The CAQOS Application Builder

Luca Fini, Marcel Carbillet, Armando Riccardi

Osservatorio Astrofisico di Arcetri, Firenze, Ttaly

Abstract.

In order to ease the design and implementation of simulation projects
a graphical interface has been built on top of the CAOS Simulation Pack-
age. The CAOS Application Builder allows a user to build a simulation
program (a project) by putting together elementary building blocks and
specifying the data flow between blocks. When the project has been
defined to the user’s satisfaction the IDL code which implements the pro-
gram is automatically generated.

1. Introduction

The CAOS software system is a set of software tools specifically designed to
allow the modeling of any kind of Adaptive Optics system originally developed
in the framework of the “TMR, Network on Laser guide star for § meter class
telescopes” funded by the European Community. In this same conference an
overall description of the original package (see: [P2-32]) and a specialized version
dedicated to the deconvolution of multiple interferometric images for the Large
Binocular Telescope (see: [pl-12]) are also presented.

The Application Builder has been designed in order to provide the scien-
tists with a Graphical Programming Environment in which elementary building
blocks could be assembled together to create complex simulation applications in
a straightforward manner, so that the user could concentrate on the scientific
aspects of his/her problem, while mundane coding problems were managed by
some automatic tool.

The functionalities and the overall architecture of the AB are the result of a
tradeoff among various requirements, and mainly of three principal goals:

e The programming effort for the development of the AB had to be small;
i.e.. much lower than the programming effort devoted to the development
of the full package.

e The AB must have marginal impact on the structure of simulation pro-
grams; i.e.: the coding of blocks must not be affected too much, and the
time efficiency at run-time of the code produced must not be increased
significantly.

e The requirements the coding of single blocks imposed by the use of the AB
must not prevent the use of blocks in the traditional way; i.e.: as usual
routines to be called by a user written program.

i CAOS Application Builder - 3.1 EE

File Zdit [Drojectlib Hodules Ltilities lelp

|Pk5; Defoull Pruojeclk name; newprojeclt Stalus. wnodified Projecl Lype; Sioalalion Tlzralions; 1 |

e N —

IER I

i U | J

Figure 1. A Project is being built in the Application Builder.

2. How the Application Builder Works

When the AB is launched it appears to the user, as shown in figure 1, as a
graphical window (the worksheet) provided with a number of rectangular slots
and with a number of pull-down menus.

The building blocks, called modules (see figure 2) can be selected from
a list and placed on the worksheet to build up the simulation program (the
project); modules can be put into any free slot on the worksheet and then
inputs and outputs can be joined by means of 1inks which represents the data
flow in the program.

Modules are represented as “computational blocks” provided with up to
two inputs and up to two outputs; in order to convey the concept of input and
output data types, the input and output types are encoded by different colors,
so that it is clear that only equally colored inputs and outputs can be joined
together.

A few modules have been designed to be “generic type”, i.e.: they accept
input (output) of any type, and the actual type is assigned when they are linked
to some typed output (input). This mechanism is useful for general purpose
modules (e.g.: the data display module) as an alternative to providing a par-
ticular typed module to display data values of each particular data type. The
generic data display module has been designed so that it can check the data
type of its input and use the appropriate section of code to display the value of
a particular item.

For any module that requires the specification of run-time parameters the
user can fire a Graphical User Interface which helps in the definition of values to
be used in the computation of the program. At exit the parameter definition GUI
creates the required data structures and saves them onto the working directory
by means of an IDL standard save command.

It often happens in the design of a simulation program that the same module
must be used twice or more times in different parts of the program. E.g.: this
is the case of an optical element which is used twice in the optical path.

Father’s ident. (if a clone) Colors encode input/output data types

N — Output section
1
:

Input Section —_— _E:778

Link

1]

g Link
1

<
" ™ Link

T=eno_--=" Module name

Input
Output

Link .

Module Identification

Figure 2. Anatomy of a Module.

This case is handled by the AB by means of “module clones”: all modules of
the same type share the implementation code, clones also share the set of run-
time parameters. When the parameter definition GUI is started for a clone, the
parameters which are actually modified are those of the “father” module. This
ensures that the two modules correctly represent the same physical element.

A special “feedback” module must be used to “close loops”, i.e.: to assemble
simulation programs which include feedback loops.

3. A few more Goodies

In order to ease the project building, the AB includes a few more tools.

The project library, is a repository of projects which are distributed to-
gether with the CAQOS software system which can be merged into a project being
developed, or can be used as examples for similar ones.

Moreover the CAOS software distribution can be customized by defining
packages. A package is a subset of the available modules, possibly specialized
for a particular area of applications. By selecting a package the user is set into
an environment which is exactly suited to the application to be developed.

4. Code Generation

When the project is finished it can be saved on disk. The save operation gen-
erates the source code which implements the simulation program together with
a textual description of the graphic layout of the project by which the project
may be later restored in the AB for subsequent use.

The code is subdivided in two IDL procedures: project.pro, which con-
tains initialization and looping instructions, and mod_callg.pro, containing the
sequence of procedure calls corresponding to the project.

As an example here follows a simplified version of the code generated by
the project shown in figure 1:

COMMDF caos_block, tot_iter, this_iter, calibration, signature

ret=src{0_004_00,src_00004_p,INIT=src_00004_c)
ret=atm{0_002_00,atm_00002_p,INIT=atm_00002_c)

Loop is closed Here

IF K_ELEMENTS(0_027_00) &T 0 THEN 0_020_00 = D_027_00

ret=gpr{0_004_00,0_002_00,0_006_00,gpr_00006_p,INIT=gpr_00006_c}
ret=dmi{0_006_00,0_020_00,0_025_00,0_025_01,dmi_00025_p, INTT=dmi_00025_c, TIME=dmi_00025_t)
ret=shs{0_025_00,0_010_00,shs_00010_p,INIT=shs_00010_c,TIME=shs_00010_t}
ret=cen{D_010_00,0_012_00,cen_00012_p,INIT=cen_00012_c}
ret=rec{D_012_00,0_014_00,rec_00014_p,INIT=rec_00014_c}
ret=tf1{0_014_00,0_027_00,tf1_00027 _p, INIT=tf1_00027_c)

The project .pro procedure skeleton which is “wrapped” around the above code
is shown below:

RESTORE, °Projectsflucal/src_00004.sav’ ; Restore parameters
RESTORE, °Projectsflucal/atm_00002.sav’
RESTORE, °Projects/flucal/gpr_00006.sav’
RESTORE, °Projectsflucal/dmi_00025.sav’
RESTORE, °Projectsflucal/shs_00010.sav’
RESTORE, °Projectsflucal/cen_00012.sav’
RESTORE, °Projectsflucal/rec_00014.sav’
RESTORE, °Projectsflucal/tfl_00027.sav’

@Projects/lucal/mod_calls.pro ; Initialization

FOR this_iter=1, tot_iter DD BEQIN ; Main loop
@Projects/lucal/mod_calls.pro
ENDFDR

5. Implementation

Because the IDL language was selected as the best choice for the implementation
of modules, it was also decided to implement the AB in the same language,
although not fully suited to this particular task. It is started as an usual script
from the IDL prompt, and it is completely independent from the simulation
program it has created: the simulation program can and will run independently
on the AB itgelf.

The final version of the AB is made up of some 39 IDL source files for a total
of 6700 lines of code (including full documentation of the source code).

References

Fini, L., 1999, Arcetri Tech. Rep. No 5/99.

Carbillet, M., Femenia, B., Delplancke, F., Esposito, S., Fini, L., Riccardi, A.,
Viard, E., Hubin, N., Rigaut, F., 1999, in Adaptive Optics Systems end
Technology, R.K. Tyson and R.Q. Fugate eds. (SPIE Proc. 3762, 378-
389).

Carbillet, M., Riccardi, A., Fini, L., Viard, E., Delplancke, F., Femenia, B.,
Esposito, S., Hubin, N., 2000, in ASP Conf. Ser., Vol. TBD, Astronomical
Data Analysis Software and Systems IX, ed. D. Crabtree, N. Manset, &
C. Veillet (San Francisco: ASP), [P2-32],

Correia, S., Carbillet, M., Barbati, M., Boccacci, P., Bertero, M., Fini, L.,
Richichi, A., Vallenari, A., 2000, in ASP Conf. Ser., Vol. TBD, Astro-

nomical Data Analysis Software and Systems TX, ed. D. Crabtree, N.
Manset, & C. Veillet (San Francisco: ASP), [P1-12].

