WITNESSING THE BIRTH OF CLUSTERS OF GALAXIES

DETECTION OF FORMING INTRACLUSTER GAS IN A GALAXY PROTOCLUSTER AT Z~2.16

Luca Di Mascolo Séminaire @ Lagrange Observatoire de la Côte d'Azur

23-01-2024

adapted from Di Mascolo et al. 2021

adapted from Di Mascolo+2021

ENVIRONMENT FOR GALAXY EVOLUTION

impact galaxy morphology, star formation, AGN activity, ...

LARGEST STRUCTURES IN THE UNIVERSE

tracers of large-scale structure formation and mass content of the Universe window on dark matter properties

LARGE RESERVOIRS OF PLASMA

host most energetic events in the universe unique laboratories for plasma physics

clusters across cosmic time

PlanckXXVII 2016, Hilton+2021, Bocquet+2019, Huang+2020, Bleem+2020

a turning point in cosmic history

mature clusters

environmental quenching extended, thermalised haloes of intracluster medium

protocluster overdensities

energetic AGN feedback sustained star formation pre-heated cores (Saro+2009,Remus+2023)

adapted from Chiang+2017 & Shimakawa+2018

Spiderweb galaxy

Pentericci+1998 - Miley+2006 - Kuiper+2011 -Emonts+2016,2018 - De Breuck+2022

protocluster galaxies

Kurk+2000 - Pentericci+2000 - Kurk+2004a -Kodama+2007 - Ogle+2012 - Koyama+2013 -Tanaka+2013 - Dannerbauer+2014,2017 -Shimakawa+2015,2018 - Jin+2021 -Perez-Martinez+2023

AGN activity

Carilli+1997,2022 - Pentericci+1997 - Seymour+2012 -Gullberg+2016 - Anderson+2022 - Tozzi+2022a

proto-ICM

Tozzi+2022b - Di Mascolo+2023 -Lepore+2023 (accepted)

optical: HST/G. K. Miley; radio: VLA/C. L. Carilli

X-ray measurements as key drivers of ICM studies

X-ray portrait of a massive system at high z

 $\begin{array}{c} \text{XLSSC 122} \\ z = 1.978 \\ \text{M}_{500} = (6.3 \pm 1.5) \times 10^{13} \, \text{M}_{\odot} \\ \text{total exposure ~100 ks} \\ (\text{Mantz+2018}) \end{array}$

tracing thermalised electrons across the Universe

a great tool for finding clusters...

...but low angular resolution

...but low angular resolution

dish diameter

ACT/SPT ~1.5 arcmin

IRAM+NIKA2 ~15 arcsec

Planck 9 arcmin

resolution

ALMA <5 arcsec

۲

how ALMA sees galaxy clusters

adapted from Di Mascolo+2019

how ALMA sees galaxy clusters

adapted from Di Mascolo+2019

a high-pass filtered view of the Universe

large-scale Fourier modes not observed, resulting in dramatic information loss

existing imaging tools not optimised for reconstruction of large-scale/SZ signal

modelling techniques limited by lack of adequate descriptions

a high-pass filtered view of the Universe

Angular distance [arcmin]

Physical distance [kpc]

adapted from Di Mascolo+2020

a cluster caught in the act of growing up

Bayesian imaging+inference unveils structures associated to dynamical states

> pressure profile from the core till roughly the virial radius

dominant role of merger processes in driving ICM heating (instead of small-scale accretion)

joint ALMA+ACT analysis of the SZ signal from XLSSC 122

adapted from van Marrewijk+2023

adapted from Di Mascolo+2023

adapted from Di Mascolo+2023

let's put our Fourier glasses on

confirmation of long-standing predictions

Pentericci+1997, Hatch+2009

Star-bursting proto-BCG fed by "cooling flow"-like precipitation (but not the only scenario)

Carilli+1997, Anderson+2022

RMs generate in thin sheath of hot gas around the radio jet

Saro+2009 simulated protoclusters with gravitational potential permeated by ICM at 2-5 keV

faint SZ signal...or deviation from self-similarity?

faint SZ signal...or deviation from self-similarity?

cosmo-OWLS

cosmo hydrosims

- AGN feedback model
- mass-dependent spatial de-biaising

Magneticum

cosmo hydrosims

 mass-dependent pressure re-scaling

X-ray (Chandra)

- self-similar Yx-M500
- stacked analysis of indirect Pe measurements

X-ray (XMM-Newton)

- mass-dependent pressure re-scaling
- adapted Yx-M500
- stacked analysis of indirect measurements

1. non-thermal pressure support

adapted from Bennet+2022; see also Baxter+2023, Gardner+2023

- 1. non-thermal pressure support
- 2. deviation from thermalization

- 1. non-thermal pressure support
- 2. deviation from thermalization
- 3. dynamical effects

- 1. non-thermal pressure support
- 2. deviation from thermalization
- 3. dynamical effects
- 4. many SZ flavours, residual contamination, ...

consistent results from cosmo hydrosims

uv distance [k λ]

hints of complex interactions and dynamics

extended CO tail (Emonts+2013)

hybrid morphology (Pentericci+1997, Carilli+2022)

50 kpc

adapted from Di Mascolo+2023

confirmation of long-standing predictions

Pentericci+1997, Hatch+2009 Star-bursting proto-BCG fed by "cooling flow"-like precipitation (but not the only scenario)

Carilli+1997, Anderson+2022 RMs generate in thin sheath of hot gas around the radio jet

Saro+2009 simulated protoclusters with gravitational potential permeated by ICM at 2-5 keV

circulating gas in a strongly cooling core

extremely short cooling time (<1 Gyr)

early formation of (probably overdense) cool core structures

mass deposition rate consistent with fueling of star formation by direct ICM condensation

observation of steep gradient in density and temperature in the central 10 kpc

adapted from Di Mascolo+2023, Lepore+2023

conclusions

For the first time, ALMA is allowing us to witness the emergence of proto-ICM in a protocluster complexes

The SZ effect provides a reliable observational probe for detecting hot (thermalised) gas with virtually no limit in redshift

Multiwavelength characterisation of high-z systems highlights extreme dynamical states, with complex interplay between multiple gas phases

how and when the multi-phase protocluster gas turn into extended ICM?

how different mechanisms contribute to heating the proto-ICM?

looking forward, at last

looking forward, at last

Atacama Large Aperture Submillimeter Telescope

A new telescope whose design is driven by transformational and unique science goals - The most complete sub-mm surveys ever!

- Life cycle of the Local Universe
- Baryon Cycle of the Distant Universe
- New measures of SZ and the Early Universe

50-m diameter single dish, with a high throughput and FoV of 2 degrees in diameter

Located at a high dry site in the Atacama desert, enabling observations at ν_{obs} >500 GHz

A facility telescope with open time and flexibility to host multiple instruments

The first astronomical observatory to include renewable power generation & storage solutions in the design study - plan to be fully sustainable

Atacama Large Aperture Submillimeter Telescope

The Atacama Large Aperture Submillimeter Telescope **Design Study**

Results, science, and next steps

Johannes Gutenberg University Mainz Mainz, Germany | 21-24 May 2024

https://www.atlast-telescope.org/atlast2024.html

TOPICS

Local and Distant Galaxies • the Warm and Hot inter- and intra-cluster/group/galactic media • the Circumgalactic medium • Cosmology and Large Scale Structure • Time

A new telescope whose design is driven by transformational and unique science goals - The most complete sub-mm surveys ever!

- Life cycle of the Local Universe
- Baryon Cycle of the Distant Universe
- New measures of SZ and the Early Universe

50-m diameter single dish, with a high throughput and FoV of 2 degrees in diameter

Located at a high dry site in the Atacama desert, enabling observations at ν_{obs} >500 GHz

A facility telescope with open time and flexibility to host multiple instruments

The first astronomical observatory to include renewable power generation & storage solutions in the design study - plan to be fully sustainable

ATLAS

