

Turbulence in Interstellar Matter: dissipation signatures? (II)

Edith Falgarone

ENS & Paris Observatory, France

Outline

- 1 Molecular lines at high spectral resolution
- 2 Coherent structures of vorticity
- 3 Dissipation MHD turbulence
 - 3.1 Dedicated simulations
 - 3.2 Observables
- 4 Chemistry driven by turbulent dissipation
- 5 Following the energy trail ...

Map of ¹²CO line centroid velocity Goldsmith + 08 I - Molecular line imaging at high spectral resolution

Molecular line imaging at high spectral resolution

At time = 0.5 L/c_{s} = acoustic time /2 Just after shock formation CO line observations

512³ 3-dim decaying turbulence Weakly compressible rms Mach (t=0)=1.1 PPM method = optimizes treatment singularities

Porter, Pouquet, et al. 1994

Molecular line imaging at high spectral resolution

At time = 1.2 L/c_{s} = 1.2 acoustic time Solenoidal small-scale modes empowered

CO line observations

512³ 3-dim decaying turbulence Weakly compressible rms Mach (t=0)=1.1 PPM method = optimizes treatment singularities

Porter Pouquet et al. 1994

Molecular line imaging at high spectral resolution

At time = 2.4 L/c_s = 2.4 x acoustic time Largest inertial range Energy in incompressible modes >> in compressible modes

CO line observations

512³ 3-dim decaying turbulence Weakly compressible rms Mach (t=0)=1.1 PPM method = optimizes treatment singularities

Porter Pouquet et al. 1994

PDF of line centroid velocities (CVI) are quasi-Gaussian PDF of increments of line centroid velocities are non-Gaussian Departure from Gaussian increases at small lags

Line Centroid Velocities

II - Coherent structures of « vorticity » and « current »

pc-scale coherent structures of velocity-shear

¹²CO emission structures ~ 10 mpc thin

Polaris Flare IRAM-Pdbi mosaic print (13 fields)

Schedule filling source More than 200 hours kept (out of 400 hours observed)

Falgarone + 2009

⇒ no cut-off in turbulent power spectrum down to 10mpc

Velocity-shears at pc- and mpc-scale

- 8 straight CO structures 3 to 10 mpc thick
- sharp edges of CO layers
- 6 are parallel pairs at different velocities
 - = velocity-shears up to 700 km s⁻¹ pc⁻¹
- ▷ large (and similar) scatter[™]
 of orientations found for
 mpc- and pc-scale shears

Complex topology

IRAM-PdBI, Falgarone et al. 2009

No sign of energy dissipation above 10mpc

Energy spectrum Planck (black), WISE (red), Visible (blue) Miville-Deschênes + 16

Broad HCO⁺(1-0) absorption: 0.1 pc

IRDC dust: 24 mic Spitzer (green) 3mm ALMA (red) 450 mic JCMT (contours)

Rathborne + 2015

Broad HCO⁺ absorption filaments: Thickness 0.07-0.14 pc Length 1.2-1.8 pc Velocity dispersion 20 km/s Bally + 2014

Planck all sky 353 GHz

Color scale : 353 GHz intensity Drapery : B field POS projection

Copyright ESA and the *Planck* Collaboration

Polarization angle dispersion function

p = polarization fraction

$$\Delta \psi^2(l) = rac{1}{N} \sum_{i=1}^N \left[\psi\left(\mathbf{r}
ight) - \psi\left(\mathbf{r} + \mathbf{l}_i
ight)
ight]^2$$

$$\Delta \psi = 0 \qquad \Delta \psi = \pi/2 \quad \Delta \psi = \pi/\sqrt{12}$$

III – Simulations of non-ideal MHD turbulence dedicated to dissipation

Non-ideal incompressible MHD turbulence

Ohmic dissipation: $D_{ohm} = \eta j^2$, j=curl BViscous dissipation: $D_{visc} = v\omega^2$ Dissipation by ion-neutral friction (AD): $D_{AD} = \alpha (j \times B)^2$

Half of the total dissipation is concentrated in 10% of the volume

Ohmic, AD and viscous have comparable contributions to total dissipation

512³ Spectral NS, decaying, different initial conditions Momferratos et al. 2014 16

Extrema of dissipation

Ohmic dissipation: $D_{ohm} = \eta j^2$ Viscous dissipation: $D_{visc} = v\omega^2$ Dissipation by ion-neutral friction: $D_{AD} = \alpha(j \times B)^2$

 AD produces force-free field at small scales
 AD dissipation regions larger

Slice

Full box

Extrema of dissipation

Ohmic dissipation: $D_{ohm} = \eta j^2$ Viscous dissipation: $D_{visc} = v\omega^2$ Dissipation by ion-neutral friction: $D_{AD} = \alpha(j \times B)^2$

Extraction of structures of dissipation rate extremum

Connected sets of points with total dissipation rate 3σ above mean value

Fractal dimension $X_i \propto L_i^{D_X}$

Scaling of the probability distribution functions

 $\mathcal{P}(X_i) \propto X_i^{-\tau \chi}$

⇔ sheet like geometry

Momferratos et al. 2014

 $L_{\rm box}/64$

Comparison to observables

- Dissipation rates Ohmique Viscous AD
- Observables
- = Increments of integrated:
- LOS velocity (white)
- Stokes Q (green)
- Stokes U (red)
- POS magnetic field direction (blue)

Comparison with observables

Vorticity POS projection and B_{POS}

Energy spectra j x B 10^{1} Run 10 (MHD - OT) Run 12 (AD - OT - Re_a = 100) - Run 14 (AD - OT - Re_a = 10) 10^{2} Run 14 (AD - OT - Re_a = 10) 10^{-4} Run 14 (AD - OT - Re_a = 10) 10^{-4} Run 14 (AD - OT - Re_a = 10) 10^{-4} Run 14 (AD - OT - Re_a = 10)

AD producing force-free field at small scales

Increments of polarization orientation₂₁

Missing energy source in the diffuse ISM Large CH⁺ abundances in diffuse gas

Red: visible absorption lines Blue: Submm lines Godard et al. 2014 Extremely short lifetime (destroyed by collisions $H - H_2$)

$$t = 1 \mathrm{yr} / f_{\mathrm{H}_2} (n_{\mathrm{H}} / 50 \mathrm{\, cm}^{-3})^{-1}$$

Energy formation $C^+ + H_2 \rightarrow CH^+$ $E_{form} = 0.5 eV$

Need for a suprathermal energy source

Other manifestations : H₂ pure rotational emission, CO richness, ...

IV -Warm chemistry driven by turbulent dissipation

Lagrangian intermittency

$$S_i^{(p)}(\tau) = \langle [v_i(t+\tau) - v_i(t)]^p$$
$$\zeta_i(p,\tau) = \frac{\mathrm{d}\log S_i^{(p)}(\tau)}{\mathrm{d}\log S_i^{(2)}(\tau)}$$

← Dashed line:
 Non-intermittent
 value
 ← Yellow band:
 Predictions of the
 Parisi-Frisch
 multifractal model
 Frisch 1995
 Méneveau 1996

Structure functions of all data sets collapse onto each other over 3 decades of temporal scales Depth of the dip follows the statistical weight of the vortex filaments

Models of Turbulent Dissipation Regions

- Bursts of dissipation in magnetized Burgers vortices (= solution of Helmholtz equation for vorticity)
 ~ 10 AU, ~ 100 yr ♀ non-equilibrium chemistry
- Dissipation : Lagrangian treatment
 viscous + ion-neutral friction
 warm chemistry
- Thermal and chemical relaxation : 100 yr to several 10⁴ yr
- Few free parameters constrained by ambient turbulence
- 3 phases : active and relaxation phases (a few %) + ambient medium

Joulain et al. 1998; Godard et al. 2009, 2014

Turbulent dissipation : the promises of warm chemistry

- **PDR models : C**⁺ C⁺ + OH and H₂O \rightarrow CO
- Alternative: CH₃⁺
 if highly endothermic
 route C⁺ + H₂ → CH⁺ opened
 CH⁺ + H₂ → CH₂⁺ → CH₃⁺
 Warm chemistry fed by
 intermittent turbulent
 dissipation

Models of Turbulent Dissipation Regions in diffuse gas

TDR models for n_{H} = 30, 50, 100 cm⁻³

N(CH⁺) increases with UV-field
 N(CH⁺) proportional to turbulent injection rate

Direct measure of the energy flux:

$$\dot{E} = \mathcal{N}(\mathrm{CH^+})E_{form}/t$$

Warm chemistry driven by ion-neutral friction

Godard et al. 2014

Alternative approaches

- Low velocity C-shocks Draine & Katz 1986
- Irradiated low-velocity C-shocks Lesaffre + 2013
- Alfvén waves Federman + 1996
- Turbulent mixing CNM /WNM, non-steady state H₂ abundances Valdivia + 2016, in prep.
- MHD turbulence in diffuse gas Myers + 2015

MHD simulations, post-treatment of chemistry, steady-state H_2 abundances

Reproduce observations but treatment of microphysics disputable.

Tiny Scale Atomic Structure

Time variations of molecular
absorption lines towards Zeta Per
using proper motion
♀ 1 -20 AU scales sampled

11% variations of CH⁺ due to variations inlinewidth<6% variations for CH and CN

Validity of the fluid approximation ?

Hall MHD: kinetic effects, ion-electron decoupling, different coherent structures of current and vorticity Stawarz and Pouquet 2015

V – Following the energy trail

ALMA CH⁺ detections in strongly lensed starbursts at z ~ 2.5

CH⁺ emission lines much broader than known CO lines

Falgarone + 2014, in prep.

Detection: ⇒ absorption: large reservoirs of highlyturbulent low density gas **emission**: myriads of low velocity C-shocks with very high velocity dispersion turbulence acts as a buffer of matter and gravitational energy

Elements of answers

• Dissipation of turbulence: one of the drivers of molecule formation in very diffuse neutral gas.