

Differential spectral piston induced by a single-mode fiber

Injected piston in H band w.r.t. R band

Fabien Patru & the SPICA team

December 18th 2019

- The issue :
 - Spectral decorrelation of the phase distribution.
 - The image quality is worst in R band than in H band: speckles appear !
 - The coupling with the fiber mode is affected.
 - The *injected* piston is corrupted at lower wavelength and at lower r0.
- Objectives of the study :
 - Define the injected piston (???).
 - Quantify this effect with **simulation** tools :
 - Code from Mike Ireland.
 - PAOLA from Laurent Jolissaint.
 - Include a **tip-tilt correction** and quantify its effect on the *injected* piston.
 - Validate it **on sky** in May 2020 at CHARA :
 - FRIEND in the visible (R band),
 - MIRCx or SPICA-FT in the infrared (H band).
 - Publish a referee paper.

- Definition of the *injected* piston (???) :
 - Piston across a pupil plane : •
 - Piston_pup_t = average(atan[Pupil_t]) $\lambda/2\pi$
 - Pupil t has to be unwrapped !
 - **Piston injected into a SM fiber** : ۲
 - Analogy with the coupling efficiency?
 - Coupling = $abs(\int Pupil_t x Gaussian dxdy)/(\int Pupil_t dxdy \int Gaussian dxdy)$
 - Piston t = atan (\int Pupil t x Gaussian dxdy) * $\lambda/2\pi$ => **WRONG**!
 - Piston_t = avg (atan (\int Pupil_t) x Gaussian/max(Gaussian) dxdy) $*\lambda/2\pi$
 - Gaussian = **fundamental mode** of the SM fiber, transposed in the pupil plane.
 - Gaussian amplitude normalized to 1 at the center (**phase weighting function**).
 - Gaussian width in the pupil plane is the same whatever the wavelength.
 - Gaussian width in the image plane is smaller at lower wavelength so as to fit the diffraction-limited Airy disc. 3

- Computation of the RMS of the differential *injected* piston (between H & R) :
 - Unwrap the temporal sequence of piston (2π phase jump may occur) :
 - pistonAOpup_t (H,R) = phunwrap(pistonAOpup_t (H,R))
 - pistonAO_t (H,R) = phunwrap(pistonAO_t (H,R))
 - Static piston correction (induced by the AO) :
 - pistonAOcorr_t (H,R) = pistonAO_t (H,R) pistonAOpup_t (H,R)
 - Differential *injected* piston between two wavelengths :
 - Opd_t = pistonAOcorr_t (H) pistonAOcorr_t (R)
 - RMS of the differential *injected* piston between two wavelengths :
 - Opd_Rms = stdev(Opd_t)

