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ABSTRACT

The Software Package AIRY (acronym of Astronomical Image Restoration in interferometrY) is a complete
tool for the simulation and the deconvolution of astronomical images. The data can be a post-adaptive-optics
image of a single dish telescope or a set of multiple images of a Fizeau interferometer. Written in IDL and freely
downloadable, AIRY is a package of the CAOS Problem-Solving Environment. It is made of different modules,
each one performing a specific task, e.g. simulation, deconvolution, and analysis of the data. In this paper we
present the last version of AIRY containing a new optimized method for the deconvolution problem based on the
scaled-gradient projection (SGP) algorithm extended with different regularization functions. Moreover a new
module based on our multi-component method is added to AIRY. Finally we provide a few example projects
describing our multi-step method recently developed for deblurring of high dynamic range images. By using
AIRY v.7.0, users have a powerful tool for simulating the observations and for reconstructing their real data.

Keywords: Software Package AIRY, CAOS Problem-Solving Environment, Image deconvolution, Scaled Gra-
dient Projection algorithm, Multi-component method, Multi-step method

1. INTRODUCTION

The idea of developing a software tool for the simulation and the reconstruction of the images of the future Fizeau
interferometers of the Large Binocular Telescope (LBT) was the result of a discussion of a group of astronomers,
physicists and mathematicians during a coffee break of the 2000 SPIE conference in Munich.

The focus on interferometry is indicated in the acronym of the software, AIRY from Astronomical Image
Restoration in interferometrY. The first version was described in a paper published two years later1. The
deconvolution methods contained in this first version were based on the extension of the Richardson-Lucy (RL)2,3

method and of the Iterative Space Reconstruction Algorithm (ISRA)4.

Since then, the software was expanded in several directions mainly as concerns the image reconstruction
methods. In the framework of the RL approach, regularization methods with different kinds of regularization
and blind deconvolution methods were proposed, tested and inserted in the tool. Moreover, the case of spectra
deconvolution was also included. Already in its present form, version 7.0 AIRY can be considered the most
complete public software for image simulation and restoration, since the methods for multiple image deconvolution
(Fizeau interferometry) can also be applied to the case of a single image.

The Software Package AIRY is a package of the CAOS Problem-Solving Environment5,6 (in short, CAOS
PSE), and it is written in IDL. The CAOS PSE has been recently renewed and details about its new version (7.0
as well) are given in next section. A paper presenting the new version of the companion package of adaptive
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optics systems modeling, the Software Package CAOS, benefitting also from the renewal of the whole CAOS PSE,
is presented at this conference7.

The paper is organized as follows. In sect.2 we describe the main modifications of the software due to the
mentioned new version of the CAOS PSE; then we briefly describe the modules of the package and next we give a
summary of the deconvolution methods present in AIRY. In sect.3 we show the multi-component deconvolution
module, a new module introduced in this version of AIRY and consisting in a method already published by our
group8. For the convenience of the reader we outline the algorithm at the beginning of the section. In sect.4
we introduce the multi-step method, specifically developed for deconvolving Io images taken by Keck-II and
Large Binocular Telescope (LBT) in recent years. In sect.5 we sketch the conclusions and we give ideas of future
developments of the software.

2. THE NEW VERSION OF AIRY

2.1 Adapting AIRY to the new CAOS PSE

Together with this new version of the Software Package AIRY, a complete renewal of the whole CAOS PSE has
been performed. The common components of the CAOS PSE — the CAOS Application Builder9, consisting
in the code of its global user interface, the CAOS Library, a series of utility routines, and the CAOS Template

Module, a template for developing new modules within the packages — are now unified into a simplified software
structure with one only version distribution of the CAOS PSE. The installation procedure has been so simplified as
well, and utility modules developed in different packages have been regrouped within it. The working directory,
where users can develop their own simulation and data processing projects through the global user interface,
was also regrouped into this new simplified structure. The new CAOS PSE ends so up within a unique main
directory with its global user interface, its utility routines library, its working directory (or directories if using
different packages) with dedicated example projects detailing the practical use of each module, and finally the
installed scientific packages (the Software Package CAOS, the Software Package AIRY) together with some
utility modules for displaying/reading/writing input/output data and a template module. Some debuggings,
enhancements, and global simplifications have been also performed en passant.

As a consequence of these global changings, the utility modules of the past distributions of the Software

Package AIRY (mainly DSP for displaying data, WFT for writing images, and RFT for reading images) were moved
to the new common utility modules of the CAOS PSE, merged with utility modules from other packages, and are
now distributed within it. Note that scientific packages such as the Software Package CAOS and the Software

Package AIRY are still distributed in a separate manner.

Figure 1. Example of use of the global user interface of the CAOS PSE together with some basic modules of the Software

Package AIRY and utility modules. The list of modules of the Software Package AIRY, appearing when clicking on button
Modules, is also shown.



In Fig. 1 we show an example of the use of the global user interface of the CAOS PSE together with some
basic modules of the Software Package AIRY and utility modules. The project shown in the worksheet is a
simple deconvolution implying image and PSF data read through module RFT, pre-processed through module
PRE, deconvolved through module DEC, and then displayed and saved thanks to the utility modules DIS and WFT.

2.2 Description of the Software Package

The new version of the Software Package AIRY is made of 11 modules, each one being specifically designed to
perform a task. The modules are placed on the worksheet of the CAOS PSE and the output of a module can be
linked to (one or more links of) another module. Two different data types are defined in AIRY: one for sources
(used in the object definition and convolution modules) that is called src t and the other one for the images,
called img t. After the rebuilding of the whole CAOS PSE, several modules have been moved to the Utilities
and therefore we can order the remaining modules in three subsets: simulation modules, deconvolution modules,
and data analysis modules. In Tab. 1 we show each module and its use within AIRY.

Table 1. The 11 modules of AIRY version 7.0, divided in three subsets, depending on the goal of each module (shown in
the last column).

Module Purpose Goal

OBJ OBJect definition
SimulationCNV CoNVolution between object and psf

ADN ADd Noise to image

PRE PREprocessing data

Deconvolution

DEC DEConvolution
MCD Multi-Component Deconvolution [NEW!]

CBD Constrained Blind Deconvolution
PEX Psf extraction and EXtrapolation
RTI RoTate Image

ANB ANalysis Binary stars Data
FSM Find Stars Module Analysis

It is evident from the table that the main goal of AIRY is deconvolution. Indeed, in the previous version of
AIRY we improved the CBD module containing two methods for Strehl Constrained blind deconvolution10–13. In
this version several improvements of the module DEC (as described in the next section) are made. Moreover a
new module (MCD) contains a recently developed method for deconvolving high-dynamic range images (e.g. jets
from young stars8,14).

Another important modification performed within the whole package concerns the sky background evaluation.
Thanks to the updates to the PRE module, the sky background can now be stored in an array that can be either
loaded from a FITS file or defined by a constant value (automatically computed or inserted by the user in the
text field of the GUI). This information is saved in the img t structure and used by other modules.

A new feature of AIRY is the intense use of the FITS header. As it is known, a lot of information is usually
contained here and this is now preserved from the beginning to the end of the pipeline. Moreover, information
about simulation and/or deconvolution (and other tasks performed by the software) are saved in the header.
Every new keyword added by a module has a comment with the name of the module itself in square brackets,
in order to be easily recognized by the user. There are specific keywords for the two data structures of AIRY.
In Tab. 2 we describe the most important keywords used by the software and the corresponding module adding
the keyword. We also include the keywords used in AIRY modules, but added from other modules (e.g. of the
package Utilities, as described in the previous section). Together with the package a complete and updated
list of the keywords is distributed.

2.3 Deconvolution methods contained in DEC

In previous papers15–17 we already described the general approach to the deconvolution problem. Within AIRY

three methods for reconstructing images in the case of Poisson data are implemented: the mentioned RL,
its version for multiple images, the Ordered-Subset Expectation Maximization (OSEM) algorithm18, and the



Table 2. The most important/used keywords in AIRY. The last column shows the module that introduces the keyword.
The complete list of keywords is available within AIRY.

Keyword Description Module

OBJECT Object simulated OBJ

BAND Filter band OBJ

PIX SIZE Pixel size [arcsec] OBJ

APTAREA Aperture area [m2] CNV

EFF ALL Overall efficiency CNV

EXPTIMEn Exposure time [s] for image n CNV, WFT

SKY TYPE Sky background type (File or Values) ADN, PRE, PEX
SKY FILE Sky background filename ADN, PRE, PEX
SKY NB Number of background values ADN, PRE, PEX
SKY BGn Sky background value for image n ADN, PRE, PEX

POISSON Poisson noise on the image ADN

RON Read out noise value [e−/px] ADN, PRE
GAIN Gain of the CCD [e−/ADU] ADN, PRE

PSF EXTR PSF extracted / estrapolated PEX

MOFFAT Moffat exponent of the PSF PEX

METHOD Deconvolution method DEC, MCD
BOUND Boundary effects correction DEC, MCD
EE TRESH Enclosed Energy threshold DEC, MCD
FLUX CON Flux constraint - used by SGP DEC, MCD
REG TYPE Regularization function DEC, MCD
REG BETA Regularization parameter (β) DEC, MCD
REG DELT Regularization parameter (δ) DEC, MCD
STOP CRI Stopping rule number DEC, MCD
STOP TOL Stopping tolerance DEC, MCD
ITER Number of iterations DEC, MCD

CBD ALG Blind Deconvolution algorithm CBD

STREHL C Apply the Strehl Constraint CBD

SRn Strehl value of the image n CBD

PSF INIT PSF initialization CBD

ROT TYPE Rotation method RTI

NB ANGLES Number of angles RTI

ANGLEn Angle of the image n RTI

NPIXEL Size of the working array WFT

RESOLUT Plate scale [arcsec/px] WFT

LAMBDA Central wavelenght of the filter [Å] WFT

WIDTH Width of the filter [Å] WFT

recently added Scaled Gradient Projection (SGP) method19. Moreover we also have the ISRA algorithm used in
the case of Gaussian data, and its extension to multiple images called OS-ISRA.

Each one of the mentioned methods has several extensions, depending on the current problem. In the case
of RL/OSEM algorithms, since they are relatively slow, the user can use an accelerated version based on Biggs
and Andrews approach20,21. In addition, it is possible to increase the super-resolution effect of the RL and
OSEM algorithms by using a suitable initialization of the method22,23. In all methods, when the object has an
angular size greater than the field of view of the instrument, the boundary effect correction24,25 can be applied.
Moreover, a set of regularizations26 are integrated in the previous version of AIRY for all the methods except
SGP, while in Prato et al27 SGP has been extended with several regularizations.

In this work we focus on Poisson data and in particular on the SGP method. We tested this method in
several papers19,28–31, not only within AIRY, and in this version of the package SGP is selected as the default
method for deconvolution. For the convenience of the reader we recall here the model of image formation and
we sketch the deconvolution problem.



We denote by f = f(n) the unknown science object to be reconstructed and by g = g(m) the image. In the
case of multiple image, if p is the number of observations, then g = g1, . . . ,gp. Moreover, in order to take into
account the boundary effect corrections, we denote by n = {n1, n2} ∈ R the multi-index varying on the pixels
of the object domain R and by m ∈ S the multi-index of the pixels in the image domain S. We suppose that
R is broader than S and we extend both to a broader array S̄ by zero-padding. The model of image formation
(see eq (1) in17) is the sum of three components, the first two are given by the number of photons arising from
the object and the background and are described by a Poisson process, while the last one is the Read-Out Noise
(RON), described by a Gaussian process with zero mean and variance σ2. According to Snyder et al.32 the RON
is approximated by a Poisson process so that we can assume only Poisson data by adding the variance σ2 of the
RON to the detected image and to the background. The model is therefore:

gj(m) = (Ajf)(m) + bj(m) , j = 1, . . . , p (1)

where Aj is the imaging matrix defined by Ajf = Kj ∗ f (in the case of space-invariant images) and bj is
the sky background array. Here Kj is the j-th point-spread function (PSF) of the system and ∗ denotes the
convolution product. The general Bayesian approach to the deconvolution problem leads to the minimization of
the regularized functional

Jβ(f ; g) = J0(f ; g) + βJ1(f) , (2)

where the data-fidelity function J0(f ; g) is the so-called Kullback-Leibler divergence (or Csiszár I-divergence33),
J1(f) is the regularization function (derived from a Gibbs prior) and β is a positive regularization parameter.
Some regularization functions depend on another parameter (that we call δ). In Appendix A we describe
the regularization functions J1(f) available in AIRY. The complete description of the regularizations as well
as some discussions on the choice of the regularization parameters can be found, e.g., in Prato et al27. The
maximum a posteriori (MAP) estimates of the unknown object f are the solutions of the minimization problem
fβ = arg min

f∈Ω
Jβ(f ; g), where Ω is either the nonnegative orthant or the set of solutions satisfying the flux

constraint, where the flux is defined as:

c =
1

p

p∑
j=1

∑
m∈S

[gj(m)− bj(m)]. (3)

The solution can be obtained by the Split Gradient Method34 (SGM) or via SGP. In all cases the algorithm
is iterative and it must be stopped following a given criterion. For all the methods based on Poisson data, i.e.
RL, OSEM, and SGP, the stopping rules are∗:

#1 Set a maximum number of iterations and stop the selected algorithm when k ≥ kmax .

#2 Stop the iterations when the relative difference in `2-norm of two consecutive iterates is smaller than a
given tolerance (ν): ||f (k) − f (k−1)|| ≤ ν||f (k)|| .

#3 Stop the iterations when the objective function Jβ (or J0 in the case of no-regularization) is approxi-
mately constant, given a tolerance ν (usually ν � 1, for example 10−6):

∣∣Jβ(f (k); g)− Jβ(f (k−1); g)
∣∣ ≤

νJβ(f (k); g) .

#4 Stop the iterations when the discrepancy function, defined as D(k) = 2 · J0(f (k); g)/(pN) crosses a given
value (that should be 1, in the case of pure Poisson data35), where N is the total number of pixels in S.

#5 Stop when the restoration error, defined as ρ(k) = ||f (k)− f̃ || / ||f̃ || reaches a minimum value. This stopping
rule can be applied only in the case of simulation, when the so-called ground truth f̃ is known.

In Fig. 2 we show the block diagram of the DEC module. The main box is for the deconvolution and it
is indicated by SGP, but of course any other method can be selected here. The algorithm is initialized by

∗Both first rule and last one are also available in the case of ISRA and OS-ISRA
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Figure 2. The block diagram of the DEC module. The inputs of the method are: the image(s) g, the PSF(s) K, and the
background b. Even if the background is set within the PRE module, here is shown as one of the inputs of the method
as actually it is. Each internal block is dedicated to a particular task: the main code (indicated by SGP), the boundary
effect correction (BEC), one of proposed regularizations (and the case of no-regularization) described in Tab. A, and the
stopping rules. The output of the module is the reconstructed oject f .

default by a constant array satisfying the flux constant c, but the user can provide a different initialization. The
boundary effect correction is indicated with BEC and surrounds the main box. Starting from this, one of the
eight regularizations (considering also the particular case of no-regularization) can be chosen. Each block shows
the parameters (if any) that the user must provide as an input. Finally one stopping rule must be satisfied in
order to stop the iterations and obtain the reconstructed object.

3. THE MULTI-COMPONENT DECONVOLUTION MODULE

3.1 Description of the method

In this section we briefly describe the methods for deconvolving high dynamic range images. We already devel-
oped8,36 an algorithm, called multi-component Richardson-Lucy (MCRL) and in the paper27 an application of
SGP to this situation is shown. Since it is the first time that we describe this method within the package AIRY,
we give here a summary of the main ideas.

Firstly, we assume that the unknown object f is the sum of two components: the point-like part fP containing
the bright sources of the object superimposed on the extended and smooth part fE . Moreover we assume to
know the positions of the bright sources, i.e. we can provide a mask MP which is 1 in the pixels of the sources
and 0 elsewhere. Alternatively, we can set the mask to 1 in small regions around the known positions.

In Fig. 3 we show the block diagram of the multi-component method (MCM) that uses a core code based on
either MCRL or the modification of SGP developed for taking into account this model. By analogy with MCRL,
we call this new algorithm MCSGP. The user must provide, besides the standard inputs (i.e. the image(s), the
PSF(s), and the backgroud(s)), also the mask MP . The algorithm computes the NP positions of the bright

sources (indexed by iP ) and defines the default initial arrays: an N ×N image f
(0)
E and an NP vector f

′(0)
P . As

usually, the algorithm can also be initialized with user-defined arrays. The main box contains the core algorithm
(as we said, both MCSGP and MCRL are given), that can be extended by the boundary effect correction (BEC)



method, as shown by the surrounding box. Regularizations can be applied to the diffuse component, as in the
previous case, while no-regularization is needed for the pointwise part. Again, the iterations run until a stopping
rule is satisfied and the algorithm gives the two reconstructed components, i.e. fE and fP , as N ×N arrays. One
can compute the final reconstruction as the sum of the two components. The method is contained within the
brand-new module called MCD that will be described in the next section.

MCM
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MCSGP

(kMAX)

REG

(reg_type,
β, δ)

Stopping
criterion

k = k + 1(f
(k+1)
E ,f ′(k+1)
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E

T
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K
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(0)
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(0)
E ,f ′(0)

P )
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iP

iP

fP

fE

Figure 3. The block diagram of the Multi-Component Method (MCM). The inputs of the method are described in Fig. 2.
The user must also provide the mask MP (see text) that is used for the definition of the index iP of the positions of the
bright sources. Each internal block is dedicated to a particular task: the main code (indicated by MCSGP, but also MCRL
is available), the boundary effect correction (BEC), one of proposed regularizations (and the case of no-regularization),
and the stopping rules. The output of the module is the pair of the two components.

3.2 The module MCD

The MCD - Multi-Component Deconvolution module is a new module of the package AIRY and it is designed
as a clone of DEC, since they are very similar for aiming and settings. Nonetheless, we need two separate modules
because the outputs of the two algorithms are different: DEC gives one reconstructed object (one output in the
worksheet of the CAOS PSE to be linked to other modules), while MCD provides the two components. Since also
the core code is different, we need to add a new module to the list. As usual, the input image(s) and the
PSF(s) can be set in the input part of the module, while the background definition comes from the module PRE.
One additional input, that is mandatory within MCD, is the mask MP , stored in a FITS file that can be loaded
within the GUI of the module. As mentioned before, the user can also provide different initialization arrays. As
concerns the stopping rules, all the five criteria are available within the MCD module, with the only exception
that the restoration error is computed on the diffuse part and not on the entire object. Therefore, in that case,
the stopping rule is:

#5 Stop when the restoration error, defined as ρ(k) = ||f (k)
E − f̃E || / ||f̃E || reaches a minimum value. This

stopping rule can be applied only in the case of simulation, when the so-called ground truth f̃E is known.

Finally, the discrepancy and the objective function values at each iteration can be saved as ASCII files. In the
case of simulation, the restoration error (computed on the diffuse component) at each iteration can be saved.



4. THE MULTI-STEP ALGORITHM

4.1 Description of the algorithm

In some cases the MCM is not directly applicable. For example, the positions of the bright spots are not known
or they can not directly found on the observed images. In particular, this is true in the case of Io images
acquired with the LBT/LBTI LMIRcam instrument that our group already reconstructed37,38. For this reason,
we developed a multi-step method (MSM) that is described for the first time in the mentioned paper27 and that
we report here for sake of completeness.

• Step 1 - The input image is deconvolved by using a standard algorithm, for example SGP with no-
regularization (or with an edge-preserving regularization and a small parameter β). The algorithm can be
pushed to convergence, i.e. until the stopping rule #3 is satisfied. The result is a de-blurred version of the
image and can be used for retrieving the centroids of the bright spots.

• Step 2 - The centroids of the bright spots are used for defining the mentioned mask MP . In some cases
small regions around the centroids can be considered instead of the single pixel. In those pixels the mask
must be set to 1 and 0 elsewhere.

• Step 3 - This is the crucial step in which MCM is applied by using the previous mask. A suitable regularizer
with a good choice of the regularization parameter(s) must be set in order to appropriately reconstruct the
diffuse part of the object. The reconstruction of the point-like component is not very important in this
step and we do not consider it in the following.

• Step 4 - The result of the previous step (i.e. fE) is used to re-define the background input of a standard
deconvolution algorithm. Indeed, the algorithm computes

b′j = bj + Kj ∗ fE .

The unknown object to be reconstructed becomes h = f − fE and consists of the bright sources, since the
algorithm concentrates the flux in a few regions. Again, the algorithm must be pushed to convergence.
The block diagram of this last step is shown in Fig. 4. At the end of this step the complete object f can
be obtained by adding the diffuse component to the result.

Since the last step uses a standard algorithm, we remark that some modifications have been introduced within
the DEC module and in particular the possibility of loading the FITS file containing the diffuse component as an
optional input.

4.2 Example projects

The steps described above are naturally implemented within AIRY in some example projects provided together
with the package. The examples are called MultiStepMethod Example Stepi where i = 1, 3, 4 is the number of
the step. We remark that, for Step 2, no deconvolution (and no computation) is necessary, since the user has
only to create the mask MP and to save it into a FITS file.

For these example projects we use a simulation of a Io-like object at M-band (4.8 µm) that is obtained
considering nine hot spots superimposed to a variable smooth surface. The object is convolved to the input PSF
modelling the Keck-II PSF in M-band. The result is perturbed with Poisson noise. The object, the PSF and the
blurred and noisy image are shown in Fig. 5.

In the first example project (i.e. the first step of our MSM algorithm) we apply a non-regularized SGP,
stopped with a tolerance ν = 10−6. The result shows a number of artifacts around the bright spots (see the first
panel of Fig. 6) so that the further steps are necessary in order to reconstruct the object. From the result of
this first step, we can obtain the position of the nine hot-spots and we can define MP (step 2, second panel of
Fig. 6).

The next example project (that manages the third step of the method) contains the new module MCD, used
for the multi-component reconstruction of the two parts of the object. The user can try different regularized
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Figure 4. The block diagram of the last step of the Multi-Step Method (MSM). The inputs of the method are described
in Fig. 2, with the addition of the extended component fE obtained from the third step (see text). Within the algorithm
this component is convolved with the PSF(s) K and added to the background b. This latter result is used as the new
background in a standard deconvolution (SGP is shown in the box, but any other methods can be used). The restored
object h is the output of the method and the complete object can be obtained by adding the diffuse component.

Figure 5. Simulated Io-like image. (Left) The model of the surface with the addition of the nine bright spots. (Middle) The
model of the PSF. (Right) The blurred and noisy image.

algorithms keeping in mind that the best results are obtained with edge-preserving functions (i.e. MRF, Mistral,
or HS functions) and that the choice of the parameters must be finely tuned. With our suggestions (MRF and
β = 10−2, δ = 10) the diffuse part of Io is reconstructed with a small reconstruction error (around 7%). The
result is shown in the third panel of Fig. 6.

In the last example project (corresponding to the fourth step of MSM) the result of the previous step is
loaded within DEC as an optional input and the algorithm (we suggest again to use no-regularized SGP) can be
stopped with ν = 10−7. In this last step, the best results are obtained if the flux constraint is activated on the
GUI. In the last panel of Fig. 6 we show the result of the fourth step to which we added the smooth surface of
the previous step.

5. CONCLUSIONS AND FUTURE DEVELOPMENTS

In this paper we presented the new version of the Software Package AIRY, an IDL-based tool for the simulation
and the restoration of post AO images. AIRY is a package of the CAOS PSE, that recently has been renewed and
simplified.



Figure 6. Reconstructions of the Io-like image during the four steps. (Upper left) The result of the first step has several
artifacts around the bright spots. (Upper right) The mask MP in reverse B/W scale. The dashed circle shows the limb
of Io: it is shown for sake of clarity and must not be included in the mask. (Lower left) The reconstruction of the surface
as obtained at the third step with MRF regularization and β = 10−2, δ = 10. (Lower right) The complete reconstruction
(surface plus the result of the last step).

Thanks to the application of the SGP method to the case of different regularization functions, the renewed
DEC module contains efficient methods for the deconvolution. Moreover, a new module called MCD has been
developed for the restoration of high dynamic range images. Based on our multi-component algorithm, both
MCSGP and MCRL are available for reconstructing the point-like and the diffuse part of the unknown object.
Finally we described the multi-step method, particularly useful in the case of Io like images. Some example
projects are provided together with the package.

Future perspectives of this work include the use of efficient libraries for FFT computation (based on the well
known FFTW library) and the develop of a de-noising module, following the approach presented in Bertero et
al26.

The Software Package AIRY together with the CAOS PSE can be freely downloaded from:

http://lagrange.oca.eu/caos/

APPENDIX A. REGULARIZATION FUNCTIONS AVAILABLE IN AIRY

We describe here the seven regularization functions J1(f) available in AIRY. In Tab. 3, the term D2(n) is the
square of the discrete gradient (first row), while ∆ (second row) denotes the discrete Laplacian, f̄ (second row)
is a reference image, and |D(n)| (third row) is the magnitude of the discrete gradient. Finally, N (n) (last row)
is a symmetric neighborhood made up of the eight first neighbors of n and ε(n′) is equal to 1 for the horizontal
and vertical neighbors and equal to

√
2 for the diagonal ones. For more details, see Prato et al27.
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Table 3. Regularization functions available in AIRY.

Zeroth order Tikhonov (T-0):

J1(f) =
1

2

∑
n

|f(n)|2

First order Tikhonov (T-1):

J1(f) =
1

2

∑
n

D2(n)

Second order Tikhonov (T-2):

J1(f) =
1

2

∑
n

(∆f)(n)2

Cross-Entropy (CE)39,40:

J1(f) = J0(f , f̄) =
∑
n

{
f(n) ln

(
f(n)

f̄(n)

)
+ f̄(n)− f(n)

}
Hypersurface (HS)41:

J1(f) =
∑
n

√
δ2 + D2(n) , δ > 0

MISTRAL regularization42:

J1(f) =
∑
n

|D(n)| − δ ln

(
1 +
|D(n)|
δ

)
, δ > 0

Markov random field (MRF)43:

J1(f) =
1

2

∑
n

∑
n′∈N (n)

√
δ2 +

(
f(n)− f(n′)

ε(n′)

)2

, δ > 0
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SPIE 9909, 9909–319 (2016).

[8] La Camera, A., Antoniucci, S., Bertero, M., Boccacci, P., Lorenzetti, D., Nisini, B., and Arcidiacono, C., “Recon-
struction of high dynamic range images: Simulations of lbt observations of a stellar jet, a pathfinder study for future
ao-assisted giant telescopes,” Publications of the Astronomical Society of the Pacific 126(936), pp. 180–193 (2014).

[9] Fini, L., Carbillet, M., and Riccardi, A., “The CAOS Application Builder,” Astronomical Data Analysis Software
and Systems X 238, 253 (2001).
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