earth’s
gravitational focusing increases in importance. On the other
hand, the Earth/Moon ratio of impact rates by R > 50 km ob-
jects stays the same as in the reference model. This is natural,
since the dynamical heating precedes most of these impacts just
like in the reference model.

Table 9 shows the consequences of applying a model that in-
volves a very high splitting rate, perhaps in conflict with obser-
vational evidence. The possible virtue of this model is to imply
very short physical lifetimes, especially for small comets with
low perihelion distances. Let us first compare the total impact
rates with those of the erosional model. We see an extreme de-
crease for all targets but especially for Mercury. This amounts to
a factor of more than 30 for the shallower size distribution, and
more than 100 for the steeper one. These factors become smaller
in a monotonous way, when we go to more distant targets. For
Mars, they are 11 and 16, respectively.

Comparing with the reference model, we see that less than
one comet in 300 manages to hit Mercury before it disappears
by the physical evolution of the Di Sisto model. For Mars, we
get less than about one comet in 40. Of course, this dramatic
destruction mainly concerns the small comets. The comets that
start out with R > 50 km suffer much smaller losses. However,
these losses are larger in the Di Sisto model than in the erosional
model. Now the trend is monotonous – for Mars, 76.4% of the
large initial comets pass the 50 km limit before the collisional
orbits are reached, while for Mercury this increases to 86.3%.

This means that the time scale for the shrinkage of the nu-
clei is shorter with the Di Sisto model for comets of all sizes. It
seems likely that this inhibits the dynamical protection of Mer-
cury and Venus that operated in the erosional model. Concerning
the Earth/Moon ratio for the total impact rate, this has now in-
creased to 27.2, since the impactor population is now extremely
young. Interestingly, for the R > 50 km objects the ratio has now
dropped to 23.7 compared to 24.9 in the reference model. A pos-
sible explanation is that, as compared with the reference model,
the early impacts by relatively small objects are now suppressed
by shrinkage below the radius limit, while the larger, long-lived
objects tend to approach the Earth only after the orbits become
dynamically excited.

7.3. The largest cometary impactors

Combining the numbers in Tables 6 and 7, we see that the ex-
pected number of impacts by projectiles with R > Ro (diame-
ters exceeding 100 km) is not very large even in the reference
model. For instance, for the Moon this number is 3.15 for the
disk with the largest number of large objects and the highest
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transfer efficiency into the inner solar system. Hence, for this
size range, which contains a large fraction of the total mass of
projectiles, we need to account for the probability distribution
of the actual number of impacts and derive the relevant statistics
of some quantities, including the largest impactor radius and the
total mass of the large impactors.

To solve this problem, we take the Poisson distribution as
relevant. This means that the occurrence of an impact by a large
enough projectile is independent of how many such impacts have
already occurred, which seems trivially guaranteed. Thus, if λ is
the expectance for the number of large impacts, we model the
actual number k of large impacts that occurred in the real solar
system by means of a probability mass function

f (k; λ) =
λke−λ

k!
· (7)

Now, consider the above-described impact data base for an
arbitrary target, an arbitrary disk-transfer model and an arbitrary
model of physical evolution. Each entry corresponds to one col-
lisional orbit, and we use the current radius R of the projectile,
its weight w, and the impact probability p. Since w is the number
of initial comets represented by this sample object, the product
wp means an expected number of actual impacts by projectiles
with the current radius R.

Let us order the entries according to decreasing current radii.
Going through this ordered list and tracing the increasing sum of
wp, we eventually come to an entry, for which this sum exceeds
the value 5 (this choice is arbitrary but seems natural). At this
point, we call the current radius R5. Thus, the expectance for
the number of impacts by projectiles with radius R5 or larger
is λ ≈ 5. We then perform a Monte Carlo simulation drawing
1000 random values of k according to Eq. (7). As an example,
for the Moon we find R5 to range between 19 and 42 km for
the four disk models, when the reference model is applied. In
the extreme case of the Di Sisto model, these values are 4 and
22 km.

For each case we generate k random values of R, using the
already determined set of values for the sum of wp at differ-
ent radii, by picking a uniform random number x on the inter-
val [0, λ]. The radius for which x is closest to the sum of wp is
taken as a random value of R. We take the largest of these k ran-
dom R values as one random realization of Rmax, the radius of
the largest projectile hitting the target. We finally use the set of
1000 values of Rmax to determine the median and the lower and
upper quartiles, assuming these to characterize the true parent
distribution of Rmax.

We also calculate the masses of all these simulated impactors
using the densities mentioned above. For each of the 1000 re-
alizations of the set of impactors with R ≥ R5, we thus get a
total mass M5. We derive the median and quartiles of M5 and as-
sume these to characterize its true parent distribution. For all the
smaller radii we just form the sum of all the current projectile
masses, each mass being multiplied by wp, to get the total im-
pactor mass Msmall. This approximation is warranted, since the
number of such projectiles is large enough for its statistical un-
certainty to be neglected.

The median radius of the largest impactor is invariably found
to be largest for the disk model with the largest value of f Md and
the more shallow size distribution of the smaller objects. Simi-
larly, it is always smallest for the opposite combination of the
smallest value of f Md and the steepest size distribution of the
smaller objects. In the following, we focus on these two extreme
models, which we call the maximum and minimum models, re-
spectively. In Fig. 4 we present the medians and quartiles of Rmax

Fig. 4. Maximum cometary impactor radius for Mercury, the Moon and
Mars. Each error bar extends from the lower to the upper quartile of the
cumulative probability distribution with the median marked by a filled
circle for the maximum model and a cross for the minimum model of the
disk. The red colour is used for the reference model, the blue colour for
the erosional model, and the magenta colour for the Di Sisto model. The
shaded band for the Moon indicates an observational constraint based
on the Jupiter Trojan population (see the main text).

for Mercury, the Moon and Mars in the reference, erosional and
Di Sisto models, using the maximum and minimum disk models.

It is evident that the results for the reference and erosional
models are quite similar, whereas the Di Sisto model predicts
much smaller impactors. Naturally, these trends are similar for
all three targets. The difference between the maximum and min-
imum disk models is as large as the one between the physical
evolution models. In this regard, it is interesting to use an obser-
vational constraint based on the population of Jupiter Trojans.
The cumulative number of Trojans brighter than absolute magni-
tude H is well known for the larger objects and can thus be used.
Nesvorný et al. (2013) found the trapping probability of Trojans
during the time of planet migration to be pt ∼ 6−8 × 10−7 per
object in the primordial disk, while the collision probability with
the Moon can be estimated at pc ∼ 1−2 × 10−8 by combining the
value listed in Table 7 with the estimates of transfer efficiency f
in Sect. 7.1.

Multiplying the cumulative H distribution of Trojans by
pc/pt, the number 1 is reached at H ' 9.1−9.8, which for an
albedo of 0.07 means a radius range of 27.5−37.5 km. We con-
sider this to be a realistic constraint on the size of the largest
lunar, cometary LHB impactor, and the range is marked in Fig. 4
as a grey band in the strip of the Moon. Evidently, this gives
preference for the minimum disk model over the maximum one,
and we conclude that reality is likely closer to the former.

By adding the two above-mentioned mass contributions M5
and Msmall, we get our results for the total mass Mtot of cometary
LHB projectiles hitting each target. In Fig. 5 we show these re-
sults for the same targets as above. The statistical error bars re-
fer only to the contributions by the largest objects and are thus
somewhat underestimated.

For Mars as well as the Earth, it is interesting to compare Mtot
to their estimated water inventories. In the case of the Earth, we
get a maximum total impactor mass that is less than 2 × 1020 kg.
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Fig. 5. Total mass of all the cometary impactors on Mercury, the Moon
and Mars, plotted on a logarithmic scale. The error bars, and the colours
and symbols, have the same meaning as in Fig. 4.

This is far less than the ocean mass (1.35×1021 kg), which in turn
is considerably less than the Earth’s total estimated water con-
tent. Thus, clearly, most of the water was picked up by the Earth
during its early era, before the LHB, as predicted by Morbidelli
et al. (2000). For Mars, Fig. 5 shows that the highest obtainable
values of Mtot are less than 1 × 1020 kg. If we take the minimum
disk model to estimate Mtot ' 7 × 1018 kg and use a mass frac-
tion of 20% for water in a comet nucleus, guided by Rosetta re-
sults for comet 67P (Rotundi et al. 2015), we obtain about 10 m
Global Equivalent Layer, which is much less than the estimated
total inventory of martian water (Lammer et al. 2013). We con-
clude that the presence of liquid water on the surface of Mars
during the Noachian did not occur because the planet swept up
its water at that time through the LHB. This water must have
arrived much earlier – probably simultaneous with or even pre-
ceding the arrival of water onto the Earth (see Brasser 2013).

In the case of the Moon, the first thing to note is that Mtot is
less than 1019 kg for all model combinations. This can be com-
pared with the mass estimates for the lunar basin-forming im-
pactors (Levison et al. 2001), from which a crude, total LHB im-
pactor mass can be derived. Using a median approach speed of
18 km s−1 for the lunar projectiles (see Fig. 6 in Sect. 7.4), we
estimate this mass to be '1019 kg within a factor of a few. Thus,
even if we had confidence in the maximum disk model and evo-
lutionary models with relatively long lifetimes, we would just
barely be able to match the observations in this sense. For the
minimum model, there is no doubt that comets provided only a
minor part of the total mass of lunar LHB impactors.

7.4. The largest impact basins

In order to calculate crater sizes, we need to know the speed of
impact, Vimp. This is obtained from the asymptotic approach ve-
locity U and the escape velocity Ve at the surface of the target by

V2
imp = U2 + V2

e . (8)

Since we know U for each collisional orbit as well as the corre-
sponding projectile weight and impact probability, we can easily
derive the distributions of U for impacts on all the targets. We
present these graphically for the reference model in the left panel
of Fig. 6 by means of cumulative probability curves. A signifi-
cant contribution by velocities larger than the circular speed (Uc)
at the mean distance of the target from the Sun is a striking fea-
ture for all planets. For Mars and the Earth, about 10% of the
encounters occur with U > Uc, for Venus almost 15% and for
Mercury about 30%. In these cases, the Tisserand parameters Tt
with respect to the target planets fall in the range Tt < 2.

In part, the far tails of the U distributions are due to the sec-
ular heating of the projectile population, which occurs in the ref-
erence model. We showed in Paper I that this leads to a signifi-
cant fraction of high inclinations. The fact that Mercury is more
affected than the other planets, followed by Venus, may partly
reflect a difference in dynamical age. It takes longer time, on av-
erage, for comets to be able to encounter the innermost planets
than the outermost ones.

In the right panel of Fig. 6 we show the changes of the U dis-
tribution for the Earth, as we move from the reference model
to those of shrinking nuclei. For the latter we have chosen the
variant with the shallower size distribution of the smaller ob-
jects. Choosing the steeper size distribution, the results are sim-
ilar, but the difference from the reference model is even more
pronounced. The obvious trend is for the velocities to decrease,
when the erosional effects are stronger and the lifetimes of the
nuclei are reduced. The long-term dynamical heating of the
Jupiter Family is thereby avoided.

Since the size of the craters (or basins) formed by impacts
on the targets increases with velocity as well as radius of the
projectile, this should mean that, in a statistical sense, the largest
basin diameter on any target is quite sensitive to the efficiency of
erosion. For a higher erosion rate and shorter lifetimes, not only
does the maximum projectile size decrease, but the likelihood of
a high velocity also decreases.

To calculate the probability distribution of the largest basin
diameter, we use the same procedure as for the maximum pro-
jectile radius. For each entry in the impact data base we calculate
the crater diameter (D) as described in the following paragraphs,
using the speed of impact as calculated by Eq. (8). We then order
the entries according to decreasing D, and we identify the entry
with crater diameter D5, for which the sum of wp reaches a value
λ ≈ 5. The Monte Carlo simulation is made in the same way as
for the maximum projectile radius, and we now determine the
median and quartiles of Dmax.

We use the general formula proposed by Holsapple &
Housen (2007) for the radiusRtr of the transient crater formed by
a point source impactor with radius R, hitting the target surface
with a velocity whose vertical component is v:

Rtr = K1R
[
gR
v2

(
ρt

ρ

)2ν/µ

+

(
Yt

ρtv2

)1+µ/2 (
ρt

ρ

)ν(1+2/µ)]−µ/(2+µ)

, (9)

where ρt and Yt are the density and strength of the target material,
g is the surface gravity of the target, and ρ is the density of the
projectile. We use ρt = 2700 kg/m3 and Yt = 6 × 107 dyne/cm2

for all the targets, the latter being an average of the range
2 × 107−2 × 108 dyne/cm2 (Asphaug et al. 1996). For the numer-
ical parameters we use µ = 0.55, ν = 0.4 and K1 = 0.93 as appro-
priate for rocky targets (Holsapple & Housen 2007). We assume
the impacts to occur at random on the spherical target surface,
yielding an average of 2/3 for the projection factor transform-
ing Vimp into v.
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Fig. 6. Left panel: cumulative distributions of approach velocities to different planets for collisional orbits in the reference model. The curve
for Mercury shows some wiggles owing to relatively sparse material. The thin vertical lines indicate the circular speeds at the mean distance of
each planet. Right panel: cumulative distributions of approach velocities to the Earth for collisional orbits in the reference, erosional and Di Sisto
models. For the latter two, the slope index s1 = 2.5 has been used. The wiggles in the curve for the Di Sisto model are due to the sparse material.

Fig. 7. Maximum cometary impact basin diameter for Mercury, the
Moon and Mars. The meaning of the “error bars”, markers and colours
is the same as in Fig. 4. The grey lines indicate the diameters of the
largest basins considered to be LHB-related on the three targets. The
commonly used names of these basins are written above the respective
lines.

The transient crater evolves by slumping into the simple
crater, whose diameter is

Dspl = 2Rtr(1 + csl), (10)

where the slumping coefficient csl is taken as 0.3 in accordance
with many previous papers. The diameterDcpx of the final, com-
plex crater isDcpx = Dspl in caseDspl < D

∗, and

Dcpx = D∗(Dspl/D
∗)1.18 (11)

in case Dspl > D
∗. For the transition diameter we use D∗ =

18 km for the Moon (Melosh 1989), and for Mars and Mercury
we use D∗ = 6.5 km and 10 km, respectively (Kring 2006). The
resultingDcpx is taken as the crater diameter D.

In Fig. 7 we present the results for the maximum basin di-
ameters using the same two disk models as for the maximum
projectile radii and total impactor masses. If we had confidence
in the maximum model, we would say that both the Caloris and

Imbrium basins could reasonably be formed by LHB comets,
unless the Di Sisto model is the most reasonable picture of phys-
ical evolution. However, the above calibration using the Trojans
gives stronger support for the minimum disk model. Hence, we
conclude that the majority of large LHB-related impact basins
on the Moon, Mercury and Mars were formed by the asteroidal
component. For the Moon, the largest cometary basin would
rather be similar to Mare Crisium (D ' 555 km) in size. This
corroborates the conclusion by Bottke et al. (2012) and supports
their hypothesis that the dispersal of the asteroid E-belt was the
main reason for the observed impact evidence.

There is a difference between Mars and the two other targets
in that none of our cometary models is even close to explaining
structures of sizes comparable to the Hellas basin. In fact, our
models predict basins on Mercury of at least the same size as on
Mars in stark contrast to the difference between the diameters of
Hellas and Caloris. A speculative suggestion that would need to
be confirmed is that the E-belt source of impactors is more likely
to favour Mars as target due to its closeness to the martian orbit.

7.5. The areal crater density

We have also used the crater diameters resulting from the impact
data bases to form the sum of wp for all entries with D > 20 km.
This represents the expectance for the total number of such
craters formed by the LHB comets on the target in question.
Assuming these to cover the surface uniformly, we divide by
the total surface area of the target and calculate the areal den-
sity of D > 20 km craters per million km2. Of course, this den-
sity is model dependent, and the resulting values span a wide
range. However, guided by the preference for the minimum disk
model, and noting that the model with the lower disk mass and
the shallow size distribution yields similar results for the largest
impactor radius, we now concentrate on these two models only.

Figure 8 shows the results of this calculation for the same
three targets as in the previous illustrations. However, the re-
sults are now plotted on a log scale. For each physical evolution
model, we mark the crater density for each of the two disk mod-
els. We also include an observational background, obtained as
follows. For the Nectarian strata of the lunar highlands, there
is an estimate of 100 D > 20 km craters per million km2 by
Marchi et al. (2012). For the highlands of Mars and Mercury,
similar numbers are reported by Werner (2014). We thus use this
crude number as a common crater density for all three targets –
something that may seem like a remarkable coincidence.
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Fig. 8. Areal density of D > 20 km craters for Mercury, the Moon and
Mars. For each target the three physical evolution models are plotted
using the same colours as in Fig. 4. The upper cross is for the steeper
size distribution of the small disk objects, and the lower cross is for the
shallower one. The low mass disk is used in both cases. The lines at the
common level of 100 craters per million km2 mark the observational
reference data.

If we had confidence in the reference model, we would con-
clude that the size distribution is quite far from the steep variant,
because otherwise too many craters would be produced – espe-
cially on Mercury. However, we deem the reference model to be
unlikely in view of the observational evidence for mass loss and
destruction of comets. Hence, we should rather use the data from
the evolving models, and these have one feature is common: the
comets provide only a minority of the craters observed on all tar-
gets. The cometary contribution is minute in the Di Sisto model,
while in the erosional model it may be significant though far
from dominant.

8. Discussion and conclusions

We have simulated the impact rates on the Moon and terrestrial
planets due to objects originating in the primordial, transplane-
tary disk, assuming that this disk was dispersed by the outward
migration of the ice giants as predicted by the Nice Model. Our
calculations thus refer to the cometary component of the LHB in
case the timing of the planetary migration is relevant for offering
an explanation of the LHB (Gomes et al. 2005). In case the mi-
gration occurred at a much earlier time (Kaib & Chambers 2016;
Weaver et al. 2016), our results would refer to a much earlier
cometary bombardment. This would be unrelated to the LHB,
and the LHB would need to be explained in a different way. We
note that the dispersal of the hypothetical E-belt (Bottke et al.
2012) would then also be unrelated to the LHB.

Thus, finding an alternative explanation for the LHB would
remain as a major challenge. It is far from obvious that any small
body reservoir in the solar system would then be rich enough
to provide the required flux of projectiles. The scattered disk
would already be severely diluted (Nesvorný et al. 2013), and
the possible role of the Oort Cloud is questionable. Moreover,
the geochemical evidence for an important asteroidal component
of the LHB (Kring & Cohen 2002) would essentially leave the

main belt as a source, but this would already have been diluted
more or less to its present state, which appears insufficient to
sustain the LHB.

We hence argue that our simulations most probably deal with
the actual Late Heavy Bombardment. As initial conditions we
use a set of 5000 orbits emanating from dynamical simulations
within the Nice Model by Brož et al. (2013). These represent ob-
jects originating in the primordial disk and reaching for the first
time perihelia within 3.9 au. Compared to the disk models gen-
erally used in earlier papers, the present one is relatively excited
due to viscous stirring (Levison et al. 2011). As we have men-
tioned, this may lead to a decreased efficiency of transfer from
the disk into the inner solar system from the earlier standard
value of 1/3 into our new estimate of 1/10, which we find by
comparing our result for the Earth impact rate to an analogous
number by Nesvorný et al. (2013). Since the present scattered
disk is a remnant of the primordial disk, we argue that this re-
duced transfer efficiency will also hold for the capture of Jupiter
Family comets in contrast to most earlier estimates. This would
tend to reduce the discrepancy between the estimated popula-
tions of the scattered disk and the Oort Cloud, which was found
by Brasser & Morbidelli (2013).

The dynamical model in which we trace the orbital evolu-
tions of our comet clones is a self-consistent six-body model
with the Sun, the four giant planets and the massless object.
We thus neglect all other influences, but in Sect. 5 we discussed
the statistical chances for our comets to become deflected into
Encke-type orbits by interactions with terrestrial planets. Based
on (Levison et al. 2006), we estimated that the steady-state num-
ber of Encke-like comets may be ∼5% of the number of Jupiter
Family comets. Since the Encke-like comets have larger impact
probabilities due to their shorter orbital periods, we also esti-
mated that they would cause an additional impact rate amount-
ing to about 5−10% on top of the one caused by the modelled
comets. Since this is just a small increase in comparison with
other uncertainties, we did not include it into our calculations.

We explore the possibilities for the LHB cometary bombard-
ment as far as we can by considering on the one hand four dif-
ferent models of the initial population of projectiles. These are
based on a high-mass and a low-mass primordial disk, associ-
ated with a high and a low transfer efficiency, respectively, and a
high and a low index for the size distribution of the smaller disk
objects. On the other hand, we use three different models for the
physical evolution of the comets. This way we believe that we
cover the whole range of possible outcomes. The physical evo-
lutions include two extreme cases. One is to neglect any physical
destruction of the comets and assume that the nuclei survive in-
tact for an arbitrary time, and the other is based on the paper by
Di Sisto et al. (2009), which argued for a model with a very large
splitting rate of Jupiter Family comets that makes the lifetimes
of small comets very short. Intermediate to these, we consider
an erosional model accounting for mass loss by ice sublimation
by using thermal model results for each particular orbit in our
simulations and assuming a crude value for the activity level of
the average comet nuclei.

Realistically, the first model – our reference model – must
be discarded as inconsistent with the observed mass losses of
comets. However, we are not able to judge, how far it is from
the truth. Both the other models must be deemed primitive as
well in view of the observed behaviour of comets, which often
exhibit rejuvenation episodes following major orbital perturba-
tions (Rickman et al. 1991). Moreover, for the erosional model
we may have overestimated the average activity level of ac-
tive comets, possibly because of an observational bias against
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measurements on low-active comets. Finally, the splitting rate
predicted by the Di Sisto et al. (2009) model appears difficult to
reconcile with observational evidence. Therefore, we prefer to
keep an open mind and to use the reference model for an upper
limit to the cometary impact rate with no prejudice about how
large an overestimate it represents.

We now consider the statistical accuracy of our results. The
best guarantee is the sheer size of our sample of orbital evolu-
tions. We start with 100 000 objects, and in Paper I we show
that 50 000 of these remain after '6400 orbits and 25 000 after
'16 000 orbits. From Paper I it is also obvious that the typical
ages of the projectiles are low enough to be well sampled by our
dynamical material – especially when physical evolution is in-
cluded. After 100 000 orbits we still have more than 4400 objects
surviving, which shows that long-term dynamical effects are also
reasonably well sampled. One issue concerns the identification
of collisional orbits, which uses one random choice of the tar-
get angular elements per projectile orbital revolution. Could the
resulting impact rates have been significantly different for a dif-
ferent, random choice? We have checked this by performing one
extra choice, and the result is that the numbers of collisional or-
bits and impact rates are very similar, even though the individual
encounters are of course different.

The thrust of this paper is the Monte Carlo simulation ap-
proach that we use to get full information about the collisional
histories of the comets in a statistical sense. This means that for
each comet orbit we calculate MOIDs with respect to all the ter-
restrial planets. Collisional orbits are identified by MOID val-
ues less than the planet’s collisional radius, and random impact
probabilities are calculated individually for these. For the Moon
we use a terrestrial MOID large enough to encompass the lunar
orbit (assumed to be half its current size), and the random im-
pact probability is computed by solving a two-dimensional tim-
ing problem involving both the Earth and the Moon. Armed with
these results, we follow the dynamical and physical evolutions of
100 000 projectiles entering into the inner solar system for each
of the above-mentioned model combinations, and we register all
the non-zero impact probabilities along with other relevant data,
as long as the projectile survives against erosion.

We let the 100 000 sample comets represent different num-
bers of real comets according to their initial sizes in order to
simulate the size distribution and impactor population of the rel-
evant model. These numbers are used as weight factors along
with the data on impact probabilities, so that we obtain the ac-
tual, expected numbers of impacts for the different targets to-
gether with the sizes and velocities of the respective projectiles.
From this we use Poisson statistics to estimate the probability
distribution for the radius of the biggest projectile hitting each
target. In particular, for the Moon the result is typically ∼30–
40 km or ∼20 km depending on physical lifetimes, using the min-
imal model of the projectile population. If we instead consider
the maximal model, the corresponding estimates are ∼60–90 km
or ∼40–60 km. From a comparison with the capture efficiency
of Jupiter Trojans by Nesvorný et al. (2013), we expect the ac-
tual value to be 27.5−37.5 km, and we conclude that the minimal
model is to be preferred.

This means a primordial, trans-planetary disk of relatively
low mass, that is, about 20 Earth masses or less. We note that,
from Table 6, our minimal model of this disk contains roughly
1−2 × 1011 objects with diameters D > 2 km. According to
Brasser & Morbidelli (2013) this would imply a current scat-
tered disk with about 1−2 × 109 such members. In Paper I we
came to a similar conclusion based on the steady-state cap-
ture rate of JFCs that we estimated using the same dynamical

simulations as in this paper. There is hence consistency between
our two independent estimates of the same quantity, which lends
some credence to the result.

By a similar statistical analysis we also estimate the largest
impact basin diameter for those targets, where the scars would
have survived. Trusting the minimal model of the projectile pop-
ulation, we conclude that the largest lunar, cometary impact
basin is only about 500 km in diameter – comparable to Mare
Crisium but far from the size of Mare Imbrium. This means
that the LHB was mostly asteroidal as far as the Moon is con-
cerned. Similarly, for Mercury, the largest cometary impact basin
is much smaller than Caloris. For Mars, the Hellas basin is much
larger than any cometary basin even for the maximal model.
Furthermore, we have calculated the areal density of cometary
craters with D > 20 km on all these three targets for the mini-
mal model. We conclude that for infinite physical lifetimes, this
might be close to or even exceed the observed densities depend-
ing on the size distribution of the projectiles. However, for life-
times that seem more reasonable to expect, the comets make
only a minor contribution to the small highland craters on all
the targets.

Our work hence supports the conclusion by Bottke et al.
(2012) of an asteroidal predominance of the LHB cratering. Re-
garding the size distribution of small disk objects, including the
precursors of today’s JFCs, we note the recent finding from the
New Horizons mission (Singer et al. 2015, 2016) that the im-
pact craters on Pluto and Charon indicate a projectile CSD with
a power-law slope of −2 – right in the middle of our assumed
range.

We have thus established that there is no reason to cast doubt
on a late-occurring planet instability in the Nice Model based
on concerns that this would cause a too heavy cometary bom-
bardment. One rather has to turn the question around and ask,
if there is solid evidence that comets did still play an impor-
tant role in the LHB, because this is clearly predicted by our re-
sults. We note in this regard that Marty et al. (2016) found the Ar
abundance in the coma of comet 67P/Churyumov-Gerasimenko,
combined with the assumption of a substantial cometary compo-
nent of the LHB, would be consistent with the amount of Ar in
the Earth’s atmosphere. Possibly, the water abundance measured
in lunar mare basalts (Greenwood et al. 2011) could also derive
from cometary LHB impacts.

Finally, we have estimated the total mass of all the cometary
projectiles hitting the targets during the course of the LHB. For
the Earth we get much less than the ocean mass. For Mars
we also get much less than the estimated bulk water inventory
(Lammer et al. 2013). The total impactor mass can be estimated
at ∼7 × 1018 kg, and using a H2O abundance of ∼20% in comets
from Rosetta measurements (Rotundi et al. 2015), the Global
Equivalent Layer is only about 10 m. For ∼30% CO2/H2O by
mass (Bockelée-Morvan et al. 2016), a CO2 surface pressure of
90 mb might have been built up, which is insufficient to support
liquid surface water.

We tentatively conclude that the water that flowed on Mars
during the Noachian cannot owe its existence to the comets that
impacted Mars during the LHB. If impacts were crucial to re-
lease subsurface H2O reservoirs, these were mostly caused by
asteroids. The water on both the Earth and Mars must in any
case have been delivered long before the LHB – probably dur-
ing the build-up phase of both planets (Morbidelli et al. 2000;
Brasser 2013).
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