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ASAP SOYUZ configuration

v Copernicus programme : Global Monitoring for Envir onnent (EC with ESA partnership)

v Five families of Sentinel satellites

v Sentinel-1 is a two satellites constellation with p rime objectives of Land and Ocean monitoring :
C-Band SAR data (accurate imaging in all weathers)  following ERS-2 and Envisat.

v Sentinel 1a ready for launch in spring 2014 : helio  synchronous orbit at 786 km

v Sentinel 1b to be ready for launch as soon as sept. 2015 with Soyouz (object: end of 2015)
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MICROSCOPE UFF TEST RATIONALE

v Physics is not completely understood - new Physics
- New experiments
- New type of results
v UFF violation -> one of the invariance of the EEP (UFF, LPI, LLI) vi olated!
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v MICROSCOPE Objective : 10 -*>accuracy

v MICROSCOPE is the first accurate UFF test in space
v Scientific results + Return on Space technology lim itations

Thermal, magnetic, structural, acceleration stabili ties @ picometer/s 2
On board calibration with satellite control
Accurate pointing with SST and Angular Acceleromete r

Scientific Mission Center with Mission Scenario Man agement
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MISSION SCENARIO .

. Reference scenario is established before the launch : list of sequences (transition
or scientific session or technical session):
Commissionning step 1: 29 days, operation of all sub-systems & payload verified
Commissionning step 2: 20 days, drag free and calibration operation validated
Preliminary tests and Performance tests : 25 + 29 days
EP tests: 92 + 52 days

(Calibrations + 2 spins + 2 inertial orientations+ 2 test mass centring) x (EP + REF)
Complementary EP tests : 71 days

Breaks periods with satellite in operating mode without thrusters & gas consumption are
scheduled and can be added (used to take advantage of the obtained results).

. Working scenario to be executed:
Cover 1 month

Is up-dated every weak and validated through Drag-free Expertise and Control Center
Sequences mentionned as :

AE = to be Executed (Q = qualified or AQ= to be qualified) = AC = to be confirmed >
C=confirmed - EC = Running -2 E = Execuded or El = Executed but non successful,

. Executed scenario updates the reference scenario of the whole mission to compute
the whole gas consumption and predict the offered possibilities.
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Galileo Galilei « Free fall » in space Microscope

= 2 test masses made of different composition

=  Gravitational Source : the Earth

S e | o | wow

Pt 1,008009 0,40286 0,20208

=  Kinematic Acceleration : the orbital motion

= |dentical initial conditions of motion _
Ti 1,008911 0,46309 0,08273

e Permanent pico-meter control of the 2 masses

e Measurement = Necessary forces to control the same orbital motion

e No fluctuations of the mass environment due to rela  tive motion

e Centring : 20 um when the mass are levitated

-> Gravity Gradients corrected or centring controlled @ 0.1 pm in orbital plane (X,2)
e Satellite imposes the common motion : reduced -> instrument better operation
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* centering
* shape : spherical inertia, multipoles
» material density homogeneity

© CNES - Juillet 2012 / lllust. D. Ducros
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» Angular acceleration & centrifugal acceleration : t o be controlled
* Coriolis & Cinematic relative acceleration
- stability of the ULE configuration and electrostati c servo-conrol

2 years mission duration : fine survey of gas consu mption
Heliosynchronous orbit ~ 710 km - 1,7 104 Hz
Passive temperature stabilities

Compensation of the drag by GAIA type thrusters
Attitude control without gyro. and wheels
Inertial and rotating pointing > 1 mHz

No moving masses and structural motions @ f  p
Position and attitude sufficiently well known

Payload contributes to s/c motion control
S/C contributes to Payload outputs

ONERA



2 differential electrostatic accelerometers in ther mal cocoon

13 Pierre Touboul, From Quantum to Cosmos, Nice, 15-17 October 2013




2 differential electrostatic accelerometers in ther mal cocoon

magnetic cocoon

© CNES - Julllet 2012 / lllust. D, Ducros.
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payload at the center of the satellite :
-for thermal stability

-for spin mode

-for self gravity
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payload at the center of the satellite :
-for thermal stability

-for spin mode

-for self gravity

And for calibration

payload and star sensor for attitude & orbit contr ol

o

PSD [uN/sqrt(Hz)]

——PSD1uN

—— PSD10uN

~——— P8D200uN
| —— PSD500uN

1E-3

Frequency [Hz]

ONERA

THE FRENCH AEROSPACE LAB



2 differential electrostatic accelerometers in ther mal cocoon

magnetic cocoon

© CNES - Julllet 2012 / lllust. D, Ducros.
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payload at the center of the satellite :
-for thermal stability

-for spin mode

-for self gravity

payload and star sensor for attitude & orbit contr ol
And for calibration




MICROSCOPE Space Lab. with 6 DoF Control

to the benefit of the environment stability

Linear acceleration meas.

2 X 2 X6 axis
accelerometers

ACCELERATION
CONTROLLER
Logic of thrust
combination
2 4
+
» HYBRID ATTITUDE
> CONTROLLER
FILTER

‘ A
Satellite
Dynamics
T STAR TRACKER
Earth Gravity Gradient > eccentricity < 5.10 -3
S/C position tracking (Doppler) : <7m, < 14m, 100m @ fep
Pointing : 10 -3 rad with variations < 10 prad (inertial) & 10 prad (spin) @ fep
Mass Off-Centering > Angular velocity variations < 109 rad/s (spin) @ fep
Angular accelerations variations < 10 rad/s?(inertial) & 5.10 -12 rad/s2 (spin) @ fep
Sensitivity Matching > Drag-Free Control < 3.101%ms-2Hz12 and < 102ms2 @ fep
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Space Electrostatic accelerometers

for Earth gravity field recovery

> GRACE (NASA-JPL), March 2002 — 2015 ?

altitude~500km

en: 1.0-101°ms2 /HZY2

e max: 510°ms2
e [0.1-103; 101 | Hz

Today : 3971 days in orbit

altitude~260km

e'n: 2.0-1012 ms2 /HZY2
e max: 610°%ms=2
* [5-103; 101 [ Hz

OAG1-Y ASH-01 OAG1 -‘):

/ ——3 cii¥, Central Stiffener
_5 O == aess / ASH-05
- ] . - s

Courtesy TAS-F
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accelerometers
for Earth gravity field recovery

2

2

100

-
o

Calibrated Grédibmeter

Gravity Gradient Spectral Density (mE/rHz)

1
0.001

0.01 o i

Accelerometer PSD in 40-100 mHz
ASH;; : 6.7 1012 m/s2/Hz/2
ASH, 4 : 3.9 1012 m/s2/Hz/2
ASH, 5 : 3.1 1012 m/s2/HzY2

Frequency (Hz)

) and individual diagonal gravity gradient (red,
prmance for calibrated gradiometer (with non-
plied). Note that <30 mHz the noise is not visible
gradient curves, since signal dominates

Central Stiffener
ASH-05

Courtesy TAS-F
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GOCE MICROSCOPE
u Gold wire : @=5 um @=7.5 pm
u PT-Rh Proof mass : m= 320g m=1400 - 307 g
u Gap Y,Z: e=299 um e= 600 pm
u PM Polarisation : Vp=7.5V Vp=5V
[ Detection : Vd =7.6 V @ 100 KHz Vd =7.07 V@ 100 KHz
u Detector gain 1.7 mV / nano-m 0.3-0.26 mV / nano-m
u Scale factor :
Science data 1. 10 “'ms-3/V 1.8-2.1107 ms3V
DFACS data 17. 106 ms-3/V 0.7- 1.7 10 ms-2/V
u Range *+6.510%ms2 +48-4610"ms?
u Expected Res. < 2 10 12 ms2 Hz 12 <2102 ms2Hz2
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MICROSCOPE : A dedicated instrument

ASH . FEEU . ICU

S ———— AD *6 servo-channels and' associated elgctrode sets

a I - Sensing and actuations

\goldwire E— < iseis *VVery steady and accurate configuration

vpvd A L Bloe) «Cylindrical configuration
Controlle —>Concentric masses
- DA — —— ~>Overlapping electrodes along X - Linearity
DY =
L A ~

— - IE Science Data
— l: @4Hz y o ¢ X

One differential accelerometer = 2 inertial sensors
Each inertial sensors exploits :
Electrostatic concept & Technology similar to GOCE

Axia Electrodes

ONERA
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Instrument Design

2 Sensor Units mounted on reference plate
(2 concentric Test-Masses Pt-Rh / Pt-Rh or Ti / Pt-Rh)

Base plate assembly for high Blocking system
accur atepositioning / 24 bars chamber

Electro-valves

Circuit boardsfor coax.
connections

.

36 cm x 34.8 cm x 18 cm -25kg

Test-Masses

j Silica cylindersfor
) I electrodes set
\ Vacuum system Her metic connectors
-
ONERA
/-—-'—_'_‘—'—-\
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Instrument Design

2 Sensor Units mounted on reference plate
(2 concentric Test-Masses Pt-Rh / Pt-Rh or Ti / Pt-Rh)

Base plate assembly for high Blocking system
accur atepositioning

24 bar s chamber
Circuit boardsfor coax. = / ,

connections

Electro-valves

Electronics Unit (FEEU)
One for two masses, Low noise analog electronics with high stability :

Reference voltages
+ 2 times 6 electrostatic channels (analog part +ADC +DAC)
+ 2 times read out circuits

2x{28cmx17cmx9cm- 3.5kg-7W } e "
/ Silica cylindersfor

i I / electrodes set
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Instrument Design

2x{28cmx17cmx9cm- 3.5kg-7W }

v, .

30cmx 25cm x 11 cm — 5.5kg — 2 x 11W
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2 Sensor Units mounted on reference plate
(2 concentric Test-Masses Pt-Rh / Pt-Rh or Ti / Pt-Rh)

Base plate assembly for high Blocking system
accur atepositioning 24 bars chamber
/ L/

Electro-valves

Circuit boardsfor coax.
connections

-

Front End Electronics Unit (FEEU)
One for two masses, Low noise analog electronics with high stability :

Reference voltages
+ 2 times 6 electrostatic channels (analog part +ADC +DAC)
+ 2 times read out circuits

/— Silica cylindersfor
electrodes set

Interface Control Unit (ICU)

2 stacked ICU (1 per FEEU), including each :

1 DSP + 1 FPGA for test-mass control and data conditioning/interfaces,
2 Power Control Units (1 nominal + 1 redundant): very stable
secondary voltages (+/-48V, +/-15V,+5V,+3.3V)
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,|, a d

Reference plate with silica top hat and fingers
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Reference plate with silica top hat and fingers
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Reference plate with silica top hat and fingers
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INTEGRATION FM 2 : Platinum / Titanium (2

Reference plate with silica top hat and fingers
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INTEGRATION FM 2 : Platinum / Titanium (
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v The two masses are integrated
inside their electrode rods;

v' Geomefric control have been performed
v' Electrical board with connectors

and getter pumping element to be mounted
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FEEU and ICU qualification

Axe Résultat [uV/T] Spécification
X1i 64.68 <300uV/C
Xle 16.66 <300pV/C
Y1i 11.70 <20pVv/C
Yile 14.68 <20pVv/C
Y2i 8.40 <20uV/C
Y2e 9.34 <20pv/C
X2i 36.56 <300uV/C
X2e 130.93 <1800uV/C
Z1i 12.15 <20pVv/C
Zle 37.63 <20pv/C
Z2i 16.37 <20pVv/C
Z2e 13.26 <20pVv/C

Xinner: 2.6 10°V/im > <10uV.HzY2 = 3.8 10-1'm.Hz2
X outer: 3.0 10°V/m > <6uV.HzY2=2.0 10"t m.Hz2

Y,Z inner: 2.3 10°V/m > < 6uV.HzY2 = 2.6 10-1m.Hz12

beuit de la voie AROK

Y,Z outer: 3.1 105 V/m > < 4uV.HzY2 = 1.3 10-'m.Hz?2 i
The 3 FEEU FM, successfully tested in performance : l
* noise + bias + linearity + bandwidth + thermal sens itivity
« Interface with FM ICUs e
Now, under potting after increase of the read-outr  ange, Qualification P Wi e
under vibrations and thermal cycles are scheduled in Dec. 2013. Read out noise (redjve€pec. (black) *
1pV.HZY2 = 9.2 101%ms2.Hz12

ONERA
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1 DSP board per differential accelerometer (No red
1 DSP 21 SU 12 servo-loops channels
| 1 DSP = 1 Oslink customer
Architecture on TSC21020F:
*Rad-tolerant FPGA
*SEL immune SRAM (SEU protected by EDAC)
*PROM containing the master (Boot) software ( IMSW )
*EEPROM containing the application software (ASW ) and the parameter tables.

undancy) :

legend 3 ,&\ﬂ 4 ™ ﬁ :g%vzsmm«
s R ﬂ TR Software and Hardware tested, accuracy verified.
: g g;’:;s;;.'&.’»'fl(‘.k'
K o
Logal Time: -
oion [ = P
Dsp ‘Li!: :@ '@
T5C21020F E 1 Ou £0AS
g ==
= e PM EDAG
> & Control
>
LY
i ? ;.‘E?SRAM
| 4 {data + check)
PR VN e = :;)ﬂ e DSP hardware now compliant (more robust chronogram ) :
= A i » With the whole range of operating temperature
i » And with the 2 years duration of the mission

» Tests have been successfully performed
» Software 2.6 to be delivered at end of November.

ONERA
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Instrument status and performance verifica

> Sensors:
Quialification, now performed with demonstration of resistance to launch vibrations, chocks, aging (gol d wire);
FM 2, integrated and under tests;
FM 1, integration running;
To be delivered in March 2014

> Analog electronics:
FM Tested and being potted after full range adjustme  nt;
To be delivered in Feb. 2014

> Digital electronics:
Robustness to increase of temperature now insured;
Software to be up-dated;
To be delivered in Feb. 2014

> Documentation:
In progress

> Error budget

Now performed with QM actual values and satellite e  xpected environment
Spin mode : 1,12 10 -15 over 20 orbits and 0,66 10 -15 over 120 orbits

Inertial mode : 1,42 10 -15 over 120 orbits

Both limited by the sensor noise, the SU gradients of temperature variations,
the SU and FEEU temperature variations.

ONERA
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Instrument status and performance verificat

Performance test session : 29 days

Y

v’ Verification of acceleration output linearity

v' Sensibility of output linearity to static TM position (along the 3 axes) p» chocks, aging (gol d wire);

v’ Variation of the electrostatic configuration

v’ through test mass DC potential

- observation of bias and noise

v’ through test-mass sine motion : change of geometry

v’ through S/C sine motion : change of electrode voltages
v’ Evaluation of couplings and TM self gravity
| ¥ Evaluation of Magnetic sensitivity through magneto-torquer actuations
v Evaluation of thermal sensitivity of SU and FEEU with dedicated thermistances

Calibration : 3 phases of 14 days

v Before and after
v EP and REF

Y

> Error budget

Now performed with QM actual values and satellite e  xpected environrment
Spin mode : 1,12 10 -15 over 20 orbits and 0,66 10 -15 over 120 orbits

Inertial mode : 1,42 10 -15 over 120 orbits

Both limited by the sensor noise, the SU gradients of temperature variations,
the SU and FEEU temperature variations.
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CALIBRATION : 2 servo-loops to generate well k

acceleration outputs

Instrument
Oscillation
; command for the
Environmental calibration | Internal ey Internal - Mresq  Testofthe
perturbations test-mass —> sensor ‘ >+ ‘ Equivalence
» dynamics measurement Principe
*
g,ext
| External External /!f\ Iimesic
test-mass > sensor =U >
Mg sat | dynamics rApp,Z measurement | [ mes2 - AOCS -
> Satellite >
N dynamics
Angular or linear
Oecilaton oscillation command for
corminani forthe the calibration
calibration
satellite attitude o| Star tracker | measured attitude
I_propu

v' Drag compensation loop = To excite the linear satellite motion

- Common excitation - Differential outputs vs drag-free point
v Attitude S/C control through SST and angular accelerometer

- To oscillate the S/C - Differential outputs vs eccentricity or instrument attitude vs SST
v Proof- mass oscillation = Elect. Conf. modif. Or Corriolis effects
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Operational & scientific organization

3 levels
4;/@£Qb
- By
= = =

ccC CECT CMS

GCO GPOM Operational cozr;h/n:/tlon

eek
[ [ =
@ ~ (& .

& Implementation, processing and 1st analysis

CCC Ops CECT Ops CMS Ops . . ¢ Dally

Platform & Ground Segment Mission & Mission &
Drag-freeAmoniton'ng PayloadAmonitoring
@ e ’@  permanent activity for data processing
e e Processing and analysis, expertise [ * monthly meetings
ol Payload, Weekly + on request | « yyeekly potential request for mission scenario & ope  ration
expertise PerformancAe & Science
¥ . . .
@ Mission performance and scenario supervision | * biannual meetings or quarterly for data processing
vt y St;;e":'ﬁ%eXP'o"a?'oz organization and validation
Oy T WRENTEqUISE] o monthly potential requests for mission scenario

The MICROSCOPE Science Working Group promotes the ex  ploitation of the data & is responsible in partic ular for:
. Supervising and approving the evaluation and the va  lidation of the performance
. Approving the final scientific data products to be distributed to the community,
. Promoting the exploitation of the data and the dif  fusion of the information (colloquia...).
R ONERA
50 Pierre Touboul, From Quantum to Cosmos, Nice, 15-17 October 2013 > /—:A—:A_T—x-\




Operational & scientific organization

3 levels

Members of the SWG :
e The PI (ONERA) and the co-PI (OCA), Pierre Touboul , Gilles Métris,

WQ% e The ZARM co-I for Space Physics and the DLR co-I,  Claus Lammerzhal , Hans Dittus,
@ * Five representatives of the already envisaged scien tific themes, i.e.:
General Relativity and Gravitation,  Thibault Damour,

Fundamental Interactions, Pierre Fayet,
Interdisciplinary Physics, Serge Reynaud,

=N 4 o
~ L EE Earth gravity field, Isabelle Planet,
,c:"' Aeronomy, Peter Visser,
GCO GPOM . o e .
—] o —] @ =1 ° One representative of similar space missions, Tim Sumner,
& @ g Guests: the CNES Fundamental Physics coordinator, Project manager , CECT chairman,
CCC Ops CECT Ops cms o . . . .
Platform & Ground Segment Mission & vissid Sylvie Léon-Hirtz, Michel Bach, Alain Robert  and the CMS manager, Manuel Rodrigues.
Drag-freeAmoniton'ng PayloadA, alaaciaint
@ e ’@  permanent activity for data processing
e e Processing and analysis, expertise [ * monthly meetings
ol Payload, Weekly + on request | « yyeekly potential request for mission scenario & ope  ration
expertise PerformancAe & Science
¥ . . .
@ Mission performance and scenario supervision | * biannual meetings or quarterly for data processing
vt y St;;e":'ﬁ%eXP'o"a?'oz organization and validation
Oy T WRENTEqUISE] o monthly potential requests for mission scenario

The MICROSCOPE Science Working Group promotes the ex  ploitation of the data & is responsible in partic ular for:
. Supervising and approving the evaluation and the va  lidation of the performance
. Approving the final scientific data products to be distributed to the community,
. Promoting the exploitation of the data and the dif  fusion of the information (colloquia...).
ONERA
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Thanks to MICROSCOPE present partners

with Cnes
Courtesy -

&
D
N
Q

cnes

CENTRE NATIONAL D'ETUDES SPATIALES

DLR

% PIB
ZAHM Physikalisch-

Technische

Bundesanstalt

52 Pierre Touboul, From Quantum to Cosmos, Nice, 15-17 October 2013

Observatoire de la Cote d’Azur

ONERA

THE FRENCH AEROSPACE LAB




THANK YOU FOR YOUR ATTENTION

QUESTIONS ?

ONERA

THE FRENCH AEROSPACE LAB
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